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Abstract

We consider only primitive binary cyclic codes of length n = 2" — 1. A BCH-code

with designed distance § is denoted B(n,¢). A BCH-code is always a narrow-sense
BCH-code. A codeword is identified with its locator polynomial, whose coeflicients are
the symmetric functions of the locators. The definition of the code by its zeros-set
involves some properties for the power sums of the locators. Moreover the symmetric
functions and the power sums of the locators are related with the NEWTON s identities.
We first present an algebraic point of view in order to prove or infirm the existence of
words of a given weight in a code. The main tool is a symbolic computation software in
exploring the NEWTON’s identities. Our principal result is the true minimum distance
of some BCH-codes of length 255 and 511, which were not known.
In a second part, we study the codes B(n,?h — 1), h € [3,m — 2]. We prove that the
set of the minimum weight codewords of the BCH-code B(n,2™~% — 1) equals the set
of the minimum weight codewords of the punctured Reed-Muller code of length n and
order 2, for any m. We give some Corollaries of this result.
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1 Introduction

In this paper, we deal with primitive binary cyclic codes. We are going to introduce a method
for finding the true minimum distance of these codes.

We will first recall usual definitions in section 2, as they are introduced in [10]. Our aim
is to have a algebraic approach of the codewords in a cyclic code, which are studied through
their locator polynomial. We describe the Newton’s identities which allow us to study the
properties of the locator polynomial of a codeword.

In section 3, we will show how to use the Newton’s identities. In fact we explore the
identities in an progressive manner, using a symbolic computation software. We have two
strategic options : trying to establish a contradiction to the existence of solutions to the
identities ; or trying to find an effective solution for the identities. This method enables
us to complete the table of the minimum distance of the BCH codes in length 255, and to
progress in the table of BCH codes in length 511. However the proofs are long and are given
in the appendices A, B and C.

In section 4 we give a description of the set of the minimum weight codewords of the
BCH codes of length 2™ — 1 and designed distance 2~% — 1 (Theorem 6). We prove that
the locator polynomials of such codewords are, in fact, linearized polynomials. We obtain
this result by studying the Newton’s Identities associated to the minimum weight codewords
of the BCH-codes of designed distance 2* — 1, h € [2,m — 1]. Some properties yield a
complete characterization when h = m — 2. When h # m — 2, our proof involves an
algorithm constructing cyclic codes whose minimum weight codewords have linearized locator
polynomials.

2 Presentation and notations

In this whole chapter we recall the usual conventions and notations used in [10].

2.1 The BCH codes and their minimum distance

We denote by GF(q) the Galois Field of order ¢, where ¢ = 2™ and by « a primitive n-root
of unity in GF(q). Any cyclic code C of length n can be defined by its generator polynomial
whose roots are called the zeros of the code C'. Thus we say that the defining set of C' is the
set :

I(C)={i€[0.n—1]| & is a zero of C'} (1)

We denote by cl(s) the cyclotomic class of s modulo n :

cl(s) = {s,25,2%s...,2" s modulo 2™ — 1} (2)

%" is also a zero of (', so we can see that I(C') is a reunion of

If o' is a zero of C' then a
cyclotomic classes cl(s).
Thus we can define the primitive narrow-sense BCH of length n of designed distance ¢,

denoted by B(n,¢), as the cyclic code of length n whose defining set is the union of the



cyclotomic classes ¢l(1),¢l(2)...¢l(6 —1). This terminology of “designed distance” is used
because of the well known BCH-bound theorem :

Theorem 1 [fthe defining set of the cyclic code C' contains a set of 6—1 consecutive integers
(0 is treated consecutive to n-1), then the minimum distance of C is at least §.

So the code B(n,6) has minimum distance at least ¢.

But one will not be content with such a result. In general the designed distance is equal
to the minimum distance, but we have no way to know systematically the true minimum
distance.

Of course there exists many other bounds for cyclic codes (J.H. van Lint deeply treats
the subject in [12]), but still these are bounds and it is a difficult problem to find the true
minimum distance of a given BCH code, as soon as the length increases.

The problem encountered in finding the true minimum distance is to work with the real
structure of the finite field GF(q), which deeply influences the properties of cyclic codes,
while bounds obtained with the properties of the defining set of cyclic codes do not reflect
the underlying algebraic structure of GF(q).

2.2 Mattson-Solomon polynomial and locator polynomial

Definition 1 The Mattson-Solomon polynomial of the word x = (xo,x1...x,-1) is the poly-
nomial of GF(q) :

Az) = Zzi?:inZ”_i (3)

where
7=n—1

A =x(a')= > z;07 (4)
=0
Remark :
® Asimod n = A?
o A, = A
So there is only one significant A; for every cyclotomic class.

Definition 2 The locator polynomial o(Z) of a word x is the following polynomial :

i=w

o(7) =TI (1 - X.2) (5)

=1

where the X; are the elements of GF(q) which are not zeros of the Mattson-Solomon poly-
nomial of x. They are called the locators of x.



Definition 3 The elementary symmetric functions of the locators X1, Xy ... X, are the o; :

0<: Sw o;= (_1)2 El§k1<k2"'<k¢§w Xlekz o .in
1 =0 Og = 1

And we have : __
o(Z2) =307 (6)
=0

In other words, the zeros of the locator polynomial are the locations of the non zero
coordinates of x, since A(a') = a;, thanks to the inversion formula ([10] p.240).

In case of binary codes, the notion of localisators becomes very interesting , since the
binary words can be identified by their locators, and so by their locator polynomial.

We have the following property :

Proposition 1 Let x a word of length n of weight w, with locators X1, X, ...X,,. Then x

is in the cyclic code of defining set {a*, o', ...a%} if and only if the following power sum

symmetric functions of its locators are zeros :
Ai1:Ai2:"':Aiz:0 (7)

Recall that the kth power sum symmelric function of Xy ... X, s :
Ap=)_ X{ (8)
=1

and is the kth coefficient of the Mattson-Solomon polynomial of x.

The followings relations known as the NEWTON’s identities allow us to study the ele-
mentary symmetric functions, knowing the power sum symmetric functions.

Proposition 2 Let Xi, X,... X, be indeterminates over a field K, o; the elementary sym-
metric functions of the X;, A; the power sum symmetric functions of the X;. Then we have
the following relations :

? S w, ]7“ : Ar + Ezi;_l Arfio-i +ro, = 0 (9)
e >w, I, : A+ 32V Ao =0

2.3 The locator polynomial and BCH codes
From the NEWTON’s identities, we have the following result ([10] Ch. 9 Lemma 4 p.260) :
Lemma 1 Let B
o(Z2)=> o7 (10)
=0

be a polynomial over GF(2™). Then o(Z) is the locator polynomial of a codeword x of
B(n,6) if and only if :



(i) o(7Z) divides 27" — 1.
(it) v €[1,6 — 1], i odd = o, = 0.
So we can try to find the true minimum distance of a B(n,d) code by finding locator

polynomials which satisfy conditions (i) and (ii) of lemma 1.

2.4 The codes B(n,2¥ — 1) and the linearized polynomials

Definition 4 Let [(Z) be a polynomial over GF(2™), I[(Z) is a linearized polynomial if and
only if :

1=l
0(z)=>% az* (11)
=0
The interesting point about linearized polynomial is the following proposition ([10] Ch. 4
p.119) :

Proposition 3 [(Z) € GF(2™)[Z] is a linearized polynomial if and only its zeros (eventually
in an extension of GF(2™)) forms a vector space over GF(2).

