
Pervasive and Mobile Computing 3 (2007) 36–52
www.elsevier.com/locate/pmc

A three round authenticated group key agreement
protocol for ad hoc networks

Daniel Augota, Raghav Bhaskara,∗, Valérie Issarnyb,
Daniele Sacchettib

a Projet CODES, INRIA Rocquencourt, 78153 Le Chesnay, France
b Projet ARLES, INRIA Rocquencourt, 78153 Le Chesnay, France

Received 2 May 2005; received in revised form 15 December 2005; accepted 16 July 2006
Available online 6 September 2006

Abstract

Group Key Agreement (GKA) protocols enable the participants to derive a key based on each
one’s contribution over a public network without any central authority. They also provide efficient
ways to change the key when the participants change. While some of the proposed GKA protocols
are too resource consuming for the constraint devices often present in ad hoc networks, others lack
a formal security analysis. In this paper, we propose a simple, efficient and secure GKA protocol
well-suited to ad hoc networks and present results of our implementation of the same in a prototype
application.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Key agreement; Ad hoc networks; Provable security; Cryptographic protocols

1. Introduction

Ad hoc networks are a step closer to a pervasive world in which devices discover
peer nodes and communicate with them in the absence of any central/fixed infrastructure.
They find applications in a wide range of scenarios, varying from sensor networks, as in

∗ Corresponding author. Tel.: +33 139635075; fax: +33 139635051.
E-mail addresses: raghav.bhaskar@inria.fr, raghav.bhaskar@gmail.com (R. Bhaskar).

1574-1192/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2006.07.001

http://www.elsevier.com/locate/pmc
mailto:raghav.bhaskar@inria.fr
mailto:raghav.bhaskar@gmail.com
http://dx.doi.org/10.1016/j.pmcj.2006.07.001

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 37

Smartdust [16], to collaborative conferencing applications as in AdhocFS [8]. The term ad
hoc network has come to be employed for all networks which exhibit certain characteristics
like wireless communication, absence of any central infrastructure, high dynamism in
network composition and limited computational abilities of devices.

Before ad hoc networks can be used for critical applications, the pertinent question
of security has to be solved. These networks pose additional challenges in meeting the
goals of security. Challenges relate to limited computational power of devices, high
communication costs, lack of any permanent trusted third party and ease of intercepting
wireless communication. One essential step in securing a network is to devise a secure and
efficient way of managing the security keys i.e. key management. Group Key Agreement
(GKA) [26] protocols seem to provide a good solution. All the nodes in the network
participate in a contributory protocol whereby they come up with a key, which is known
only to the contributors. When the group composition changes (as in the case of merger
or partition of groups), one employs supplementary key agreement protocols to get a new
key. These supplementary protocols are cheaper than executing the GKA protocol anew.

1.1. Related work

Many Group Key Agreement protocols [15,19,4,2,32,22,23,1] have been proposed in
the literature, most being derived from the two-party Diffie–Hellman (DH) key agreement
protocol. Some have no formal proofs while some are secure against passive adversaries
only (for instance [31,22]). Provably secure protocols in a well-defined model of security
were first provided by Bresson et al. [14,12,13]. Their security model extended the earlier
work of Bellare et al. [6,5]. The number of rounds in these protocols is linear in the number
of participants, thus making them unsuitable for large ad hoc networks. Both TGDH [22]
and Dutta [17] make use of key trees, but such protocols require special ordering of the
group members which is not easily achieved in ad hoc networks and make the protocol
less robust to message losses. They require O (height of tree) rounds of communication.
Katz–Yung [21] proposed the first provably-secure constant-round group key agreement
protocol inspired from the works of Burmester et al. [15]. In the same work, they also
proposed a scalable compiler to transform any GKA protocol secure against a passive
adversary into one which is secure against an active adversary. But with up to 3m broadcast
messages, the protocol is quite expensive to implement in most ad hoc networks. It lacks
procedures to handle group dynamism and again requires ordering of the members in a ring
which is difficult to implement in ad hoc networks. Boyd et al. [10] proposed an efficient
constant-round protocol where the bulk of the computation is done by one participant
(the current group leader), thus making it highly efficient for heterogeneous ad hoc
networks. It is provably secure in the Random oracle model [6], but lacks forward secrecy
(i.e. compromise of long-term key compromises all session keys). Catalano et al. [11]
proposed a two-round protocol achieving security against active adversaries but with up
to 3m exponentiations for each member, the protocol is way too expensive for ad hoc
networks. Subsequent to the present work,1 Won et al. [27] also solve this problem but their

1 A preliminary version of our protocol was published at TSPUC 2005 [3] which used Yung’s compiler for
authentication.

38 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

Table 1
Efficiency comparison of GKA protocols

Expo Rounds Messages Security
per Ui Unicast Broadcast

GDH.3 [31] 3 (m for leader) m + 1 2m − 3 2 Passive
TGDH [22] log2 m + 1 log2 m 0 m Passive
GDH.2 [13,2] i + 1 m m − 1 1 Active
Dutta [17] log3 ma log3 m 0 m Active
Yung (BD) [21] 3 3 0 3m Active
Catalano [11] 3m 2 0 2m Active
Won [27] 2 (2mb for leader) 3 m − 1 m + 1 Active
Ours 2 (m for leader) 3 m − 1 2 Active

m: Number of participants.
a Pairings (more expensive operation) instead of exponentiations.
b m inverse calculations or O(m2) multiplications apart from m exponentiations.

proposition turns out to be expensive computationally. Also they use the compiler of [21]
which adds to its message complexity as well. In Table 1, we compare GKA protocols
achieving basic security goals of key secrecy, key independence and forward secrecy (see
Section 2.1). We compare the number of exponentiations performed by each member, the
number of rounds (multiple independent messages can be sent in a single round) as well as
the total number of messages exchanged and mention the security level achieved by each
protocol.

