DESCRIPTION OF MINIMUM WEIGHT CODEWORDS OF
CYCLIC CODES BY ALGEBRAIC SYSTEMS
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ABSTRACT. We consider cyclic codes of length n over I, n being prime to
q. For such a cyclic code C, we describe a system of algebraic equations,
denoted by S¢(w), where w is a positive integer. The system is constructed
from Newton’s identities, which are satisfied by the elementary symmet-
ric functions and the (generalized) power sum symmetric functions of the
locators of codewords of weight w.

The main result is that, in a certain sense, the algebraic solutions of
Sc(w) are in one-to-one correspondence with all the codewords of C' having
weight lower than w. In the particular case where w is the minimum
distance of C', all minimum weight codewords are described by S¢(w).

Because the system S¢(w) is very large, with many indeterminates, no
great insight can be directly obtained, and specific tools are required in
order to manipulate the algebraic systems. For this purpose, the theory of
Grébner bases can be used. A Grobner basis of S¢(w) gives information
about the minimum weight codewords.

1. INTRODUCTION

The aim of this paper is to study minimum weight codewords of cyclic codes,
from a practical point a view. The problem is the following: given a cyclic code C
of length n over I, (n prime to ¢), how can one “find” the minimum codewords of
C'. The term “find” has to explained: minimum weight codewords will appear as
solutions to algebraic systems, and “finding” minimum weight codewords is “find-
ing” solutions to such an algebraic system. “Finding” will turn to the process of
computing a Grobner basis, for the lexicographical order.

In this first section we recall the usual definitions used in the theory of cyclic
codes, mainly the Mattson-Solomon (or the Fourier) transform. The definitions
and notations will be kept as close as possible to [12]. Next, in the second section,
we introduce the Newton identities and define an algebraic system, denoted S¢(w),
constructed from these. The existence of solutions to this system is a necessary
condition to the existence of codewords of weight w in C'. The main result is
presented in theorem 2.3, it correlates codewords and solutions to Sc(w).

Key words and phrases. Cyclic Codes, Fourier Transform, Algebraic Systems, Grobner
bases.
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In the paper [2], we only used the systems Sc(w) as a necessary condition. Es-
tablishing that there is no solution to this system is proving the non-existence of
codewords of weight less or equal than w in C'. Now we are able to use the converse:
solutions to S¢(w) correspond to codewords of weight less or equal than w. Whereas
the equations were manipulated “by hand” in [1, 2] for finding contradiction in the
system, theorem 2.3 enables to use a more complete algorithmic tool. We propose
to use Grobner bases for computing solutions to algebraic systems. Grobner bases
are convenient for the manipulation of algebraic systems, and allow big systems of
equations to be dealt with automatically. Basic definitions and results are recalled
in the third section. Finally, some examples are presented, to show the method at
work.

1.1. Background. We denote by F, the finite field with ¢ elements, ¢ being a power
of a prime number p. Let F, be the algebraic closure of F,. Let n be an integer prime
to g. A cyclic code C of length n is an ideal in the algebra F,[X]/(X" — 1), a word
(co,€1y...,Cn_1) being identified with the polynomial ¢y 4+ ¢t X + -4+ ¢, XL
The weight of a word ¢ is the number of non-zero coordinates of c.

Let a be a primitive n-th root of unity in the field F, of F,, F,; being the splitting
field of X™ — 1 over F,, i.e. ¢’ = ¢™ where m is the least positive integer such that
n | ¢™ — 1. The defining set of C, denoted I(C'), is

I(C)={i€[0,n—1]|Vce C, ¢(a’) = 0}.
The cyclotomic classes of ¢ modulo n are the sets

(i) ={i,qi,q¢*,...}, i€[0,n—1].

If o' belongs to I(C), so does a?, and thus I(C') is an union of cyclotomic classes.
A cyclic code is completely defined by its defining set. Changing the primitive root
a amounts to permuting the coordinates of codewords, thus obtaining an equivalent
code. For a given primitive root a, one can define the locators of a word:

Definition 1.1. Let ¢ = (¢g,¢1,...,¢n_1) € F? and let w be the weight of ¢. The
locators of ¢, denoted by X, X,,..., X, are

{X1,Xs,.... X} = {a’, for j such that ¢; # 0}.