Now we can prove that the codes B(n,§ = 2¥—1) have true minimum distance §, following
steps 1 2 3 :

e 1 Let H be a k-dimensionnal subspace of GF(2™) over GF(2).
e 2 Then the polynomial : {(Z) = [[,cn(Z — z) is a linearized polynomial.

e 3 It is easy to check that the polynomial 0(Z) = [ly ey y20(1 —¥Z) satisfies conditions
(1) and (i) of lemma 1.

Definition 5 The punctured Reed-Muller code of length n of order k denoted by R(k,m) is
the cyclic code of length 2™ — 1 with the following defining set :

I(R(k,m)) = {i € [0.n — 1] | wa(i) < m — k} (12)

where :
wa(1) is the weight of the binary representation of t.

It is well known that the locators of any minimum weight codewords of the punctured
Reed-Muller code of length 2 — 1 and order k, plus zero, forms a k-dimensionnal GF(2)-
subspace. So their locator polynomials have the following form :

i=k )
o(Z2) =Y oy 277 (13)
1=0

In section 4, we will use such a characterization of the minimum weight codewords of

codes R(k,m).



3 The minimum distance of some BCH codes

Let C be any cyclic code of length n. GF(2™) is the smallest field containing the n'* roots
of unity.

We consider the Newton’s identities (9) written:
o for a weight w: that is for w locators Xy, X, ..., X,.
e for a cyclic code C': for all 2 in the defining set of C', A; is substituted by 0.

We call this set of equations, the Newton’s identities for the code C' and for the weight w.

We call solution of this system, a set of A;’s and o;’s that verify these identities, and such
that the polynomial o(2) = 3%, 0,2 is square-free and splits in GF(2™).

Thus, the existence of solutions to the Newton’s identities for a code C' and a weight w
is equivalent to the existence of codewords of weight w in C.

We therefore have two ways for exploring the identities :

e cither we prove the absence of solution, so there is no codeword of this weight in the
code,

o cither we find a solution, and this solution gives us a codeword of the given weight.

We use a symbolic computation software to make this exploration, this enables us to manip-
ulate the very large equations in their most general form (some of the biggest equations have
hundreds of terms). The method we use in both cases can roughly be described as follows :

1. We write the Newton’s identities for a given code and a given weight.

2. We introduce in the equations all the simplifications due to the kind of exploration we
are about to do.

3. We examine the equations one after another, trying either to find the expression of an
indeterminate depending on the others, either to find a (simple) necessary condition
on a small number of indeterminates.

Up to now we are not able to make this exploration in a fully automatic manner, it is
necessary to have a user interface to make the proper choice at the critical stages of the
research. There are many possible decisions at step 3., including the decision to discard a
too large equation, and it is difficult to make this choice efficiently within a program.

However we are able to determine empirically a program able to make most of the choices
automatically.

We will use the following properties of the A;’s:

o A? = Ay and A;y,, = A;, so there is exactly one significant A; for each cyclotomic
class.

° A?m‘ = A; where m' is the cardinal of the cyclotomic class of ¢ (this is a consequence
of the previous property).



o If a codeword is shifted each A; is multiplied by o' where « is the n® root of unity
choosen for the definition of the code. So, since A,, # 0, if n and w are relatively prime

one can suppose that A, = 1.

3.1 The minimum distance is known for all narrow-sense primi-
tive binary BCH codes of length 255

Theorem 2 All the narrow-sense primitive binary BCH codes of length 255 have their min-
imum distance equal to their designed distance except :

e B(255,61) which has minimum distance 63,
e B(255,59) which has minimum distance 61.

Proof From [3, 4, 5, 10], we know that all narrow-sense primitive BCH codes of length
255 reach the BCH bound except B(255,61) and B(255,59).

For both of these codes we are able to produce words of weight 6 + 2. Indeed:

e B(255,61) D B(255,63), and the latter code has minimum weight 63,

e for B(255,59), J-L. Dornstetter gives in [4] a word of weight 61.
Since the minimum distance of primitive BCH codes is odd, all we have to prove
is that there are no codewords of weight 61 (resp. 59) in the code B(255,61)

(resp. B(255,59)). These two proofs were issued by our program in MAPLE,
and are given in Annex A and Annex B. O

3.2 The minimum distance is known for most narrow-sense prim-
itive binary BCH codes of length 511

We found a code whose minimum distance is over the BCH bound :
Theorem 3 The code B(511,123) has minimum distance d = 127.

Proof (i) B(511,123) is included in the punctured Reed-Muller code R(4,9) (cf.
Def. 5), and so has no codeword of weight 125, since 125 = 1 mod 4 [10,

Cor. 13, page 447].
(it) B(511,127) C B(511,123), and B(511,127) reaches the BCH bound.
From (i) and (ii) we deduce easily that the minimum distance of B(511,123) is
123 or 127.

We show in Annex C that there is no word of weight 123. O

For codes of length 511 we also made an other kind of research from the Newton’s
identities: finding particular solutions by restricting the field of research. We introduced the
following simplifications in the equations: all the A;’s and o;’s are equal to 0 or 1. From the
following lemma, this is exactly looking for the idempotents of given weight.
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Definition 6 The support of a word x € GF(q)" is the set of its positions different from
zero. We denote it supp(x).

Lemma 2 Let C be a binary cyclic code of length n, and let GF(2™) be the smallest field
containing a n'" root of unity.
Let x be a word of C, the following assertions are equivalent :

(1) x is an idempotent
(ii) the support of x is the union of cyclotomic classes (in GF(2™))
(ii1) the coefficients of the locator polynomial of x (the 0;’s) are in GF(2)
(iv) the power sum symmetric functions of x (the A;’s) are in GF(2)
Proof (i)=-(ii) we have x = x*. For any i:

i € supp(x) = 2i € supp(x?) = supp(x).

So if ¢ € supp(x) then cl(i) C supp(x).

(ii)=-(iii) The roots of the locator polynomial o(z) are the inverses of the loca-
tors, so the set of the roots is the union of cyclotomic classes and therefore

o(z) € GF(2)[z].

(iii)=-(iv) If the o,’s are given and are in GF(2), then by induction, using the
Newton’s identities, all the A;’s are in GF(2).

(iv)=(i) Let A be the Mattson-Solomon polynomial of x, we have [10, Th. 22,
page 240]:

x? = x (as polynomial) & A+ A = A ( component wise product).

Since A? = A; for all j, we have A+ A = A, and thus x? = x.
O

This lemma is useful for two things: first it gives a way to find the idempotents from
the Newton’s identities, and it also gives us a way to describe very simply an idempotent by
giving its support as union of cyclotomic classes.

We are able to find idempotents of given weight in some codes, for this research we give
values in GF(2) to some of the non-zero A;’s (8 of them for instance), and then the set of
equations usualy becomes easy to solve. It is possible to implement this exploration in a
fully automatic manner.

Theorem 4 The code B(511,6) contains idempotents of weight 6 or 6 + 1 for:

§ = 19,39,45,53,57,79,83,91, 103.



Proof We look for codewords with power sum symmetric functions in GF(2). From
Lemma 2, these words are idempotents, and they are fully described by the
cyclotomic classes partitionning their supports.

