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Abstract

We consider primitive cyclic codes of length n over GF (q), where
n = qm − 1, and for any such code with defining set I(C), we define a
system of algebraic equations, SI(C)(w), constructed with the Newton
identities for the weigth w.

We prove that algebraic solutions of this system are in correspon-
dance with all codewords of C of weight lower than w. In the particular
case when there are no codewords of weight lower than w, the number
of solutions of SI(C)(w) is exactly the number of codewords of C of
weight w.

To deal effectively with the system SI(C)(w), we compute a groebner
basis of this system, which gives pertinent information on minimum
weight codewords. A few examples are given.
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Extended Abstract

1 Words of GF (q)n and their Fourier transform

1.1 Notation

We denote GF (q) the finite field of size q, q being a power of a prime number
p. We consider primitive cyclic codes of length n = qm− 1. A primitive nth
root α of the unity is given in GF (qm). We denote X1, . . . , Xw the locators
of a word c = (c0, . . . , cn) of weight w, and the polynomial

σ(Z) = 1 + σ1Z + · · ·+ σwZw =
∏

i=1...w

(1−XiZ)

is the locator polynomial of c, where σ1, . . . , σw are the elementary symmet-
ric functions of the locators of c. Let ci1 , . . . , ciw be the non-zero coordinates
of c, in correspondance with X1, . . . , Xw (that is, Xj = αij ), we denote
Ai, i ≥ 0, the generalized power sum functions of X1, . . . , Xw weighted by
ci1 , . . . , ciw [6]. A cyclic code C is defined by its defining-set I(C):

I(C) = {i ∈ [0, n− 1], αi is a zero of the generating polynomial of C}.

1.2 Fourier transform of words of length n

We use the terminology of Mattson-Solomon polynomial for the Fourier
transform of a word c [6, page 239]. The coefficients of the Mattson-Solomon
polynomial of c are equals to the generalized power sum symmetric func-
tions, and thus are also denoted Ai.

We shall use the Blahut theorem, as given in [7].

Theorem 1 Let c be a word of length n, and Ai, i = 1, ..., n be the Mattson-
Solomon coefficients of c. The weight of c equals the rank of the matrix

CIRC(c) =




An−1 · · · A1 A0

A0 An−1 · · · A1
...

An−2 An−3 · · · An−1




. (1)

Remember that a word c is in C if and only if Ai = 0, i ∈ I(C).
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2 A necessary condition

We recall the generalized Newton’s identities.

Proposition 1 ([6]) Let X1, . . . , Xw be w ideterminates, and let σ1, . . . , σw

be the elementary symmetric functions of X1, . . . , Xw, and Ai, i ≥ 0, be the
generalized power-sum functions of X1, . . . , Xw. The following identities
hold

Aw+i + Aw+i−1σ1 + · · ·+ Aiσw = 0, i ≥ 1.

These identities are the generalized Newton’s identities.

Let X1, . . . , Xw be the locators of a codeword of weight w, and let
σ1, . . . , σw be the elementary symmetric functions of the locators of c, and
A0, . . . , An−1 be the generalized power sum functions of X1, . . . , Xw rela-
tively to ci1 , . . . , ciw . If c is in the code with defining set I(C) = {i1, . . . , il}
then (σ1, . . . , σw, A0, . . . , An−1) is a solution of





Aw+1 + Awσ1 + · · ·+ A1σw = 0
Aw+2 + Aw+1σ2 + · · ·+ A2σw = 0

...
Aw+n + Aw+n−1σ1 + · · ·+ Anσw = 0

Aqimodn = Aq
i , i = 0, . . . n− 1

Ai+n = Ai, i = 0, . . . w
Ai1 = Ai2 = · · · = Ail

(2)

Definition 1 Let C be a cyclic code with defining set I(C), let ¯GF (Q)
denote the algebraic closure of GF (q) and let SI(C)(w) be the system 2. An
algebraic solution of SI(C)(w) is (σ1, . . . , σw, A0, . . . , An−1) ∈ ¯GF (Q)n+w

which satisfies SI(C)(w).

Thus:

Proposition 2 Let C be a cyclic code with defining I(C). If the system
SI(C)(w) has no algebraic solution, then there is no codewords of weight w
in C.

The use of the Newton’s identities as a necessary condition has been
considered in [1], to prove that the BCH code of length 255 and designed
distance 59 (resp. 61) has minimum distance 61 (resp. 63).

The aim of this paper is to show that the system can be seen as a suffisant
system, as will be shown by theorem 2.

3



3 The converse

Definition 2 We say that a n-uple (A0, . . . , An−1) is an algebraic solu-
tion of SI(C)(w) if there exists a w-uple (σ1, . . . , σw) ∈ ¯GF (q) such that
(σ1, . . . , σw, A0, . . . , An−1) is an algebraic solution of SI(C)(w).

Theorem 2 Let (A0, . . . , An−1) be an algebraic solution of SI(C)(w). Then
(A0, . . . , An−1) are the Mattson-Solomon coefficients of a codeword of C of
weight ≤ w. If there is no codewords of weight strictly less than w, than
the number of solutions of SI(C)(w) equals the number of codewords of C of
weight w.

Proof It is easy to show that (A0, . . . , An−1) are the Fourier transform
of some codeword c of C. It remains to prove that the weight w0 of C
is lower than w. Using the fact that there exists (σ1, . . . , σw) such that
(σ1, . . . , σw, A0, . . . , An−1) satisfies SI(C)(w), one can show that the rank of
the matrix

CIRC(c) =




An−1 · · · A1 A0

A0 An−1 · · · A1
...

An−2 An−3 · · · An−1




is lower than w. Thus the weight of c is lower than w, by theorem 1. 2

4 An example

To deal with the algebraic system SI(C)(w), we compute a groebner basis
of the ideal generated by the polynomials of the system SI(C)(w). We shall
not introduce all the material for dealing with groebner bases, and refer
to [4, 5, 2]. For our concern, a groebner basis of an ideal is a privilegied
system of generators, which gives some insight on the ideal: it is possible to
determinate if the system has solutions (solutions exists if and only if the
groebner basis is not (1)), and to find the number of solutions.

Here is an example. We consider the binary cyclic code C of length 63
with defining set

I(C) = cl(1) ∪ cl(5) ∪ cl(7) ∪ cl(9) ∪ cl(11) ∪ cl(13) ∪ cl(23) ∪ cl(27).

The BCH bound shows that the minimum distance of C is greater than 6.
Writing the system SI(C)(6), and computing a groebner basis of SI(C)(6),
we get:
[
σ6 + A3

2, σ5, σ4, σ3 + A3, σ2, σ1, A31, A21 + A3
7, A15 + A3

5, A3
21 + 1, A0

]
,
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and thus:

1. There are solutions, so there are codewords of weight 6. There are 21
such codewords, since the number of solutions is 21.

2. All these solutions lie in the subcode with defining set I(C) ∪ {31}.
3. Letting A3 equals to 1, we get a minimum weight idempotent, which

only admit 21 conjugates by shifting, which are all the minimum weight
codewords. The locator polynomial of the idempotent is Z6 + Z3 + 1.

5 Conclusion

We have tranformed a problem from coding theory into a purely algebraic
one. We do not claim to easily solve the coding theory problem by this way,
but there exists algorithms for computing groebner bases, which are very
powerful objects. The very high complexity of these algorithms limits the
application of this algebraic approach.
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