1.2. Our contributions

We propose a three-round authenticated GKA protocol with efficient procedures for
group mergers and partitions. The protocol is shown secure against an active adversary
(in the standard model) and has a tight security reduction. The protocol is simple (a very
natural extension of the 2-party DH key agreement) and thus carries a simple proof of
security. It benefits from the following features:

(1) Relevance to ad hoc networks: This protocol is well suited to ad hoc networks as it
requires no special ordering of the participants. For each execution of the protocol, a
random participant can be chosen as the group leader. It is robust as loss of messages
from some participants towards the leader does not prevent other participants from
calculating the group key. It has efficient Merge and Partition procedures to handle
dynamism in ad hoc networks and also provide a mechanism to change the group leader
in each session. Also the bulk of the computation can be assigned to more powerful
devices, as most ad hoc networks are expected to be composed of devices of unequal
computing power.

(2) Simple and efficient: The protocol along with the merge and partition procedures is
simple and efficient. It has a simple yet tightest proof of security in the standard model
under the Decisional Diffie–Hellman assumption.

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 39

1.3. Outline

The paper is organized as follows. In Section 2, we discuss the security goals,
recapitulate the security model and security definitions. In Section 3, we present a new
key agreement protocol for ad hoc environments and in Section 4 a security analysis of the
same. In Section 5, we present results of our implementation of the protocol in a prototype
application. Finally, we conclude in Section 6.

2. The security model

In this section we define the security goals expected to be met by any GKA protocol,
recapitulate the security model of Katz–Yung [21] (based on the model of [13]) and define
the Decisional Diffie–Hellman (DDH) assumption.

2.1. Security goals

The following security goals can be identified for any GKA protocol.

(1) Key secrecy: The key can be computed only by the GKA participants.
(2) Key independence: Knowledge of any set of group keys does not lead to the knowledge

of any other group key not in this set (see [9]).
(3) Forward secrecy: Knowledge of some long term secret does not lead to the knowledge

of past group keys.

2.2. The model

The security model used to provide proof, models interaction of the real participants
(modeled as oracles) and an adversary via queries which the adversary makes to the oracles.
It is a kind of a “game” between the adversary and the participants, where the adversary
makes some queries and finally tries to distinguish a group key from a random quantity for
some session he chooses. The model is defined in detail below:

Participants. The set of all potential participants is denoted by P = {U1, . . . , Ul} where l
is polynomially bounded by the security parameter k. At any given time any subset of P
may be involved in a GKA session. We denote this subset by an index set (M, J or D)
which contains the indices of the session participants with respect to P . Also at any given
instant, a participant may be involved in more than one session. We denote by U s

i the sth
instance of participant Ui and by U s the sth instance of a generic participant U . The group
key associated with the instance U s is denoted by skU

s . Before the first protocol run, each
participant U runs an algorithm G(1k) to generate public/private keys (PKU , SKU) which
are used for the signature algorithm defined later. Each participant stores its own private
key while all the public keys are made available to all participants (and the adversary).

Partners. Partners of an instance U s
i are all the instances which calculate the same session

key as U s
i . Formally, partnering is defined by session ID (sids

U) and partner ID (pids
U) of

U s . Refer to [21] for details.

40 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

Correctness. Sessions for which all participant instances compute the same session key are
admissible, all others are rejected.

Adversary. The adversary A interacts with the participant instances via the following
queries:

– Send(U, s, M): This query essentially models the capabilities of an active adversary
to send modified/fabricated messages to the participants. The message M is sent to the
instance U s and outputs the reply generated by the instance (in accordance with the
protocol).

As any dynamic GKA protocol P consists of three protocols: IKA, Join and Delete. We
define three kinds of Execute queries which essentially model the capabilities of a passive
adversary.

– Executeika(M): This executes the IKA protocol between unused instances of the
specified users and returns the transcript of the session.

– Executejoin(M,J): This executes the Join protocol by adding the users indexed by J to
an existing group indexed by M and returns the transcript of the session.

– Executedel(M,D): This executes the Del protocol by deleting participants indexed by D
from the existing group indexed by D and returns the transcript of the session.

– Reveal(U, s): This query outputs the session key of instance U s .

– Corrupt(U): This query outputs the long-term secret (private key) SKU of participant U .

– Test(U, s): This query is allowed only once to the adversary (to be made to a fresh
instance; see below) during the duration of its execution. A random bit b is generated; if
b = 1 the session key is returned to the adversary else a random bit string is returned.

Freshness. An instance U s is fresh if both of the following are true: (a) the query Reveal
has not been made to the instance U s or any of its partners; (b) no Corrupt (U) query has
been asked to U or any of U s’s partners since the beginning of the game.

Definitions of security. The semantic security of a GKA protocol, P , is tested with the
help of a “game” (denoted as GameA,P or in short G0) which the adversary plays with
the protocol participants. The goal of the adversary in game G0 is to correctly guess the
bit b used in answering the Test query. If A correctly guesses the bit b, we say that the
event Win has occurred. Then the advantage of an adversary A in attacking the protocol
P is defined as AdvA,P = 2. PrA,P [Win] − 1. The maximum advantage over all such
adversaries making q queries and operating in time at most t is denoted as AdvP (t, q).
For a passive adversary we use the notation AdvP (t, qex), while for an active adversary
we use AdvP (t, qex, qs), where qex and qs denote the number of Execute and Send queries
respectively.