We give here for a designed distance 6 the support of a codeword x of weight ¢

or 6+ 1:
6=19, w(x)=19, supp(x)=cl(0)Ucl(23) U cl(91)
6 =139, w(x)=139, supp(x)=cl(63)Ucl(8T)Ucl(117) U cl(127) U ¢l(219)
6 =45, w(x) =145, supp(x)=cl(17) U cl(37) U cl(57) U cl(93) U cl(103)
6 =53, w(x)=>54, supp(x)=-cl(1T)Ucl(31)Ucl(41) U cl(45) U ¢l(103) U ¢l(117)
6 =57, w(x) =57, supp(x)=cl(29) U cl(43) U cl(51) U el(55) U el(61) U cl(63)

= cl(0) Ucl(3) U cl(13) Ucl(39) Ucl(41) U cl(61) U cl(73)
U cl(77) Uel(107) U el(117) U el(219)
6 =283, w(x)=284, supp(x)=-cl(l1)Ucl(15)Uecl(23)Ucl(43) U cl(53) Ucl(79)
Uel(123) U el(183) U ¢l(191) U ¢l(219)
6 =091, w(x)=91, supp(x)=-cl(0)Ucl(7)Ucl(13)Uecl(25)Ucl(37)Uecl(41) U cl(59)
Uel(61) Ucl(117) U el(175) U ¢l(239)
6 =103, w(x) =103, supp(x)=¢cl(0)Ucl(7)Ucl(13)Ucl(19) U cl(27) U cl(31) U el(87)
Uel(91) U el(95) U el(191) U el(219) U ¢l(223) U ¢l(255)

Since the true minimum distance d is odd, showing a word of weight 6 + 1 is
sufficient to prove that d = ¢. a

remarks:

o the weight of an idempotent cannot be any integer, this integer has to be a sum of
cardinal of cyclotomic classes. For instance in GF'(512) we have one class with one
element, 2 classes with 3, and 57 this 9. So an idempotent has a weight multiple of
9 plus 0, 1, 3, 4, 6 or 7 (each class can be used once). For instance 29 cannot be the
weight of an idempotent.

e We didn’t found an idempotent for every possible weight, however this is not surprising,
the surprise is that we did found some. Since the set of idempotent and the set of
minimum weigth words are (very) small, their intersection should have been empty
most of the time.

Some other minimum distance are known for length 511. Table 1 gives a list of them as
well as the way they were found. We try to give as reference the first author known to us
which explicitly gives the code and its true minimum distance.



511

502
493
484
475
466
457
448
439
430
421
412
403
394
385
376
367
358
349
340
331
322
313
304
295
286
277
268
259
250

i
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O -3 Ot W

11
13
15
17
19
21
23
25
27
29
31
35
37
39
41
43
45
47
ol
23
)
57
29
61
63

d=06+2
d=6+1

new result obtained by the Newton’s identities
new result obtained by an exhaustive research

O -3 Ot W

11

15
17
19
21
23
25
27
> 29
31
35
> 37
39
> 41
> 43
45
47
> 5l
23
)
57
> 39
> 61
63

2 ¥ D

4

= ¥
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o1l

241
238
229
220
211
202
193
184
175
166
157
148
139
130
121
112
103
94
85
76
67
28
49
40
31
28
19
10

73
75
7
79
83
85
87
91
93
95
103
107
109
111
117
119
123
125
127
171
175
183
187
191
219
223
239
255

73
> 15
> 77

79

83
> 85
> 87

91

95

95
103
> 107
111
111
119
119
127
127
127
171
175
183
187
191
219
223
239
255

Table 1: BCH codes of length 511
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4 The minimum weight codewords of the BCH-codes
B(2m —1,2" — 1)

We denote by B(h), h € [2,m — 1] the BCH-code of length 2 — 1 and designed distance
2" — 1. Since B(h) contains the minimum weight codewords (mwc’s) of the punctured RM-
code R(m — h,m), its minimum distance is exactly 2" — 1. (see in Section 2). However the
whole set of the mwe’s of B(h) is not known, except for the trivial cases:

B2)=R(m—-2,m) , B(m-—1)=R(l,m) and B(3)="TR(2,5).
Thus we suppose in general that:
h € [3,m—2] and  m >5 .

In this Section we want to give some answers to this question: is there a mwc of B(h)
which is not in R(m — h,m) 7 On the other hand, it is natural to conjecture that for each
h, there exists a cyclic code C' # R(m — h,m), which is included in B(k) and has for mwc’s
the mwc’s of R(m — h,m).

Let C be a binary cyclic code of length n = 2™ — 1. We denote by Mw(C') the set of the
muwc’s of C. We say that C has the property (RMy), h € [3,m — 2], if and only if:

(RMp): R(m—h,m)C C C B(h) and Mw(C)= Mw(R(m — h,m))

— where the first inclusion is strict —.

We shall prove (cf. Theorem 6) that the codes B(m — 2) have the property (RMp_»).
We obtain this result throughout an exploration of the NEWTON’s identities written for any
mwc of a code B(h), h € [3,m — 2|; we study this general case and derive the result for
h = m —2. Moreover we can then provide an algorithm constructing cyclic codes which have
the property (RMy,) for a given h.

Let x be a mwe of B(h). We have seen that x € R(m — h,m) if and only if its locator
polynomial has the form: o(Z) = E;-L:O Toh_o; Z2h_2j(cf. (12)). Thus we have the following
explanation of the property (RMy):

Theorem 5 For ecach h € [2,m — 1], define:
Jp={2"-21j€[0,nr]} . (14)

Let x be a codeword of weight 2" — 1 and let o(Z) = Z?Lal o; 7" be the locator polynomial
of x. Then x is a codeword of R(m — h,m) if and only if o, =0 for all ¢ & J}.

Note that 0 € J, and that j € J, — {0} implies j > 2"~1; recall the following property
of Jj, presented by KASAMI and al.:

Lemma 3 [8] Let h € [2,m — 1], ig = 2" — 1 and r € [1,40[. Then:

1.réJy = wyr+1ip) <h.
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2.redy, = wyr+ig) =h.

Let S = [1,2™ — 1]. From now on we assume that any mwec x of B(h) is defined by its
locators Xy, ..., X;,. The corresponding power sum symmetric functions Az, k£ € S and the
elementary symmetric functions o,, r € [0,] are related by the NEWTON’s identities I,
k € S. By definition og = 1; since x € B(h) we know that:

o A, =0, for k € [1,1];
eroddandr<iy = o,=0.
e A, cannot be zero, since the minimum distance of B(h) is exactly .

Then the identities I}, are satisfied for k < 2g; the identity I;, yields o;, = A;,. In accordance
with Theorem 5, we shall try to prove the following hypothesis H, by induction on r:

H,:re[l,ioland r € J, = o, =0and A; 4, =0.
We know that H, is true for  odd (cf. Lemma 1). Recall the form of the identity 7, ,:
Ligtr @ Aigtr + Y Aigr—kor =0 . (15)
k=1

The following Lemma means that the code B(h) has the property (RMy) if and only if
H, is true for all r € [2,17[, 7o = 2" — 1. This result still holds for any cyclic code ' which
contains R(m — h,m) and is contained in B(h).

Lemma 4 r is even. Suppose that Hy is true for all v € [1,r]. Then we have:

]io-I—T . Aio-l—’l’ —I_ AiOO-T = 0 .

Proof We examine the term A; 4,_ro% in 15, for k € [1,r([:

o if k & J), then Hy implies o, = 0;
o if £ € J, then k > 2"='. Hence r — k < 2"~!, which means that r — k is not
in J. Applying H,_x, we obtain A; 4, = 0.

O

Remark: We know that the locator polynomials of the mwe’s of R(m — h,m) satisfy o; = 0

for ¢ € J,. From Lemma 4 we obtain another property:

Aio-l-?“
Ai

red, = o,= (16)

0
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Example 1: The BCH-codes of designed distance T — i.e. h = 3, 19 = 7 and
Js = {0,4,6,7}—. Recall that the defining-sets of R(m — 3,m) and B(3) are

respectively:
Ss={s€ S5 |ws)<3} and I(B3))=c(l)uc3)ucls) .