The locator polynomial of ¢ is the polynomial o(Z) € F,[Z], as below:

w

o(2)=]](1- X,2).

i=1

We recall that the minimum distance of C' (the lowest weight of non zero code-
words in C') can be bounded from below by some useful bounds, e.g. the BCH
bound, the Hartmann-Tseng bound or the Roos bound [11]. These bounds can be
computed directly from the defining set of the code C'.
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1.2. Fourier transform. The Fourier transform of a word ¢ € F' is also called the
Mattson-Solomon polynomial of ¢. There is a one-to-one correspondence between
words in F' and their Mattson-Solomon polynomials. For describing minimum
weight codewords, we shall describe the coefficients of their Mattson-Solomon poly-
nomial. Algebraic properties of codewords are best seen in the coefficients of their
Mattson-Solomon polynomial, instead in codewords themselves.

Definition 1.2. [12, 239] Let ¢ = (¢, ¢1,...,¢,-1) € F?, and let o be a primitive

q
n-th root of unity in F,. The Mattson-Solomon polynomial of ¢, denoted A, is:

(1.1.1) A= A 7" € Fy[Z] where Vi € [1,n], A; = ¢(a).
i=1

Theorem 1.1. [12, p 240] Let ¢ = (co,¢1,-..,¢4-1) € B and A(Z) the Mattson-
Solomon polynomial of a. Then

Vic[0,n—1], ne; = A(a').

As a consequence, the correspondence ¢(X) — A(Z) is one-to-one. We shall
alternatively use (Ag,..., A,_1) or (A4,..., A,), which is convenient since Ay = A4,.
We also consider A;,, which is equal to A;.

Proposition 1.1. [10, 218] A polynomial A(Z) € F,[Z] is the Mattson-Solomon
polynomial of a word ¢ € B if and only if:

Vi € [1,TL], Aiq mod n — A;]

2. CODEWORDS AND NEWTON’S IDENTITIES

2.1. The (generalized) Newton identities.

Definition 2.1. Let ¢ € F' be of weight w, and let X, ..., X,, be the locators of c.
The elementary symmetric functions of ¢, denoted oq, 04, ..., 0,, are the elementary
symmetric functions of the X;’s, that is,

\V/Z € [1,w], g; = (—1)Z Z XJ1X] .. 'AXle.

1<j1<j2<<ji<w

The elementary symmetric functions of a codeword ¢ and the coefficients of the
Mattson-Solomon polynomial of ¢ are related by the (generalized) Newton identities.

Theorem 2.1. [12] Let ¢ € F! be a word of weight w, Ay, ..., A, the coefficients of
the Mattson-Solomon polynomial of ¢ and 0y, 04,...,0, the elementary symmelric
functions of c. Then the following identities hold:

(221) VZ Z 0, Ai-}—w + UlAH—w—l + -4 UwAi = 0.
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Each of these equations is homogeneous in the X;’s, the X;’s being the locators.
We number these equations eq,,...,eq,..., eq; being the equation homogeneous
of degree ¢. The system 2.2.1 can be written using matrices:

1
01
(2.2.2) Cowl| . | =0,
Ow
where
Appr Ay . A
Cn,w: )
An+w An-l-w—l LR An

since the equation eq,,; is equal to the equation eg;. An alternative form of the
system 2.2.2 is the equation:

(2.2.3) A(Z)o(Z) =0 mod (Z" — 1), where A(Z) = ZAZ»Zi.
i=0
The matrix C,, ,, is related to the weight of ¢, as indicates the following theorem®.

Theorem 2.2. Lel ¢ € F', and Aq,..., A, be lhe coefficients of the Mallson-
Solomon polynomial of c¢. Then the weight of ¢ equals the rank of the circulant
matriz

Ay Apr 0 Ay
Al AO e A2

C.= :
An—l An—Z e AO

In fact C), , is the sub-matrix of C; which consists of the last w + 1 columns

of C,.

2.2. The system Sc(w) and its solutions. In view of the proposition 1.1, and
of the Newton identities, we define the following system of algebraic equations.

1This theorem is known as “Blahut’s Theorem” in coding theory, since Blahut has shown
the use of this theorem in coding theory, in [4], as pointed out by the referee.
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Definition 2.2. Let C' be a cyclic code over F, of length n and let I(C') be the
defining set of C'. We define the system S¢(w) as follows.