We note that the above model does not address the issue of malicious insiders. Session
participants can be corrupted, but only after the session on which the adversary will make
the Test query has passed. Also our definition of forward secrecy does not give access to
internal data (any short term secrets or any data stored by the participant) to the adversary.
Only the long term key is revealed. This definition is sometimes referred to as weak forward
secrecy in the literature. Achieving strong forward secrecy (giving access to the long term

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 41

secret as well as all internal data) in GKA protocols with efficient procedures for merge
and partition remains a challenge.2

2.3. Decisional Diffie–Hellman assumption

The Decisional Diffie–Hellman (DDH) Assumption [7] captures the notion
that the distributions (g, gra , grb , grarb) and (g, gra , grb , grc) are computationally
indistinguishable, where g is a generator of some group G and ra, rb, rc are randomly
chosen from [1, |G|]. Thus the advantage of a DDH algorithm D running in time t for G
is defined as (see [14]):

AdvDDH(t) = |Pr[D(g, gra , grb , grarb) = 1] − Pr[D(g, gra , grb , grc) = 1]|.

2.4. Secure signature scheme

A digital signature scheme Σ = (G,S,V) is defined by a triplet of algorithms:

• G: A probabilistic key generation algorithm which on input 1k outputs a pair of matching
public and private keys (PK, SK).
• S: An algorithm that, given a message m and a key pair (PK, SK) as inputs, outputs a

signature σ of m.
• V: An algorithm that on input (m, σ, PK), outputs 1 if σ is a valid signature of the

message m with respect to PK, and 0 otherwise.

We denote by SuccF ,Σ (k) the probability that an adversary F succeeds with an
existential forgery under adaptive chosen message attack [18]. We say that a signature
scheme Σ is secure if SuccF ,Σ (k) is negligible for any probabilistic polynomial time
adversary F . We denote by SuccΣ (k, t) the maximum value of SuccF ,Σ (k) over all
adversaries F running in at most time t .

3. The new group key agreement protocol

We propose a new group key agreement protocol in this section. We first illustrate the
basic principle of key exchange, followed by a detailed explanation of how it is employed
to derive Initial Key Agreement, Join/Merge and Delete/Partition procedures for ad hoc
groups.

3.1. Notation

G: A subgroup (of prime order q with generator g) of some group.
Ui : i th participant amongst the n participants in the current session.

2 In fact the only way to achieve strong forward secrecy seems to be to clear all internal data of each instance
when the session key has been calculated. This makes it difficult to reuse data for efficient Join and Delete
procedures.

42 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

Table 2
IKA

l
r
←M, Nl

r
← {0, 1}k

Ul
B
−→M : {msg1

l = {INIT, Ul , Nl }, σ
1
l }

∀i ∈M \ {l}, i f (VPKl {msg1
l , σl } == 1), ri

r
← [1, q − 1], Ni

r
← {0, 1}k ,

Ui −→ Ul : {msgi = {IREPLY, Ul , Nl , Ui , Ni , gri }, σi }

rl
r
← [1, q − 1],∀i ∈M \ {l}, i f (VPKi {msgi , σi } == 1)

Ul
B
−→M : {msg2

l = {IGROUP, Ul , Nl , {Ui , Ni , gri , gri rl }i∈M\{l}}, σ
2
l }

if (VPKl {msg2
l , σ 2

l } == 1) and gri is as contributed

Key = grl (1+
∑

i∈M\{l} ri)

Ul : The current group leader (l ∈ {1, . . . , n}).
ri : A random number (from [1, q − 1]) generated by participant Ui . Also called the secret
for Ui .
gri : The blinded secret for Ui .
gri rl : The blinded response for Ui from Ul .
M: The set of indices of participants (from P) in the current session.
J : The set of indices of the joining participants.
D: The set of indices of the leaving participants.
x ← y: x is assigned y.
x

r
← S: x is randomly drawn from the uniform distribution S.

Ui −→ U j : {M}: Ui sends message M to participant U j .

Ui
B
−→M : {M}: Ui broadcasts message M to all participants indexed by M.

Ni : Random nonce (maximum k1 bits) generated by participant Ui .

3.2. A three round protocol

Please note that in the following rounds each message is digitally signed by the sender
(σ j

i is signature on message msg j
i in Tables 2–4) and is verified by the receiver before

following the protocol.
Protocol steps:
Round 1: The chosen group leader, Ml makes a initial request (INIT) with his identity, Ul
and a random nonce Nl to the group M.
Round 2: Each interested Mi responds to the INIT request, with his identity Ui , nonce Nl
and a blinded secret gri to Ml (see Table 2 for exact message contents).
Round 3: Ml collects all the received blinded secrets, raises each of them to its secret
(rl) and broadcasts them along with the original contributions to the group, i.e. it sends
{Ui , Ni , gri , gri rl } for all i ∈M \ {l}.