Since o, = 0 for r odd, the lemma 1 implies that B(3) has the property (RM3) if
and only if o3 = 0; we have seen that H; is always true; from Lemma 2, o5 = 0 if
and only if Ag = 0. In other words: B(3) has the property (RMs) if and only if
each mwe of B(3) is such that Ag = 0. We conjecture that, in general, B(3) has
not the property (RMs). Form € {6,7,8,9}, we have obtained (with a computer)
a mwec of B(3) which is not in R(m — 3, m).

Let T = cl(9) U I(B(3)) . Since wy(9) = 2, then T C S3.Now we examine a
code C whose defining-set T" is such that T C T C S5, where the right inclusion
is strict. Thus C contains R(m — 3, m) and is contained in I(B(3)). Moreover
each codeword of (' is such that its power sum symmetric function Ag equals
zero. If m € {6,7}, it is easy to see that T equals S3. When m > 7, 17 is in S5
and not in 7'. In conclusion:

1. Assume that m > 7. Then a cyclic code C' with defining-set T satisfying:
cd()UeB)Uc(b)Uuc9) CT C{seS|w(s)<3},
has the property (RM3). Conversely, we conjecture that a code C' which has
the property (RM3), satisfies the property above.
2. If m < 7, it is impossible to construct a code C' which has the property
(RM3).
Now we will distinguish two cases: r < 2#=! and r > 271,
Lemma 5 Assume that r € [2,2"7], r even, and that Hy is true for all v’ < r. Then the
identity Is;,13, becomes:

20— 1

Lyiotsr @ Agiggar + A?0_|_7,0r + Ajgq3,05, =0, if 7> (17)

and )
9 — 1

Lyigtsr @ Agiggar + A?O_HUT + A2200-37’ + Aig43,0, =0 , of r < (18)
Proof iy = 2" — 1. Note that 2iy + 3r < 2/t 4 3.2h1 < 97 _ 1, since h < m — 1.
Then the identity [2;,43, is defined. Its general form is:

io—1
Lyigrsr + Agigysr + Z Agigt3r—10k + Aigysroi, =0 . (19)

k=1

Suppose that H, is true for v’ < r and consider the term Ag; y3,_rox. If k is odd,
then o, = 0. If k is even , let r — k = 2k’; we have:

AQ(Z-O‘H")‘H"—ko-k = A?O—I—T—l—k’o-k 9 k € [17L0[ .

Then
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e k>0 = k<r = o=0,fromHy (k cannot be in J;, since r < 2"71),

e k<0 and r+ kK #0 = r+k <r = Agpw =0 (ifr+%& >0
apply Hyqxr else ig+ 7 + k' is an element of the defining-set of B(h)).

e r + k' = 0 is obtained when it is possible to have k = 3r; since r < ig, this
condition implies r < %

In conclusion, the identity 3,45, is reduced to (4) if r > % and to (5) other-
wise. O

Lemma 6 r even and ig = 2" — 1, h € [3,m — 2]. Assume that r € 2" ig[ and r & Jy;
suppose that Hy is true for all v’ < r. Then the identity Iy 4,y becomes:

]2(i0+7") : A?O-l—r + Ai0+2TUi0 =0 . (20)

Proof Note that 2ig 4 2r < 4ip —2 < 2"? — 6 < 2™ — 1. Hence the identity Loigtor
is defined. Its general form is:

t9—1

Dygig4r) - A?OJH, + Z Ag(ig4r)-k0k + Aigr2,05 = 0. (21)

k=1

Suppose that Hy is true for 7' < r; consider for k even, the general term A7 |, 04
, where k = 2k’. Remark that by hypothesis:

! iO ! oh—1 2h —1 !
k<5 = r—FkK>2 -5 = O<r—Fk<r .
Hence if r — k' ¢ J, then A, 4,—p = 0 (from H,_y/). Suppose that r — k' € Jy;

then there is a j € [I,h — 1] such that r — &' = 2" — 2/, Now we have two
possibilities:

L 2K <r. It k¢ Jy then o, =0; if k € J, there is a j' € [1,h — 1] such that
k=2"—27" thus r = 2" 421 -2/ —2/'~1. if j < h—1 we obtain r > 2" —1;
if j = h — 1 we obtain r € J; so in all cases we are in contradiction with
the hypothesis on r.

222800 >r = r—kK <K< QhT_Q . Then r — k' cannot be in J,; that
contradicts the hypothesis on r — &'.

O

Lemma 7 Assume that h = m — 2. Recall that the defining-set of B(m — 2) is denoted by
I(B(m —2)) and that i = 2" — 1. The following properties are satisfied:

(i) Lets €[0,2™ — 1] and let 7' 52" be the 2-ary expansion of s. Then s € I(B(h)) if
and only if there isk < m and j & {k, k' = k+1( mod m)} such that sy = sp = s; = 0.
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(ii) Let r € [2,2"71[, r even such that ig+r & I(B(h)). Then :
2ig+3r € [(B(h)) and 1o+ 3r € I(B(h))

(iii) Let r €]2"71 4g[, r even and r ¢ J,. Then there is an element of the cyclotomic class
of to + 2r (modulo 2™ — 1), which can be written:

to+€ with —ig<e<r and €& Jy,

Proof (i) The hypotheses on s mean that 277*~ls < 2m=2 — 1 — ie. that s is an
element of the defining-set of B(m — 2) —.

(ii) Let v" = r/2. By hypothesis the 2-ary expansion of ig, r and r’ are:

m—3 m—4 m—>5
: 97 97 ! 97
g = E 20 r= E r;28 ., r = E rip12? .
=0 i=1 =0

Note that 2o+ 7+ <2m"24+3.27% -1 < 2™ ! | Let k be the smaller j such
that r; # 0. Suppose that ry1; = 0 or that £ = m — 4. We have:

k-1 m—4
o+r= 2 4 (14128 42" 4 3= (14r,)27 42777 .
J=0 i=k+2
Then the 2-ary expansion of ¢g + r is such that its kth term and its (k + 1)th
term are zero. From (i), that means i + r € I(B(h)), which contradicts the
hypothesis. Thus ryy; = 1 and & < m —4. Now the 2-ary expansion of 1o+ r + 1’
is:

k—2
otr+r = Y 2 4+(140+1)2" 4+ (1+141)2F
7=0

m—>5

+ 20 ()2 (L )27 4 277
7=k+1

— By convention a sum from a to b, with @ > b, equals 0 —.
So we can see that the(k — 1)th term and the kth term are zero. We can apply
(i): the defining-set of B(h) contains 2(iq + r + ') = 24 + 3.

Now we have:
o+3r <277 — 1432772 <2 4P ] <2 ], (22)
We consider the 2-ary expansion of g + 3r:
io+r+2r = %2%(1+1+0)2’“+(1+1+1)2k+1
jzom—“ 4
+ > (I +rj4r21)2 + (rp—g + 1)277°

j=k+2
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From 22, the [th term, [ = m — 2 or [ = m — 3 is zero. Applying (i), we obtain
io+ 3r € I(B(h)).

(iii) By hypothesis 2™71 — 1 < ig+ 2r < 2™ — 1. We consider another element
of the cyclotomic class of 79 + 2r:

2t +2r) — (2™ = 1) =1io+ € where e=4r+ gm=2 _ 9gm
Since r is even and 2™7% < r < 2™7%, we have:
e>4(2" P 4 1) 42" 2" = e>4-2"7% > 4
and
e=r+3(r—2""7% = e<r-3.
Suppose that € € J,. Then there is a j € [0,m — 2] such that:

dr 4272 —2m =277 9 = =27 207

?

which implies r € J, in contradiction with the hypothesis. Then we have proved
that € cannot be in Jj. O

Now we are able to prove that the code B(m — 2) has the property (RMy,_2).