Apyr + Ayoy + -+ Ayo, =0,
Ayto + Appi01 + -+ Ayo,, =0,

(2.2.4) Sc(w) = § Apyw + Anpuw101 + -+ Ayoy, = 0,
Vie[0,n—1], Agmoan = Af,
Vi € [O,TL— 1], Aiyn = Ay,
Vie I(C), A; =0.

In this system both A;’s and o;’s are indeterminates. Thus the system defines an
ideal in the ring F,[Aq,..., Ap_1,01,...,04].

It is clear that existence of solutions to the system S¢(w) is a necessary condition
to the existence of codewords of weight w. This was used in [2], where it was also
established that the systems Spcp50)(59) and Spem(s1)(61), in length 255 have no
solutions. This completed a table of minimum distance of BCH codes presented
in [12, page 267]. Dealing with the converse, we answer the question: what is the
meaning of the algebraic solutions to S¢(w), or more precisely, do the o;’s that are
algebraic solutions to S¢(w) define locator polynomials of codewords? It turns out
that the important indeterminates are the A;’s, rather than the o;’s.

We shall describe the n-tuples (Aq, ..., A,_;) € F, which are solutions to S¢(w).

Definition 2.3. We say that (Ao,...,A,_1) € F, is a solution to Sc(w) if there
exists (oy,...,0,) € F, such that (Ag,...,4,_1,01,...,0,) is a solution to Sc(w).

Theorem 2.3. Let C be a cyclic code of lengthn. The n-tuples (A, ..., A,_1) € F,
that are solutions to Sc(w) are the Fourier transform of the codewords of C' of weight
less than or equal to w.

Proof. Let (Ag,...,A,_1) € F, be such a solution. The equations
(Vz € [O,H — 1], Aqimodn = A;])

imply that (Ao,...,A,_;) is the Fourier transform of some word ¢ of F', using
proposition 1.1. The equations

(Vi € I(C), A; = 0)

imply that ¢ belongs to the code C'.
One has to see that the weight wq of ¢ is less or equal to w. Since there exists a
w-tuple (oy,...,0,) € ]F;U such that

Ow
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then, completing with 0’s:

0
0
C. 1 =0
01
O-U)
Since C is a circulant matrix, we get
0 0 1
01
0 1 :
CC 1 o1 Ow = 0
() 09 0
g, 0 -+ 0

This proves that all columns of the matrix C', are in the vector space generated by
the w last columns of C.. Thus the rank of C, is smaller than or equal to w, and
by theorem 2.2, the weight of ¢ is smaller than or equal to w. O

We now describe the w-tuples (04,...,0,) that are solutions to Sc(w).

Definition 2.4. For each solution (A,,...,A,_1) to Sc(w), let Fea,  a,_,) be
the space of the w-tuples (o4,...,0,), associated to (Ag,...,A,_1), such that
(015 vy 0wy Agy ..., Ay_q) is a solution to Sc(w).

Theorem 2.4. Let (Ao,...,A,_1) be a solution to Sc(w), and c be the codeword of
weight wo < w, given by the inverse Fourier transform of (Ao, ..., An_1). Let 0.(Z)
be the locator polynomial of c. Then the sel Fia,, .. a,_,) associated to (Ag,..., A1),
iS:

Fi=A(o1,...,04,) € qu | 0.(Z) divides (1 + ZaiZi)}.
i=1

Proof. 1t is clear that F(4, . a,_,) is an affine space of dimension w — w,, because
the coefficients of o.(Z) belong to Fao,...An_y), and the rank of €, , is we. The
dimension of the affine space 7’ is w — wy and the coefficients of o.(Z) belongs to
F'. Now let (0y,...,0,) € F" and let o(Z) be the polynomial 1+ 3~ 0;Z*. Then
o(Z)=p(Z)o.(Z) for some polynomial p(Z) and

A(Z)o(Z)= A(Z)o(Z)p(Z) =0 mod Z" — 1,

since 0.(Z) satisfies the alternative form 2.2.3 of the Newton identities. Thus o(Z2)
also satisfies 2.2.3, and thus (oy,...,0,) belongs to Fia, . a,_,) O
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Corollary 2.1. Let C' be a cyclic code of length n, of minimum distance d. The
number of solutions to Sc(d) is finite. Fach solution (Ao,..., A,_1) is the Fourier
transform of a minimum weight codeword. Fach solution (o4,...,0,) is the set of
coefficients of the locator polynomial of a minimum weight codeword.