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 43

Table 3
Join/Merge

∀i ∈ J , ri
r
← [1, q − 1], Ni

r
← {0, 1}k ,

Ui
B
−→M : {msgi = {JOIN, Ui , Ni , gri }, σi }

∀i ∈ J , i f (VPKi {msgi , σi } == 1) rl
r
← [1, q − 1], l ′

r
←M ∪ J

Ul −→ Ul′ : {msgl = {JREPLY, {Ui , Ni , gri }∀i∈M∪J }, σl }

if (VPKi {msgl , σl } == 1), l ← l ′, rl
r
← [1, q − 1],M←M ∪ J

Ul
B
−→M : {msg2

l = {JGROUP, Ul , Nl , {Ui , Ni , gri , gri rl }i∈M\{l}}, σ
2
l }

if (VPKl {msg2
l , σ 2

l } == 1) and gri is as contributed

Key = grl (1+
∑

i∈M\{l} ri)

Table 4
Delete/Partition

∀i ∈ D, Ui −→ Ul : {msgi = {DEL, Ui , Ni }, σi }

∀i ∈ D, i f (VPKi {msgi , σi } == 1), rl
r
← [1, q − 1],M←M \D

Ul
B
−→M : {msgl = {DGROUP, Ul , Nl , {Ui , Ni , gri , gri rl }i∈M\{l}}, σl }

if (VPKl {msgl , σl } == 1) and gri is as contributed

Key = grl (1+
∑

i∈M\{l} ri)

Key calculation: Each Mi checks if its contribution is included correctly and obtains grl by

computing (gri rl)r−1
i . The group key is

Key = grl ∗

∏
i∈M\{l}

gri rl = g
rl (1+

∑
i∈M\{l}

ri)

.

Note:

(1) The original contributions gri are included in the last message as they are required for
key calculation in case of group modifications (see below).

(2) Even though
∏

i∈M\{l} g
ri rl is publicly known, it is included in key computation, to

derive a key composed of everyone’s contribution. This ensures that the key is not
pre-determined and is unique to this session.

(3) Even though the current group leader chooses his contribution after others, he cannot
pre-determine the group key. See Section 4.1 for details.

44 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

The protocol is formally defined in Table 2. We now see how this protocol can be used to
derive IKA, Join/Merge and Delete/Partition procedures for ad hoc networks.

3.3. Initial key agreement

Secure ad hoc group formation procedures typically involve peer discovery and
connectivity checks before a group key is derived. Thus, an INIT request is issued by some
participant and all interested peers respond. The responses are collected and connectivity
checks are carried out to ensure that all participants can listen/broadcast to the group
(see for instance [29]). After the group membership is defined, GKA procedures are
implemented to derive a group key. Such an approach is quite a drain on the limited
resources of ad hoc network devices. Thus an approach which integrates the two separate
procedures of group formation and group key agreement is required. The above protocol
fits well with this approach. Round 1 and Round 2 of the above protocol can be incorporated
into the group formation procedures. In this way, blinded secrets, gri ’s, of all potential
members, Ui ’s, are collected before the group composition is defined. When the fully
connected ad hoc group is defined, a single message (Round 3 in Table 2) from the group
leader, Ul ,3 using contributions of only the joining participants enables every participant
to compute the group key. An example is provided below.

Suppose U1 initiates the group discovery and initially 5 participants express interest and
send gr2 , gr3 , gr4 , gr5 and gr6 respectively along with their identities and nonces. Finally
only 3 join because of the full-connectivity constraint. Suppose the participants who finally
join are U2, U4 and U5. Then the group leader, U1, broadcasts the following message:
{gr2 , gr4 , gr5 , (gr2)r1 , (gr4)r1 , (gr5)r1}. On receiving this message, each participant can
derive gr1 using his respective secret. Thus the key gr1(1+r2+r4+r5) can be computed.

3.4. Join/Merge

Join is quite similar to IKA. Each joining participant, Ui (i ∈ J), sends a JOIN request
along with its identity, Ui , random nonce, Ni and blinded secret, gri . The old group leader
(Ul) chooses a new random secret, rl , and sends all the blinded secrets to the new group
leader, Ul ′ (which can be chosen randomly). The new group leader broadcasts a message
similar to the round 3 message in IKA i.e. all the blinded secrets and the blinded secrets
raised to his (new) secret. It is worth noting that the new group leader discards the secret he
used during the JOIN request (or secret from the last session) and generates a new random
secret for the broadcast message. During merge of two groups, all members of the smaller
merging group (including the group leader) can be seen as joining members to the larger
group. See Table 3 for formal specification and below for an example.

Suppose new participants, U9 and U10, join the group of U1, U2, U4 and U5
with their contributions gr9 and gr10 respectively. Then the previous group leader (U1)
changes its secret to r∗1 and sends gr∗1 , gr2 , gr4 , gr5 , gr9 , gr10 to U10 (say the new
group leader). U10 generates a new secret r∗10 and broadcasts the following message to
the group: {gr∗1 , gr2 , gr4 , gr5 , gr9 , gr∗10r∗1 , gr∗10r2 , gr∗10r4 , gr∗10r5 , gr∗10r9}. And the new key is
gr∗10(1+r∗1+r2+r4+r5+r9).

3 The group leader can be different from the initiator; see Section 4.2 for leader election issues.

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 45

3.5. Delete/Partition

When participants leave the group, the group leader changes his secret contribution
and sends an IKA Round 3-like message to the group, omitting the leaving participants’
contributions. Partition of a group can be see as deletion of multiple members. Refer to
Table 4 and below for an example.

Suppose a participant, U2, leaves the group of U1, U2, U4, U5, U9 and U10. Then the
leader, U10 changes its secret to r ′′10 and broadcasts {gr∗1 , gr4 , gr5 , gr9 , (gr∗1)r ′′10 , (gr4)r ′′10 ,

(gr5)r ′′10 , (gr9)r ′′10} to the group. And the new key is gr ′′10(1+r∗1+r4+r5+r9).

4. Security analysis

Below we show that the above defined protocol is secure against active adversaries in
the standard security model.