Theorem 6 The minimum weight codewords of the BCH-codes of length 2™ —1 and designed
distance 2% — 1 are those of the punctured RM-code of same length and order 2.

Proof The notations are those previously defined; moreover assume that h = m — 2.
We shall prove that, for this particular value of h, H, is true for all r € [1,[. If
r is odd, we know that H, is true; we suppose that H,/ is true for all ' € [2,7[
and we want to prove that H, is true.

If ig +r € I(B(h)) then A;;4, = 0 (by definition of B(h)). Remark that A,
cannot be zero, since the designed distance i of B(h) is exactly its minimum
distance. Thus Lemma 4 implies o, = 0; then H; is true. So we suppose now
that r is even and that i+ r ¢ I(B(h)). We consider two cases:

1) Assume that v € [2,2"71[. Then r cannot be in J,. Let p be the smallest
element of [ig 4 1, 2ig], such that p € I(B(m —2)). From Lemma 7-(i), we have:

_ 22282)/2 2% = =1 it m is even
P L1+l o = 1 4 22" if s odd

If we suppose that i+ r ¢ I(B(m — 2)), then i +r > p.
If m is even then

2m

2m=2 2
p-‘io: 3 —2m_2_|_1:7+

3 ?
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and if m is odd then

, 2m—1 ] S 2m=2 4]
p—tg=142————2 +l=14—.
3 3
Hence, in all cases, r > % From Lemma 5, the identity I3, 43, is reduced to

17. From Lemma 7-(ii), Agig+3r = Aig+sr = 0. Then:
Loigqsr - A?O_H =0 and I, @ Aigyr + Aiyo, =0,
which yields A; 4, = 0 and o, =0 - i.e. H, is true.

2) Assume that r € [2"71 i5[. If r € J, then H, is true. So we suppose that
r & Jn. From Lemma 7-(iii), there is an €, —tp < € < r and € ¢ J;, such that
20 + € 1s an element of the cyclotomic class of 1o + 2r; thus

o —ip<e<0 = iwt+ecl(Bh) = Aip+e=0 = Ai42,=0
e l<e<r = A 4.=0,fromH. = Aj4r=0

From Lemma 6, the identity Iy 4r) is reduced to A7 , = 0. From Lemma 4,
that yields o, = 0 — i.e. H; is true —. In accordance with the Theorem 5, we
have proved that B(m — 2) has the property (RMp,_3). O

Let x € B(m — 2) such that w(x) = 272 = p; let X = {Xy,...,X,} be the set of the
locators of x. It is well-known that the extended BCH-codes and the Reed-Muller codes are
invariant under the affine group [7][2]; this means that, for each ¢ € GF(2™), the locators
{Xi+9,...,X, + g} are those of a codeword in the extension of the code B(m — 2). In
particular we can state:

X:X1—|—{O}UX, , X,:{X2—|—X1,...,XM—|—X1}

where X' is the set of the locators of a codeword x" of B(m — 2). Moreover x’ is a mwc of
B(m — 2). Hence the Theorem 6 implies:

Corollary 1 Let x € B(m — 2) such that w(x) = 2™7%. Then X is a codeword of the
punctured RM-code R(2,m) - i.e. the set of the locators of X is an m — 2-dimensional affine
subspace of GF(2™).

It is well-known that the automorphism group of the binary punctured Reed-Muller codes
is the linear group, denoted GL(2,m) [10]. Hence a code C which has the property (RMy)
is such that its automorphism group is contained in GL(2, m). Moreover such a code cannot
be generated by Mw(C), since R(m — h,m) is strictly contained in it. Thus:

Corollary 2 m > 5. The automorphism group of the BCH-code B(m — 2) is contained in
GL(2,m).

The code generated by the set of the minimum weight codewords of B(m — 2) is strictly
contained in B(m — 2).
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The property (RMs) is studied in the Example 1 and the Theorem 6 gives a general result
on the property (RMy,_2). From now on, we are interested in the definition of cyclic codes
which have the property (RMy), for h € [4,m — 3], m > 6. We study the property (RMy)
by explaining the hypotheses on the mwe’s of the codes B(h). The main idea is that the
NEWTON's identities yield some conditions on the power sum symmetric functions of these
codewords. In accordance with Theorem 5 and Lemma 4, we can state a sufficient condition
for a cyclic code to have the property (RMy):

Corollary 3 Let us define
Th = User,el(s), Up={s€io+1,2i[ | s¢& B(h), wa(s) < h } . (23)
Let a cyclic code C' such that its defining-set T satisfies
I(BR)UT, €T C {seS|wls)<h}. (24)
If R(m — h,m) is strictly contained in C then C has the property (RMy).
Proof Suppose that C' # R(m — h,m). Then the second inclusion in (24) is strict.
From Lemma 3, the elements of T}, are of the form s = ¢g 4+ r with r € J,. Then
any mwc of C is a mwc of B(h) which satisfies A; 4, =0, for all r € J, (with

r € [1,70[). Applying Lemma 4, we can prove by induction that H, is true for all
r. Then C has the property (RMy). O

The following conjectures are strengthened by all numerical results, we have obtained
with a computer. For h € [4,m — 3], m > 6 :

1. The codes B(h) do not have the property (RMy).

2. There exists a cyclic code C, the definition-set of which is strictly contained in I(B(h))U
T}, which has the property (RMy,).

We give later some examples which prove that the second conjecture is true for m = 7 and
m = 8. We use the fact that the proof of Theorem 6, applied to the general case h # m — 2,
provides an algorithm constructing a cyclic code which has the property (RMy,), for a given
m. In the following, C' is a cyclic code such that R(m — h,m) C C C B(h); T denotes its
defining-set. The prootf of the proposed algorithm is obvious: using the results of Lemmas 4,
5 and 6, we construct 7' such that H, is true for all r € [1,1g[; if r is such that the NEWTON’s
identities, given by 17 or 18 or 20, do not imply A; 4, = 0, then we add g+ r in 7"

Algorithm constructing T
1. T=1I(B(h);r=0;i=2"~-1;
2. r=r+4+2;itr > i then go to 8 ;

3. If t¢+r €T then put o, :=0 and go to 2 ;
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4. If r < 2" 1 | examine the identity Loigyar:

it Digtsr - A?O_l_TUT =0 thengoto7

else put T :=TUcl(ig+r) and gotoT;
5. If r e J, then go to 2;
6. If r> 2"  examine the identity Do(ig4r):

it Dgggr) - A?O_I_T =0 thengoto7
else put T:=TUcl(ig+r) ;

7. Put 0,:=0 and AY, :=0, for j €[0,m —1]; go to 2 ;
8. End.

Example 2: m = 7; h = 4; thus ig = 15 and J; = {0,8,12,14}. The code
B(h) is the BCH-code of length 127 and designed distance 15. In accordance
with Corollary 3, we have Ty = ¢l(19) U ¢l(21). Using the algorithm, we obtain
that the code C with defining-set 7'= B(4) U ¢l(19), satisfies (RMy).

Example 3: m = 8. 1) h = 4. The code B(4) is the BCH-code of length 255
and designed distance 15. We have:

Ty=cl(17)Uel(19) Uel(21) Ucl(25) .

The algorithm produces: T = I(B(4)) U l(17) U ¢l(19).

2) h =5; J5 ={0,16,24,28,30,31}. The code B(5)is the BCH-code of length
255 and designed distance 31. We have

Ts = cl(37) Ucl(39) Ucl(43) U cl(45) U cl(51) U cl(53) .