The theorems 2.3 and 2.4 completely describe the solutions of the system Sc¢(d),
in terms of codewords of C'. The important consequence is the following. Given a
cyclic code C' of length n, such that there exists no codewords of weight less than
w (from the BCH bound for instance), if there are solutions to S¢(w), then the
minimum distance of C' is w. In that case the number of these solutions is equal to
the number of minimum weight codewords of C'. Furthermore, all the polynomials
143, 0:Z" in which (04,...,0,) is a solution to S¢(w) are locators polynomials
of minimum weight codewords.

To be able to use this correspondence between solutions of algebraic systems and
words of cyclic codes, one must be able to deal efficiently with algebraic systems.
The next section introduces Grébner bases, which are a commonly used tool for
studying these systems.

3. GROBNER BASES

The theory of Grobner bases is well developed and quite useful. One can say
that, as soon as practical problems with algebraic systems are encountered, then
Grobner bases come into play. We introduce here only the concepts and results
needed for our purpose, without proofs. No new material will be found here about
Grobner bases. Rather complete books on the subject are [3] and [6], while in [8] a
more practical point of view is adopted.

3.1. Definition. Let k be an algebraically closed field. The number of zeros of a
univariate polynomial P, counted with multiplicities, equals the degree of P, and the
number of common solutions to the polynomials Py, ..., P; equals the degree of the
ged of the P’s. When multivariate polynomials are considered, k[Y] = k[Y1,...,Y,]
is not a principal ideal domain. The notion of Grébner bases can be seen as a
generalization of ged’s of univariate polynomials. All the notions related to Grébner
bases depends on some ordering on N". We shall make use of the lexicographical

order on N”.

Definition 3.1. The lexicographical order on N”, denoted <, is defined as follows

lex

(ar,az,...,a,) < (b1,ba,...,0,) <= Fs€[l,n], (Vi<s, a;=10b;) and (a; < by).

lex

Definition 3.2. Let f = Y. f,Y . The leading monomial of fis Y, where a is
maximal (for <) such that f, # 0. The leading term of f, denoted exp(f), is

lex
the exponent of the leading monomial of f. The initial of f, denoted in(f) is

exp(f)
Cexp(1)Y :
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Theorem 3.1. Let I be an ideal of k[Y]. The set

texp(f), fe 1}
is denoted E(I). There exists a finite set S C N* such that

(3.3.1) E(I)= U (a+ N").

a€S
A set B C I of polynomuals is a Grobner basis of I if the sel of leading lerms of
the polynomials of B satisfy 3.3.1. A minimal Grébner basis is a Grobner basis of
minimal cardinality.

Thus the set E(I) of an ideal I is the set of the leading terms of all polynomials
in I. Previous theorem states that there exists a finite number of polynomials in I
such that their leading terms are a basis for £([1).

3.2. Main properties of Grobner bases. When a Grobner basis B of the ideal
I is known, many problems can be addressed using Hironaka’s division. In the
following theorem, we only use the “remainder” of the division, which I call the
reduction map.

Proposition 3.1. Let I be an ideal of k[Y], and let (f,,..., [;) be a Grébner basis

)
of I. There exists a reduction map R{f1,..., fs} : k[Y] — E[Y], such that :

Vfek[Y],exp(fRI)e N*"\ E(I).
This map is independent of the choice of the Grobner basis.

Theorem 3.2. Let B = {fi,...f,} be a Grébner basis of I, we note fRI for
fR{fi...fs}. Then f € I if and only if fRI = 0.

Hironaka’s division enables also to show that a Grobner basis of I is a set of
generating polynomials of I (see [6, 3])

Definition 3.3. Let I be an ideal of k[Y']. A Grébner basis (f1,..., f;) of I is said
to be reduced if and only if:

(1) inf; = YPS e [1, 5],

(2) fiR{fi s Jise o LY = i,
where (fi,.. i ., fs) denotes (fi,..., fic1, fix1---y fs)-

A reduced Groébner basis can be seen as a Grobner basis in which each polynomial
is monic and is reduced modulo the ideal generated by the other ones.

Proposition 3.2. Two reduced Grébner basis of the ideal I are equal, modulo a
permutation of indices.