Theorem 1. Let P be the protocol as defined in the last section. Let A be an active
adversary making qex Execute queries and qs Send queries to the participants and running
in time t. Then Protocol P is a secure GKA protocol. Namely:

AdvP (t, qex, qs) ≤ AdvDDH(t ′)+ |P| ∗ SuccΣ (t ′)+
q2

s + qexqs

2k +
1
|G|

where k1 is the size (in bits) of the nonces and t ′ ≤ t+|P|(qex+qs)(texp+ tlkup), texp is the
time to perform an exponentiation in G and tlkup is the time to perform a look-up in tables
L and Sessions, to be defined in the proof.

Proof. Let A be an adversary that plays in the game G0 against the protocol P . We will
define a series of games G1, . . . , G5 such that each game Gi differs “slightly” from its
precedent game Gi−1. We denote the event Win in the game Gi by Wini . Thus by explicitly
quantifying the effect the slight difference in the games has on the winning probability
of the adversary, one can relate the winning probability of A in the original game G0
(Pr[Win0]) to any other game. We stop when we eventually reduce to a simple game (here
G5) for which we can calculate Pr[Wini]. Thus by relating all the probabilities we can
eventually calculate Pr[Win0].

All queries made byA are answered by a simulator ∆. ∆ maintains two tables: Sessions
and L . In table Sessions, ∆ keeps transcripts of each and every session generated by
him (either with a single Execute query or multiple Send queries). While in table L ,
∆ maintains a list of all blinded secrets generated by him during the game and their
corresponding secrets.
Game G0: This game G0 is the real game as defined earlier. ∆ initializes the game by
generating public–private key pairs for all the participants as specified by the protocol and
choosing a random bit b, which is used by him to answer the Test query. Then it answers
all queries of the adversary in accordance with the protocol P .
Game G1: The game G1 is identical to G0 except that ∆ aborts if a signature forgery occurs
for some player U before any Corrupt(U) query was made. We denote such an event by
E1. Using a well-known lemma we get: |Pr[Win0] − Pr[Win1]| ≤ Pr[E1]. Note that ∆ can
detect a signature forgery for some player U when he finds a valid message, not generated

46 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

by him (all messages generated by ∆ are stored in the Sessions table), in some session
before the Corrupt query was made to U .

Calculation of Pr[E1]: The event E1 occurs when the adversary makes an existential
signature forgery for any one of the protocol participants. The probability of this happening
is bounded by |P| ∗ SuccF ,Σ (k) where SuccF ,Σ (k) is the success probability of an
existential signature forgery against a signature scheme Σ , given some public key P K .

Game G2: The game G2 is identical to G1 except that ∆ aborts if a nonce used in some
Send query has already been used in some Execute or Send query before. We denote
the occurrence of the nonce being repeated in some Send query as event E2. Then:
|Pr[Win1] − Pr[Win2]| ≤ Pr[E2]. ∆ can detect event E2 as he can track all nonces
generated, via the Sessions table.

Calculation of Pr[E2]: Clearly the probability of event E2 happening is qs (qex+qs)

2k1
.

Game G3: In game G3, ∆ modifies the way it answers the queries slightly. ∆ is given as
input a DDH-tuple (g, gra , grb , grarb). ∆ follows the protocol as before to generate query
responses but changes the way it generates the blinded secrets used in the transcript. The
change is as follows:

Whenever a blinded secret is to be generated for some session participant Mi , instead
of raising the group generator g to a randomly chosen number ri (from [1, q − 1], as
specified by the protocol), it raises grb (from the given tuple) to αi and g to βi and uses
the value grbαi gβi as the blinded secret for participant Mi in the transcript. Both αi and βi
are randomly chosen from [1, q − 1]. The corresponding blinded response is generated as
before by raising the blinded secret to the group leader’s secret rl (which is also randomly
chosen from [1, q − 1], as specified by the protocol). Also, ∆ stores the blinded secret so
generated and (αi , βi) in table L . In this way, ∆ knows all blinded secrets generated by
him during the game and their corresponding secrets. Clearly from the adversary’s point of
view there is no change in the game. Thus |Pr[Win2] = Pr[Win3]|.

Game G4: Game G4 is same as game G3 except that ∆ modifies the way it generates the
blinded responses. Using the same DDH-tuple (g, gra , grb , grarb), ∆ does the following:

Whenever a blinded response is to be generated for some session participant Mi , ∆
retrieves all the blinded secrets for that session from the table Sessions. Then it looks for
these blinded secrets in table L . If ∆ finds all these blinded secrets in the table, it retrieves
the corresponding secret entry (αi , βi) for Mi and chooses randomly αl from [1, q − 1]. It
uses the value (grarb)αi (gra)βi (grb)αi αl gβi αl = g(rbαi+βi)(ra+αl) as the blinded response for
participant Mi in the session transcript. If on the other hand, ∆ does not find some blinded
secret of that session in table L , this means that this blinded secret has been introduced by
the adversary A and ∆ does not know the corresponding secret. Thus for a session where
any of the blinded secrets is not found in table L , ∆ continues to generate the blinded
responses (for all the participants) as in game G3 (by raising blinded secret to the secret of
the leader).

Thus, in brief, ∆ uses the value g(rbαi+βi)(ra+αl) as the blinded response for participant
Mi , if all blinded secrets in that session were generated by him; otherwise it uses the value
g(rbαi+βi)rl . Note that as A can make a Test query only on a fresh participant instance, this
rules out those sessions where A has been able to introduce blinded secrets on his own

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 47

(by making Corrupt and then Send queries). Thus ∆ can respond to the queries of such
sessions without using data from the DDH-tuple.