The algorithm produces: T = I(B(5)) U el(37) U ¢l(39).

Acknowledgment

The auhors wish to thank E.F. Assmus, G.D. COHEN and H.F. MATTSON for enriching
discussions and valuable suggestions.

19



Annex A B(255,61) has minimum distance > 61

We consider the Newton’s identities [, for 0 < r < n = 255, for the code B(255,61), and for
the weight 6 = 61. We want to prove that there exists no codeword of such weight.

The non-null power sum symmetric functions of the code are:
A617 A637 A857 A877 A917 A957 Alll) A1197 A127'

And since 255 and 61 are relatively prime we can suppose Ag; = 1 (the shift corresponds to
a multiplication of each A; by a').

In the the case of a narrow-sense primitive BCH code, and for a weight equal to the
designed distance, the Newton’s identities I, (9) for odd r from § 4+ 2 to 26 — 1 form a linear
triangular system giving the o;’s for even z as polynomials depending on the non-null A;’s.
Here the system consists of the 30 following equations:

Igz @ Agz+0y=10

Iss @ Agzoy +04 =10

Isr :+ Agzoq + 06 =10

Isg : Agzo6 + 05 =10

Iy @ Agzog +010=10

Izz © Agzor0+ 012 =10

Izs © Agzo1a+014=0

Iz + Agzo1a+016=0

Izg : 1+ Agzo16+ 018 =10

Isy @ o9+ Aszoig + 030 =0

Isz @ o4+ As3oa0 + 022 = 0

Iss @ Ags + 06+ Agsoas + 024 =0

Is7 @ Agr + Agsoy + 08 + As30a4 + 026 = 0

Isg @ Agrog + Agsos + 010 + Agsoa + 028 =0

Ioy 1 Agi + Agroy + Ags06 + 012 + Ag3028 + 030 = 0

lgs - A§7+A9102 + Agro6 + Ass0s + 014 + Ag3030 + 032 = 0

Igs : A95-|-A§7U2 + Ag104 + Agros + Ass010 + 016 + As3032 + 034 = 0

Iy Ags0y + A§7U4 + Ag106 + Asro10 + Ass012 + 018 + As3034 + 036 = 0

log 1 Ags04 + A§706 + Ag10s + As7012 + Ass014 + 020 + As3036 + 035 = 0

L1 Agso6 + A§7as + Ag1010 + As7r014 + Ass016 + 022 + As3038 + 049 = 0

Tips @ Ags0s + A§7010 + Ag1012 + Asgro16 + As5018 + 024 + A63040 + 042 = 0

Lios @ Agso10+ A§7012 + Ag1014 + Asgro18 + Ass020 + 026 + Ae3042 + 044 =0

L7 AS% + Ags012 + A§7014 + Ag1016 + As7020 + Ass092 + 028 + Ap3044 + 046 = 0

Lipe : Aél + AS%UQ + Ags014 + A§7(716 + Ag1018 + Agr022 + Ass5024 + 030 + Ag3046
+o4s =0
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L e

L3 -

L5

L7

L9

]121

A + A3102 + AS%@ + Ags016 + A§7018 + Ag1020 + Ag7024 + As5026 + 032
+Ag3048 + 050 = 0

Aoy + Aélm + AS%% + Agso18 + A§7U20 + Ag1022 + Agr026 + Ass5098 + 034
+Ag3050 + 052 = 0

A04 + A§106 + AS%US + Ags090 + A§7022 + Ag1024 + Agroas + Ass5030 + 036
+Ag3052 + 054 = 0

Aé? + Ai1106 + Aélag + AS%UIO + Ags092 + A§7U24 + Ag1096 + Agr030 + Ass032
+038 + A63054 + 056 = 0

A1 + Agl;gUz + Ajq108 + A;‘lalo + AS%UIQ + Ags024 + A§7U26 + Ag1095 + Agr032
+Ag5034 + 040 + Ag30s56 + 058 = 0

. 16 4 32 4
0 Ay190e + Agroa + Arnio10 + Agy 012 + Agio1a + Agsoa6 + Agr028 + Ag1030 + Asgross

+ Ag5036 + 042 + Ag3058 + 060 = 0

which gives us the following values for the o;’s:

g9 =
g4 .
JOg =
agg .
J10 -
J12 -
014 =
016 =
Jg18 -
090 =
029 .
094 =
O2¢ =
0928
030 =
032 .
034 =
03¢ -
038 =
T4 =
042
T4 =

= AS} + Ags Ads 4+ Aot Ags + Ast A + Ags + Ay + AZ

T46 -

Ags

Ags

Ags

Ags

Ags

Ags

Ags

Ags

1+ A2,

Ags

AGs + Ags

Ass + Aéﬁ

Asr + Ags + Ags

Ass Ags + Ags

Agr + Asgr AZs + AS; + AgS

Agr + Ass Ags + Agg

Ags + A91A(233 + A87Aé3 + Az:a + Aég
AgrAgs + Ass Ay + 1+ Agg

Ags Aly + Ag1 Ags + AstAgs + Ags + Aes + Ags
A§7Ag3 + A85A23 + Aég

AgsAgs + Ag1 Ay + AsrAgs + Ags + A2
AgrAGs + Ass Agg + Ags + Agy
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048
050

052

054 =

056
058

060

= Aj 4 A A, 4+ AL 4 Ags AfE + A%

= A+ AgtAgs + Ags Ags + Ao Ags -|- AsrAgs + Ags + AesAds + AL

= A+ AL 4+ AL+ AL AL + As AL + Ass Al

14 A93 + AS%A% + A2 + A95Alg + A91A g3 T A87A g3 T Ags A g7 T+ A111A23 + A
= AglAéS + A 7t A 3T A Aé?& + A85Aé3 + A85A63

= A111A63 + Ao + Aég + AS%AS;), + A95Aé;2), + A91Aé§ + A87Aé§ + A2 A23 + Aég
= Ass + Agi + A Ags + Ass Ags + A Ags + AGAGs + AgrAgs + Ags + Ass

The other values are g = 1, by definition, and o; = 0 for odd :, given by the ¢ first

identities.

After substitution of the ;s by their values, the remaining equations are sorted in

increasing size (number of monomials) order :

186, 190, 188, 194, 198, 192, 202, 123, 184, 189, 191, 196, 206, 254, 127, 195, 200,
210, 135, 193, 187, 199, 214, 125, 131, 204, 252, 197, 222, 203, 238, 129, 139, 208,
250, 143, 201, 218, 133, 137, 226, 230, 246, 248, 234, 185, 212, 242, 207, 141, 181,
216, 236, 244, 151, 183, 205, 220, 232, 147, 224, 159, 179, 211, 240, 149, 175, 155,
145, 157, 209, 173, 163, 167, 228, 153, 171, 215, 253, 251, 165, 169, 161, 177, 213,
223, 239, 247, 249, 243, 217, 235, 237, 245, 219, 221, 229, 231, 233, 227, 225, 241

We will proceed as follow :

we successively check the equations in the order given above, up to a “solvable” one.

After solving one equation, we restart from the beginning.
(at each stage we substitute all the known A;’s in the current equation, and we simplify
it as much as possible)

We give here in the resolution order all the “solvable” equations, and the way we used them.