So we can talk about the Grobner basis of the ideal I, meaning a reduced Grobner
basis of /. Knowing the Grobner basis of I is knowing the set E([) of exponents of
I. Let I be an ideal generated by ¢1,...,¢; (not necessarily a Grobner basis). Then
the equations g; = --- = ¢g; = 0 define an algebraic system of equations.
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Proposition 3.3. Let I be an ideal of k[Y] generated by (fi,..., fs). If
Card(N"\ E(1)) < o0,

then the set S of solutions to the system (fi,..., fs) is finite, and the cardinality s
of S is such that

s < Card(N™\ E(1)).

The number of solutions to the system (fi,...,fs), counted with multiplicities, is

exactly Card(N" \ E(1)).

Example 3.1. Let £ = F;, and consider the ideal generated by the polynomials
22+ y?— 1,z —y+ 1. The Grobner basis, for the lexicographical ordering y > =, is

(3.3.2) y—z—1,2° +a.

The set E(I) can be shown as:

B

) x

Since there is a finite number of points, which is two, under E([I), the system of
equations 3.3.2 has two solutions.

Thus, given a system of equations pi,...,pr, a Grobner basis of the ideal [
generated by the polynomials pl, ..., p; gives us the knowledge of E(I), and then
we are able to know if the system has solutions, and to know the number of solutions
if it is finite.

As a final note, Grobner bases can be computed. Buchberger’s algorithm is
the basic scheme for computing Grébner bases. It is well known [3, 8] and, for
instance, one can use the implementation provided by most Computer Algebra
systems. However, for our purpose, the reader is warned that we had to use a more
powerful tool, called Gb, designed by Jean-Charles Faugere [7].

4. EXAMPLES

Here we give some examples of Grobner bases for the system Sc(w) for the
minimum distance of some codes. Note that the number of variables for the system
Sc(w), for a code of length n is n + w. Before feeding the Buchberger’s algorithm
with our system, we do the following manipulations:

o Choose one representative iy for the cyclotomic class cl(ip). Then the A;’s,
for ¢ belonging to cl(iy), are replaced by the convenient power of A,,.

o Let the A; equal 0 for ¢ € I(C') (that is, they do not appear in the system).

e Replace A;,, by A;.
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As an example, consider the cyclic code C' of length 7 over F,, with defining set
{1}. The cyclotomic classes of 2 modulo 7 are {{0},{1,2,4},{3,6,5}}.
The system S¢(3) is transformed as follows:

Ay + Asoy + Ayoy + Ayos =0 Azoy 0
A5 + Ayoy + Azoy + Ayo3 =0 Af+ Azor, = 0
Ag + Asoq + Ayoy + Azo3 =0 AZ4 Aloy + Azo; = 0
A7 + Agoy + Asoy + Ayos =0 ~ S8e(3) Ao+ Aloy + Ajo, = 0
Ag + Azoq + Agoy + As05 =0 ¢ ’ Aoy + Ador + Asos = 0
Ag + Agoy + Azoy + Agos = 0 Aoy + Ajos = 0
Ao+ Agoy 4 Agoy + A7zo3 =0 Az + Agos = 0

A2 = A A2 = A

4.1. First example. We consider the binary cyclic code C of length 63 with defin-
ing set

I(C)=cl(1)Uel(b)Uc(T)Ucl(9)Ucl(11)U cl(13) U cl(23) U cl(27).

The sequence {7,8,9,10,11} belongs to I(C), thus the minimum distance of C is
greater than or equal to 6. The minimal Grébner basis for S¢(6) is:

(4.4.1)
[06 + A327 05, 04, O3 + As, 04, 01, Az, A + A377 Ais + A357 A+ 1, A

Since the Grébner basis does not reduce to {1}, the system has solutions. Thus
there are codewords of weight 6 in ', and the minimal distance of C' is 6. There
are 21 solutions, so there are 21 minimum weight codewords. All these codewords
belongs to the subcode with defining set 7(C') U{0,31} (Note that the fact A, = 0,
which is obvious because the weight is even, has been retrieved by the computation
of the Grébner basis).