Clearly again from the adversary’s point of view there is no change in the game. Thus
|Pr[Win3] = Pr[Win4]|.

Game G5: Game G5 is same as Game G4 except that instead of a DDH-tuple (g, gra ,
grb , grarb), ∆ chooses a random tuple (g, gra , grb , grc). ∆ continues answering the
queries as in Game G4, except that the role of grarb is taken by grc . And now when
answering the Reveal query or Test query (in case bit b = 1), ∆ uses gra in computing

the session key instead of g
rc
rb which the protocol demands. Thus the only difference

between games G4 and G5 is the computational distance between a DDH-tuple and a
random tuple, therefore: |Pr[Win4] − Pr[Win5]| ≤ AdvDDH(t ′) + 1

|G| where t ′ is bounded
by t + |P|(qex + qs)(texp + tlkup), texp being the time to perform an exponentiation in G
and tlkup the time to perform a look-up in tables L and Sessions.

Also it can be shown4 that the session key of the Test session in Game G5 is uniformly
distributed in G independent of anything else or Pr[Win5] =

1
2 .

Combining all the above results, we get: Pr[Win0] ≤ Pr[E1] + Pr[E2] +AdvDDH(t ′)+
1
|G| +

1
2 and so the desired result follows.

4.1. Key control

The fact that any of the participants in a group key agreement protocol cannot pre-
determine the key before the actual execution of the protocol makes it different from a key
transport protocol. Although the group leader in our protocol chooses its contribution after
other members have chosen theirs, it does not imply the group leader can pre-determine
the group key. In fact like many other protocols (including GDH.2, GDH.3, TGDH, won
in Table 1) the group member choosing his contribution last might have some advantage
but it does not translate to key control as discussed in [1,28]. We show below that the
group leader in our protocol cannot fix the group key to a given value K f . The group key

grl (1+
∑

i∈M\{l} ri) can be viewed as a two-party Diffie–Hellman key where one participant’s
contribution is grl and the other’s g(1+

∑
i∈M\{l} ri). Denoting g(1+

∑
i∈M\{l} ri) by gB , the

group leader needs a polynomial time algorithm A which given the desired group key
K f = grK and gB as inputs can output g

rK
B to be used as grl i.e. A(grK , gB) = g

rK
B . But

in fact this algorithm can be used to solve the computational Diffie–Hellman problem as

follows. Given gα and gβ , A(gα, gβ) = g
α
β ; A(g

α
β , gα) = g

1
β ; A(gα, g

1
β) = gαβ .

We can do better by requiring the group leader to commit to its contribution before
others as follows. The current group leader sends also the hash value of his contribution in
the INIT message (H(grl) in Table 5). Thus the group leader is no longer at any advantage.
Other kinds of attacks influencing the key including attacks by collusion of malicious
insiders have not been well studied till now. Very recent work of Katz and Shin [20] is
the first attempt to formally model attacks by a collusion of malicious insiders. Thus it is
of interest in the future to provide security proofs in this new evolving model. A simple

4 See complete version available at http://www-rocq.inria.fr/codes/raghav.bhaskar/acads.html.

http://www-rocq.inria.fr/codes/raghav.bhaskar/acads.html

48 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

Table 5
Modified IKA

l
r
←M, Nl

r
← {0, 1}k , rl

r
← [1, q − 1]

Ul
B
−→M : {msg1

l = {INIT, Ul , Nl , H(grl)}, σ 1
l }

∀i ∈M \ {l}, i f (VPKl {msg1
l , σl } == 1), ri

r
← [1, q − 1], Ni

r
← {0, 1}k ,

Ui −→ Ul : {msgi = {IREPLY, Ul , Nl , Ui , Ni , gri }, σi }

∀i ∈M \ {l}, i f (VPKi {msgi , σi } == 1)

Ul
B
−→M : {msg2

l = {IGROUP, Ul , Nl , {Ui , Ni , gri , gri rl }i∈M\{l}}, σ
2
l }

if (VPKl {msg2
l , σ 2

l } == 1) and gri is as contributed and hash value of
grl matches that sent in Round 1

Key = grl (1+
∑

i∈M\{l} ri)

but costly way to detect such kind of attacks is to add a round of key confirmation, where
in a single round of broadcasts, each participant broadcasts a well-known public quantity
encrypted with the current session key.

4.2. Group leader election

Group leader election is a non-trivial issue in asynchronous networks like ad hoc
networks. A lot of literature exists on this issue; see for example [25,30]. Leader election
protocols that ensure that a single leader is elected at the end of the protocol run can be quite
expensive to implement (requiring several rounds of communication). So if a mechanism
exists for merging multiple groups into a single group with a single leader, much simpler
leader election protocols can be employed for the sake of efficiency. We choose to use
an auto-election mechanism to choose a group leader, wherein, in the absence of a group
leader, each node wishing to form a group sets a random timer. If by the expiry of this
timer, no INIT message is received, the node issues an INIT message of its own. Thus
other nodes can reply to this INIT request. If multiple INIT messages are received by a
node, a simple rule (like the initiator with a lower ID Ui , or the initiator with a larger
group) can help the node to decide which INIT message to reply to. Thus multiple groups
can exist in the network at the same time (with potentially some common members). If
total connectivity is ensured between these groups, it is possible to merge them easily
as well.