Lise @ AS 4+ AL AS, + Ags A2 + ALAL, + AJ A, + AL ALS + A32 4 A, =0

= Ags = A§7 + A§5A(233 + A85A23 + A§7A63 + A91A§3 + A87A§3 + Aﬁg

]188 : A27A63 + AglAgB + A§7At733 + A§5 + A§5Ag3 + A91 + A87A 63 + A63 + Aég
+A127 =0

= Aiq27 = AS7A63 + A§1A23 + A?s?Ag:a + A?;s + A§5A23 + Ao + A87A?;3 + Ag3 + Aég

FLos: A +1=0 = Ags #0
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Los : A85A§7 + Aég =0 = Ag7:= AssAss

Lisr @ 1+ AqAssAgy + A3 A1 AGs + Ag Ay + Ags + Ags” + A3  Ass + A1 A,
+AG A + AGAG + Alyg + AG A + AL AT + A5 AG + AGAS,
+AG Ay + Ags + AgyAss + Ao Ags + Agy + Ass Ags + Ags Ag3Agy
+ A Az Ass + AgsAss Agy + Agy Ags + Ay Ags + Ag Ags + AgsAgi Agy
FALGAG + Ags + A1 Ags + Ag1 Agy + A3 A = 0

S Ang = L ASAS 4 AGATS + ARA £ ATALALS + AT + A AT ALY
FASAL + AZAL + ATAL + A A+ ALAS + A Ay + A
AL AL + APAZ 4 AT A% + AR A+ ABALALS + Ags ALP AL
FARAR +AD 4 AL £ A 4 A ATAL + AL AL+ APAL
FASLAT + A AL+ AL + AR+ AL,

Lo+ AGIAGS + Agy Ass Ags + Ao Ady + Asa Ay, + Agy Ags + Ass AG; + A AZ
+Ao1 Ass Agy + Afs Ady + Ag AGS + A5 Ags + AGAG Ass + Ay + A Aoy
A+ Alny + Ao AGS + AG A + APAL + AG Ass A + AfAg
FAss AL + A+ ALY 4 A2 AL 1 AS AL+ AL+ A2 Ag AL,
+AZAG A + As AS3 Ass + A2 A1 Als + AssAor Ass = 0

= A1 = AnAgAg + Ag Ags + Ao Ass Ags” + AgiAss Ags” + Ag Agg Az
FALASARS + A+ D+ AR A+ AL AR + AL AR
FAST ALY Ass + AS Aot Ay + AgsAl; + AB AL + AGSAG Ass + AG
+ Ao Ags + Ass Agy + A’ Aot + ASAGS + AL AR + ASTAG + A
FASIAL + A AT+ ALPARS + AL+ ABAR + AL+ AS ALY

Loo: AgS =0 = Agy:=0

]2033 1=0

Annex B B(255,59) has minimum distance > 59

We consider the Newton’s identities [, for 0 < r < n = 255, for the code B(255,59), and for
the weight 6 = 59. We want to prove that there exists no codeword of such weight.
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The non-null power sum symmetric functions of the code are:

A597 A61) A63) A857 A877 A917 A95) A1117 A1197 A127-

And since 255 and 59 are relatively prime we can suppose Az = 1.

We will first solve the linear triangular system giving the o;’s for even ¢ as polynomials

depending on the non-null A;’s. The system consists of the 29 following equations:

I
Igs
Igs
Ig7
Igg
i Aezos + Asr1o10 + 012 =0

: Agzoio+ Aoz + 014 =0

: Agzo1a + Ag1014 + 016 = 0

: Agzo14 + Agr1o16 + 018 =0

: Ag?+A63016‘|‘A61018‘|‘020 =0

: AS}‘@ + Ag301s + A61020 + 022 =0

: AS}‘@; + Ag3090 + A61022 + 024 =0

5 - A85+A21106+A63U22 + A61024 + 026 = 0

: A87-|-A8502-|-Ag?08+A63024+A61026—|—U28 =0

0 Agrog + Agsoy + Agilalo + Ag3096 + A61028 + 030 = 0

0 Agr + As704 + Ass06 + Ag?UU + Ag3o2s + A61030 + 032 = 0

: A§7 + Ag109 + Asgros + Assos + Ag?014 + Ag3030 + A61032 + 034 = 0

0 Ags + A§702 + Ag104 + Agr0s + Ass010 + Ag‘fam + Ag3032 + A61034 + 036 = 0

: Agsog + A§7U4 + Agi106 + Asro10 + Ass012 + Ag?ﬁs + Ap3034 + A61036 + 035 =0
0 Agsoq + A§7U6 + Ag10s + As7ro12 + Ass014 + Agilﬁo + Ag3036 + A61038 + 040 = 0
0 Agsoe + A§708 + Ag1010 + Agro14 + Ass016 + AS?UQZ + Ag3038 + A61040 + 042 = 0
: 14 Ags0s + A§7010 + Ag1012 + Asgr016 + Ass018 + AS%UM + A63040 + A61042

Lio7

1109

L

Ae1+02=0

Ags + Asroa +04 =0
Ag302 + Ag104 + 06 = 0
Ag304 + Ag106 + 03 = 0
Ag306 + Ag10s + 010 =0

+044 =0

t 03+ Ags010 + A§7012 + Ag1014 + Agro1s + As5020 + Ag‘l‘a% + A63042 + A61044

+046 =0
AS% + 04 + Ags012 + A§7014 + Ag1016 + As7020 + As5022 + AS%U% + A63044
+A61046 + 045 =0

: Aél + AS%UQ + 06 + Ags5014 + A§7016 + Ag1018 + Agr022 + As5024 + Aglllazao + A63046

+Ag1048 + 050 =0
A + Aglfh + AS%@; + o8 + Ags016 + A§7018 + Ag1090 + Agr024 + Ags 06 + Ag?032
+Ag3oss + As1050 + 052 = 0
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Lz @ Ao + A3104 + AS({)UG + 010 + Agso1s + A§7U20 + Ag1099 + Asr026 + Ass02s
+A211034 + As3050 + A61052 + 054 = 0

Lis @ Aynoa+ A§106 + AS%US + 012 + Ags020 + A§7U22 + Ag1024 + Ag7025 + Ass5030
+A211036 + Ap3052 + A61054 + 056 = 0

VAT Aé? + Ai1106 + Aélag + Agffflo + 014 + Ags092 + A§7024 + Ag1096 + As7030
+Ags032 + Agilazas + A63054 + A61056 + 058 = 0

L9 @ Ao+ AEI;E;UQ + Ai1108 + AglUlo + Agfffm + 016 + Ags024 + A§7U26 + Agi09s
+Ag7032 + As5034 + Ag?@;o + Ag3056 + A61058 = 0

which gives us the following values for the o;’s:

g9 = A61
L 2

gq = A61 —|—A63
L 3

JOg = A61

08 = A63A§'1 + A?ﬁS + Aél

o0 = AqAl+ AZ

o1z 1= Ads+ AssAg + AG

014 = Agl

o1 1= Agy T AgsAs + AssAg + Agy

ois = A Ag + AgAg + Ag

G20 = Ag? + Ag:& + A23Aé1 + A63A21 + AélAé:a + Aé(l)

oy 1= Ag g+ Ag

Oy 1= A+ AS, 4 AZLAS + AL AL, + Ags AL + AL?

o6 = Ass+ A61A23 + A§3A21 + A61

oas = Asr+ AGAG + AG + Ags + AGAG, + AssAg + Agt

O30 = A85A§1 + A15

O3y = Aoy + Agr Al 1-|-A + A 3+Aé3A21+A Aé%-l-Aes:aA -I-A

034 = A§7 + A85A63 + A85A61 + A61A23 + Ag3Ag1 + A Aél + Aé{

o3 = Ags+ Ag) + A + Ay + Aot Agy + AstAgy + AstAgy + AGIAgy + AT AG + A A5,
FASAL 4 AgsAgS + AZ A%, + Aj ALY

oas = AssAg + A Ags + AgsAgr + Agy + AgrAg

o = Ayl + AggAGy + AggAgy + Agi AGs + Aga Ag) + Agi AGs + AgIAGs + Ass Agy
-I-A91A 63 T A91A41 + A7 + A 5+ A2 + A87A 61 T AGSA

g = AssAGyAg + AgrAGs + AgrAs + AssAgs + Ass AGy + AGAG + Az Agt + A Ags
+AaiAgs + At + Ag)

o4 = 1+ A87A?53A41 + A63A128 + A2 + A7 + Al + A95A 63 T A95A 61 T A91A
‘|‘A87A63 + A87A61 + AgéllAgza + AE%AEB + A6753A21 + A63Aé§i + A61A23 + A63A?5(1)
+A45, 4G
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046