All the coefficients of the Mattson-Solomon polynomial of minimum weight code-
words can be expressed in terms of Az, which satisfies A2' = 1. The locator poly-
nomials are of the form

o0.(Z) = A37° + A3 Z° + 1.
Since A%' = 1, one can write Ay, = 4®, for some v € F,. Thus 0.(Z) =Y?*4+Y +1,

where Y = (yZ)3. The polynomial Y? +Y + 1 has two roots, namely o?' and a*?,
and the locators of the minimum weight codewords are

{a"/y,0/y,0™/y,0'" /7,0 /7,0®[7}. 7 € K.

Letting Aj equal 1 (that is, ¥ = 1), we get a codeword such that A; € |, ¢ € [0,62].
This codeword is an idempotent, which admits 21 conjugates by cyclic shift, which
are all the minimum weight codewords.
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4.2. A dual of a BCH code. We consider the dual of the BCH code of length 63
and designed distance 7. By the BCH bound it can be seen that minimum distance
is bounded from below by 16. Computing a Grébner basis for S¢(16), one gets:

[o16 + A15™ Az 4+ Ais™ Ass”, 015 + Ais, 014+ Ais'” Asz, 012, 010,
Os + A15™° Az, 06, 04, 02, Azi® + A1s™ Ass” Azi® + Ars®, As® + Ais™,
A5 4+ 1]
There are 189 = 3x3x21 solutions, and thus 189 minimum weight codewords. These
codewords do not belong to any proper cyclic subcode, a fact which can be seen by
checking that each of the equations A5 = 0, or A3 = 0, or Az; = 0 is impossible
for a minimum weight codeword. There are no minimum weight idempotents: a
idempotent should satisfy A;5 = 1, which implies As3 = 1 and A3, + A2, +1 =0,
which is impossible in F,.
4.3. A Quadratic residue code. Let C be the quadratic residue code of length
31 (it is the cyclic code with defining set {1,5,7). The minimum distance is 7, and
the Grobner basis for S¢(7) is
[o7 + A1 A3™ + A11° A5, 06 + As®, o5 + A11A5™ o4 + A1 * A3™ + A7 A5%,
o3+ Az, 03 + A11A5*% 01, A5 + A11°A5*° + A5°,
An® 4+ At Azt 4+ AP AsT + A AS® + A%, A5 4+ 1]
There are 155 solutions and thus 155 minimum weight codewords. They do not
belong to any cyclic subcode, and can not be idempotent.

The subcode of C' with even weight, i.e. the cyclic code C, with defining set

{1,5,7,0} has minimum distance 8. A Grébner basis for S¢,(8) is

[os + A1 A3° + A2+ A M A 4+ AT AT + AP A7 4 AP A5,

o7+ A AR 4 A B ARTT 4 A T AT AL BAST 4 AT AT 4 AP AT AT

o6 + A3,

o5+ A1t A% + A1 AR + AT AR+ AP A0+ A AT 4 AP At 4 A A5,

oo+ A A 4 A B AST AL T AT AL BASS 4+ AT AT+ AP AT+ A7

o3 + Az,

oo+ A1t A+ AP A% + A M A5 4+ A AT + AP A3 + AP AR 4 4114578,

T1,

Ars + AP As” + AP A3+ A 104570 + AP A5+ AP AT+ AT

+ AP A 4+ AP AP A AT AL AR,

A"+ A M A 4+ A" AT 4+ A T AT + A 04 + A% A5+ A 0457

+ A A%+ A1 P AT A2 AT+ AT

Az? 4+ 1]
There are 465 = 31 x 15 solutions. The minimal weight codewords do not belong to
a cyclic subcode, and are not idempotent. This code has been studied in [5], where

the complete distribution of the weight has been established. For the minimum
weight codewords, the results are the same.
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5. CONCLUDING REMARKS

We have transformed a problem from coding theory (finding codewords in a cyclic
code), into a purely algebraic one (finding solutions to an algebraic system). The
most interesting case is when w is the minimum distance of C'. We want to empha-
size that the Grobner basis contains a lot of information about minimum weight
codewords. The main drawback of this method is the high complexity of the Buch-
berger’s algorithm. It is stated to be d°0"") [9], where d is the maximum degree of
the generators of the ideal, and m the number of variables, and d°™ for a partic-
ular family of systems. Fortunately, it appears that the systems Sc(w) are solved
at a cost much lower than this theoretical complexity. Yet the general Buchberger
algorithm can be modified in many ways, by choosing different strategies, and a
“good” strategy has to be found for the very particular systems Sc(w), for our
method to be practical for longer codes.
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