5. Implementation

To test the performance of this new GKA protocol, we incorporated it in the
group management protocol of [8]. The group management of [8] consists of three
communication rounds: DISC, JOIN and GROUP. The DISC stage initiates the group

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 49

Table 6
Computation time (in ms) per device with and without GKA

formation by calling for interested participants. Each interested participant responds with
a JOIN message. The group membership is defined and announced by the group leader
(chosen randomly) by the GROUP message. The design of the new GKA protocol allowed
us to piggy-back GKA data on group management messages, thus member contributions
towards the group key are collected during JOIN messages while the GROUP message
carries the message from the group leader which enables everyone to compute the group
key. Thus no additional communication round is required to derive a group key, irrespective
of the group size. It is worth mentioning that it would not have been possible with most of
the protocols presented in Table 1, as the messages sent by group members are dependent
on messages sent by other members. A comparison of the computation times on a device
in the absence and presence of GKA procedures is plotted in Table 6. The data shown is
for an experimental setup consisting of laptops (Compaq 500 MHz running Linux) and
palmtops (Compaq ipaq 400 MHz running Linux familiar 0.7). All random contributions
for the group key were chosen from a Diffie–Hellman group of prime order of 1024 bits.
The code was written in Java except the exponentiation function which was implemented
in native code with the GMP library [24]. The graphs in Table 6 plot computation time
(in milliseconds on Y axis) against group-size with and without GKA. There are separate
plots for the cases when the device was a leader/non-leader. Leader for group management

50 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

was randomly chosen. As expected, the time for non-leader members increases (when
employing GKA protocol) by an almost constant factor (order of time to perform two 1024
bit exponentiations), while for a leader it increases linearly as the group size increases.
As most ad hoc networks are expected to be composed of devices of unequal computing
power, more powerful devices (like laptops) can assume the role of a leader more often.
Use of elliptic curve groups can lead to much better computation times.

6. Conclusion

We have proposed a new group key agreement protocol, particularly well suited to
ad hoc networks. It is efficient in the number of rounds (only three rounds; the first two
rounds may be executed along with group management procedures), and also efficient in
computational terms. It requires no special ordering of the participants. Any participant can
be possibly chosen as the group leader for one session and the role can be easily rotated
amongst the other participants in latter rounds. The key, thus derived, is independent of
keys in other sessions. Long-term secrets are used for authentication purposes only, thus
providing weak forward secrecy. Achieving strong forward secrecy without compromising
on efficiency of JOIN and DELETE procedures is an interesting area for future work.

The protocol is proved secure against active adversaries in the framework of [13], in the
Standard model and with the Decisional Diffie–Hellman (DDH) assumption in any group.
The protocol has one of the tightest reductions to the DDH assumption amongst group key
agreement protocols.

References

[1] N. Asokan, P. Ginzboorg, Key agreement in ad hoc networks, Computer Communication Review 23 (17)
(2000) 1627–1637.

[2] G. Ateniese, M. Steiner, G. Tsudik, New multiparty authentication services and key agreement protocols,
IEEE Journal of Selected Areas in Communications 18 (4) (2000) 628–639.

[3] D. Augot, R. Bhaskar, V. Issarny, D. Sacchetti, An efficient group key agreement protocol for ad hoc
networks, in: IEEE Workshop on Trust, Security and Privacy in Ubiquitous Computing, IEEE CS Press,
2005.

[4] K. Becker, U. Wille, Communication complexity of group key distribution, in: CCS’98: Proceedings of the
5th ACM Conference on Computer and Communications Security, ACM Press, 1998, pp. 1–6.

[5] M. Bellare, D. Pointcheval, P. Rogaway, Authenticated key exchange secure against dictionary attacks, in:
Advances in Cryptology, EUROCRYPT’00, in: LNCS, vol. 1807, 2000, pp. 139–155.

[6] M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols,
in: CCS’93: Proceedings of the 1st ACM Conference on Computer and Communications Security, ACM
Press, 1993, pp. 62–73.

[7] D. Boneh, The decision Diffie–Hellman problem, in: ANTS-III: 3rd Algorithmic Number Theory
Symposium, ANTS-III, in: LNCS, vol. 1423, 1998, pp. 48–63.

[8] M. Boulkenafed, V. Issarny, AdHocFS: Sharing files in WLANs, in: 2nd International Symposium on
Network Computing and Applications, IEEE Computer Society, 2003, pp. 156–163.

[9] C. Boyd, A. Mathuria, Protocols for Authentication and Key Establishment, Springer-Verlag, 2003.
[10] C. Boyd, J.M.G. Nieto, Round-optimal contributory conference key agreement, in: Public Key

Cryptography’03, in: LNCS, vol. 2567, 2003, pp. 161–174.
[11] E. Bresson, D. Catalano, Constant round authenticated group key agreement via distributed computation,

in: Proceedings of Public Key Cryptography, in: LNCS, vol. 2567, 2004, pp. 115–119.

D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52 51

[12] E. Bresson, O. Chevassut, D. Pointcheval, Provably authenticated group Diffie–Hellman key exchange - the
dynamic case, in: Advances in Cryptology, ASIACRYPT’01, in: LNCS, vol. 2248, 2001, pp. 290–309.

[13] E. Bresson, O. Chevassut, D. Pointcheval, Dynamic group Diffie Hellman key exchange under standard
assumptions, in: Advances in Cryptology, EUROCRYPT’02, in: LNCS, vol. 2332, 2002, pp. 321–326.

[14] E. Bresson, O. Chevassut, D. Pointcheval, J.J. Quisquater, Provably authenticated group Diffie-Hellman
key exchange, in: CCS’01: Proceedings of the 8th ACM Conference on Computer and Communications
Security, ACM Press, 2001, pp. 255–264.