048

050

052

054

056

058

Ags AL Ads + AT A5, + A2 4 AL AS, + Ags ALY

Ag1 Afs Agy + AstAG Ags + Ags + AT+ AT + AT + AG, + AT + Aos AG, + Aoy A,
+A91A21 + A87A61 + AGBAEE + A63Aé§5 + A61Aég + A63A§(1J + AglAgza

Agy + Ass Agh + Aa1 Agh + AgsAgt + Agi Ags + AG AGL + Ass AR AG, + Agr Az Ag
FAG 4 Ag” + Agr Agy + AgAG) + Ass Agy

Agy + Al + AGAG + AZ Agy + AG A% + AssAGT + AssAg)” + AGAgS + Ag Ags
FAGAG + AG AGS + AG AR + AR + Ags + AR + Ags A3 A + Ao A Ay
-I-A87A A81 + A95A43 + A87A1 + ASfAﬂ + A95A81 + A87A63 + A91A1 + A
+A111

Agr A% Ags + AssAgt + A1 Ags + AG 1 Ags + Ags A + Al + AgrAgy + Ag A%,

A AL AL + Ags AL Ay + Afs + AL+ ASE + A + AR + Ay AL + AT AL,
FAGAG + Aos Ag) + Ag1 Ay + Ao AgT + AsrAg) + A”SA“B + AS A + Af1 As,
+Aes Ags + AG AGT + AGsAss + AGi Ags + AG AT + Ass AT, + AG,

Ags A Agt + Ass Aga Ay + A AL AR, + A + Agi®Ags + Aa1 Ags + A1 AZ;
+AL AL + AGAgt + Agy + A5 + A5 A%y + Ag A%y + A5 A + Agr Ag
‘|‘A85A23 + A85A61

The other values are o9 = 1, by definition, and o; = 0 for odd i, given by the first

identities.

After substitution of the o;’s by their values, the remaining equations will be sorted in

increasing size (number of monomials) order :

180, 188, 196, 192, 186, 184, 204, 200, 190, 252, 189, 119, 178, 182, 187, 212, 121,
194, 208, 220, 236, 198, 125, 185, 244, 191, 193, 202, 248, 197, 216, 228, 224, 123,
133, 195, 129, 206, 232, 250, 240, 205, 137, 141, 201, 181, 183, 246, 254, 218, 127,
199, 210, 173, 179, 203, 157, 253, 131, 214, 177, 149, 171, 234, 249, 139, 145, 153,
222, 242, 230, 135, 251, 169, 238, 245, 155, 165, 213, 221, 209, 207, 237, 241, 217,
226, 147, 175, 161, 143, 243, 163, 151, 211, 167, 247, 233, 235, 219, 159, 229, 225,
239, 227, 215, 231, 223

We will proceed as follow :

e we successively check the equations in the order given above, up to a “solvable” one.

o After solving one equation, we restart from the beginning.
(at each stage we substitute all the known A;’s, and we show the most simple equation
possible)

We will first show that Ag # 0

Suppose that Ag; = 0, then:

Fos 55220 = Ags :=0,

26



Los: AS; =0 = Agy:=0,
1236 N 0,
SO A61 7é 0.

We give here in the resolution order all the “solvable” equations, and the way we used
them.

Liso @ AG AssAgs + AssAgy + Ag Agy + AT + A AL + A Ass + Agl Agy + A2 = 0

= Ag1 = A AssAss + Aéi4A85A(§3 + A21A87 + AZ? + AéslnAé + A21A85 + Aéi4A§7

Los : AgsAG + AR Aet AGy + A Asi Afy + AZ AG Ags + Ay + Asi A + A5 Ag,
‘|‘Aé:1))0Ag7 + A21A§5A§3 =0

= Ags = AgCAL 4+ AL AG Ass + A Ass Ads + AstAGs + A1 Ass Ads + AL Ags
+AG Al + Agy AL,

Lgy: Ay =0 = Ags =0

]2002 1:0

Annex C B(511,123) has minimum distance > 123

We consider the Newton’s identities for 0 < ¢ < n = 511 for the code B(511,123), and for
the weight 6 = 123. We want to prove that there exists no codeword of such weight.

The non-null power sum symmetric functions of the code are:
A1237 A1257 A1277 A1717 A1757 A1837 A1877 A1917 A2197 A2237 A2397 A255-

And since 511 and 123 are relatively prime we can suppose Aj93 = 1.

We will show for this code a shorter proof. The complete proof would be too long to
appear here.

We will first solve the linear triangular system giving the o;’s for even ¢ as polynomials
depending on the non-null A;’s. The o;’s for odd ¢ are null. We consider that the o;’s have
been substituted in the equations.

Furthermore we will suppose A5 # 0 (when Aj35 = 0, we found a contradiction).

27



We give here the equations we used for the resolution, and the way we used them.

Iy : Af+ AT ALy + AT A + AT AT AT + AT ATy AL + Aler Al
+As Alys + AlssAlzs + Al Alys + AlnATyr Alds + A5 AT Al
+AT Algr Alys + Al Alys + Al Afys + ATz ATy ATy + AT ALy Alys
+A$$1A%25 =0

= Aqg7r = A%gg + Ai)ggA%?l + Ail))g:;A??l + A171A327A41125 + A171A1127 + A?25A1171A%27
+Aiaé(5)A1175 + A183A%25 + A171A§25 + A175A?25 + A?%gAil71A1127
+A§25A1171A127 + A%71A125 + A%gA%%A%Q? + A125A%$1A127 + A%%A?%

. 8 10 258 416 4 257 274 48 282 44 4 257 44
1388 : A171A127 + A125A127 + A175A125 + A125A127 + A125A127 + A171A125A127
A2 A4 AlO AS A6 A8 A32 A6 A2 A2 AS A8 AQ
T A5 AyorAggs + Ay AjorAygs + Ajri Ajgr + Ajrs Ajos Ajor + Ajrs Afer
A2 A2 A4 AZ A? A4 A32 A4 A12 A8 A4
+Ajgs Ajos Aqor + ATg1 Ajgs + Ajas AT Aqgr + A5 A1 Aqar
14 42 4 _
‘|‘A125A171A127 =0
L 510 44 5 128 48 383 42 136 44 140 42 383 42 2
= A191 = A125A171A127 + A125A127 + A125A175 + A125A127 + A125A127 + A125A171A127
A A2 A4 A3 A4 AS A510A16 AS A A4 A510A4 A
+A17s 12741125 + 12541714127 + 1254417144127 + Airs 127 + 1254417544127
2 16 2 4 2 5 6 2
+A183A127 + A171A125A127 + A171A127A125 + A125A171A127

Lygn : Al + ASyy = 0= Agrr =AY}
Lios s Al + AT AT75 = 0= Aurs i= A ATS]
Ly AT +1=0= A5 =1
Ligo s Adgy + Algy 4+ Ales = 0= Aqar := Aygs + Ay,

1428:1:0
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