[15] M. Burmester, Y. Desmedt, A secure and efficient conference key distribution system, in: Advances in
Cryptology, EUROCRYPT’94, in: LNCS, vol. 950, 1994, pp. 275–286.

[16] Smart Dust. http://robotics.eecs.berkeley.edu/˜pister/smartdust.
[17] R. Dutta, R. Barua, Dynamic group key agreement in tree-based setting, in: ACISP, 2005, pp. 101–112.
[18] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme secure against adaptive chosen-message

attacks, SIAM Journal of Computing 17 (2) (1988) 281–308.
[19] M. Just, S. Vaudenay, Authenticated multi-party key agreement, in: Advances in Cryptology,

ASIACRYPT’96, in: LNCS, vol. 1163, 1996, pp. 36–49.
[20] J. Katz, J.S. Shin, Modelling insider attacks on group key-exchange protocols,

http://eprint.iacr.org/2005/163.pdf.
[21] J. Katz, M. Yung, Scalable protocols for authenticated group key exchange — full version, in: Advances in

Cryptology, CRYPTO’03, in: LNCS, vol. 2729, 2003, pp. 110–125.
[22] Y. Kim, A. Perrig, G. Tsudik, Simple and fault-tolerant key agreement for dynamic collaborative groups,

in: CCS’00: Proceedings of the 7th ACM Conference on Computer and Communications Security, ACM
Press, 2000, pp. 235–244.

[23] Y. Kim, A. Perrig, G. Tsudik, Group key agreement efficient in communication, IEEE Transactions on
Computers 53 (7) (2004) 905–921.

[24] GNU Multi Precision Arithmetic Library, http://www.swox.com/gmp.
[25] N. Malpani, J.L. Welch, N. Vaidya, Leader election algorithms for mobile ad hoc networks, in: Proceedings

of Dial M Workshop, ACM, 2000, pp. 96–103.
[26] A.J. Menezes, P.C. van Oorschot, S. Vanstone, HandBook of Applied Cryptography, CRC Press, 1996.
[27] J. Nam, J. Lee, S. Kim, D. Won, DDH based group key agreement for mobile computing,

http://eprint.iacr.org/2004/127, 2004.
[28] J. Pieprzyk, H. Wang, The key control in multi-party key agreement protocols, in: Proceedings of Workshop

on Coding, Cryptography and Combinatorics, in: PCS, Birkhauser, 2004, pp. 277–288.
[29] G.-C. Roman, Q. Huang, A. Hazemi, Consistent group membership in ad hoc networks, in: ICSE’01:

Proceedings of the 23rd International Conference on Software Engineering, IEEE Computer Society, 2001,
pp. 381–388.

[30] G. Singh, Leader election in complete networks, SIAM Journal of Computing 26 (3) (1997) 772–785.
[31] M. Steiner, G. Tsudik, M. Waidner, Diffie-Hellman key distribution extended to groups, in: ACM

Conference on Computer and Communications Security, ACM Press, 1996, pp. 31–37.
[32] M. Steiner, G. Tsudik, M. Waidner, Key agreement in dynamic peer groups, IEEE Transactions on Parallel

and Distributed Systems 11 (8) (2000) 769–780.

Daniel Augot was a student in Mathematics at the École Normale Supérieure de
Fontenay-aux-Roses. Daniel Augot received his Ph.D. in Computer Science, where
he proposed to find minimum weight codewords of cyclic codes by the mean of the
resolution of algebraic systems. Daniel Augot is a researcher at the French National
Institute for Research in Computer Science and Control, inside the Codes team.

His research interest are Coding and Cryptography, and the interactions between
these two fields.

http://robotics.eecs.berkeley.edu/~pister/smartdust
http://eprint.iacr.org/2005/163.pdf
http://www.swox.com/gmp
http://eprint.iacr.org/2004/127

52 D. Augot et al. / Pervasive and Mobile Computing 3 (2007) 36–52

Raghav Bhaskar did his Masters of Technology in Mathematics and Computing from
the Indian Institute of Technology, Delhi, India in 2001. After brief stints with Novell
Software and British Telecom Research, he started his Ph.D. at INRIA, Rocquencourt,
France in 2003.

His research interests are cryptography, security protocols and ad hoc networks.

Valerie Issarny got her Ph.D. and her “habilitation a diriger des recherches” in computer
science from the University of Rennes I in 1991 and 1997, respectively. She is currently
senior research scientist at INRIA. Since 2002, she is the head of the ARLES INRIA
research project-team at INRIA-Rocquencourt. Her research interests relate to distributed
systems, software architectures, mobile systems and middleware. She is chairing the
executive committee of the AIR&D consortium on Ambient Intelligence Research and
Development. Further information about Valerie’s research interests and her publications
can be obtained from http://www-rocq.inria.fr/arles/members/issarny.html.

Daniele Sacchetti was a student in Computer Science at the Computer Science Faculty
of Bologna where he received his master degree in Computer Science. Daniele is a
Research Engineer at the France National Institute for Research in Computer Science
and Control, inside the Arles team.

His research interests are Middleware and Software Architectures for Mobile
Distributed Systems.

http://www-rocq.inria.fr/arles/members/issarny.html

	A three round authenticated group key agreement protocol for ad hoc networks
	Introduction
	Related work
	Our contributions
	Outline

	The security model
	Security goals
	The model
	Decisional Diffie--Hellman assumption
	Secure signature scheme

	The new group key agreement protocol
	Notation
	A three round protocol
	Initial key agreement
	Join/Merge
	Delete/Partition

	Security analysis
	Key control
	Group leader election

	Implementation
	Conclusion
	References

