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Abstract

We describe a deterministic algorithm for computing a normal basis of
F4n over Fy. The number of arithmetic F4-operations needed to perform
the computation is O(n3 + n?log q). This algorithm is better than any
previously known deterministic one, and compares well with probabilistic
algorithms. Our method is heavily based on linear algebra techniques.

1 Introduction

Let Fy» denote the finite field of size ¢", and let o be the Frobenius automor-
phism, o(x) = x1.

Definition 1 An element a € GF(q") is said to be normal if a,a?,.. ., ad" !
form a basis of GF(q"™) over GF(q). A set a,af,.. .,oﬂnf1 which is a basis of
GF(q™) over GF(q) is a normal basis.

Normal bases can be used for implementing the arithmetic of finite fields.
The significance of normal bases is mainly due to the fact that exponentia-
tion is cheap when using a normal basis [1]. The reader is informed that low-
complexity [2] normal bases are not sought for in this paper.

We consider the problem as a linear algebra problem. It is the problem of
finding a cyclic vector for a given matrix. Let us recall a few definitions.

Definition 2 Let A € M, (k) be a linear operator over a field k. The minimal
polynomial of A relatively to a vector v € K™ is the lowest degree monic polyno-
mial m,(X) such that m,(A)v = 0. Let m(X) denote the minimal polynomial of
matriz A, a vector v € K™ is said to be cyclic if m,(X) = w(X).

Theorem 1 ([5]) Let A € M, (k), there exists a cyclic vector for A.

A normal element for GF(g™) is a cyclic vector for the matrix representing
the Frobenius automorphism. We first consider the case where n is prime to
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q- The minimal polynomial of the Frobenius automorphism is X™ — 1 which in
this case is a square-free polynomial.

The algorithm presented here computes a cyclic vector of an operator A €
M, (k) whose characteristic polynomial is square-free. The complexity of this
algorithm is O(n?), and thus the cost of computing a normal basis is O(n3 +
n?logq), counting O(n® + n?logq) for computing a matrix representing the
Frobenius automorphism.

We recall that Bach, Driscoll et Shallit have presented an algorithm of com-
plexity O((n? + log q)(nlog ¢)?) in terms of the number of bit operations, and
H. W. Lenstra has presented an algorithm of the same complexity [4].

2 A useful lemma

We try to find a cyclic vector by elementary operations on the rows and the
columns of the matrix A (linear combinations and permutations). The aim is
to find a companion matrix similar to A. However, this is not always straight-
forward, and the following form of matrix may occur.

Definition 3 A matrix H € M, (k) is said to be a Shift-Hessenberg matrix if
it has the form:
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i.e. hiﬁj =0 Zfl > j+1, and (hi+1,i 75 O) = (hi+1,i =1 and VJ 7é 1+1, hjﬂ‘ = 0)

Proposition 1 For every matric A € M, (k) there exists a Shift-Hessenberg
matriz H and an invertible matriz P such that H = P~*AP. Matriz H and
matriz P can be obtained in O(n®) operations in k.

A Shift-Hessenberg matrix is a slightly modified Hessenberg matrix [6, 3], and
the algorithm for computing a Shift-Hessenberg matrix similar to a given matrix
is simple. A Shift-Hessenberg can be partitionned as follows.

Hp, B, Hp,B, '+ Hp B,
0 Hp, B, -+ Hp,B,

H = . . .
0 0 Hp, B,



where the matrices Hp, p, are companion matrices. If the minimal polynomial
of matrix H is square-free, then the minimal polynomials of the matrices Hp, B,
are pairwise coprime.

If the resulting matrix only has one block, then it is a companion matrix,
and the result is found. The next lemma tells that the result can be achieved if
there are only two blocks.

Lemma 1 Let H be a block matriz of the form.:

HB1,B1 HBth (1)
0 HB27B2

and let vp,, v, be cyclic vectors for Hp, p, and Hp, p, with minimal polyno-
mials f1(X) and fo(X) respectively. If f1(X) and f2(X) are coprime, a cyclic
vector v for H can be constructed on the data of vp,, vp,, at cost O(n3).

3 A recursive construction

When the Shift-Hessenberg form of A contains more than two blocks, we use
Lemma 1 recursively. The strategy is to split the matrix H into a matrix Hgp:
of the form (1), such that the sizes of the matrices Hp, p, and Hp, p, are kept
under control.

Lemma 2 (Splitting the matrix) Let H be a Shift-Hessenberg matrixz. It is
possible to compute, at cost O(n®), a Shift-Hessenberg matriz Hypie and an
invertible matriz P such that H = PHsplitP_l, Hpiiv of the form

)2 - H/BI ,Br H/BI By )
split — 0 H/B B 3 ( )
J7,BJ

y y . .
where Hy g, and Hp g are Shift-Hessenberg matrices, and

1. either Hp . is a single companion block of size > %n (thus Hp | ., has
size < %n)

2. either both matrices Hp, p, and Hp, g have size not greater than 2n.

For computing a cyclic vector for a matrix A, the algorithm is as follows:

Step 1*: computation of an Shift-Hessenberg form of A. This step
needs to be performed only once.

Step 2: splitting the matrix. We perform the splitting showed by
Lemma 2, and obtain two submatrices Hg, g, and Hp, p,. The algorithm
is applied recursively on submatrices which are not companion matrices.

Step 3: reconstruction of a cyclic element in a new basis. We
have the results returned by our algorithm for the two subcases of Hgp¢. By
Lemma 1, we can construct a cyclic element vyt for Hgpie at cost O(n?).



Step 4: reconstruction of the cyclic element in the original basis.
From a cyclic vector of Hyp:, changing basis gives a cyclic vector for H from
the vector vepis.

Step 5*: reverting to the original basis. From a cyclic vector for H, we
compute a cyclic vector for A by changing basis. This is performed only once,
at the end of the algorithm.

Proposition 2 Let A € M,(k) be a matriz whose characteristic polynomial
is square-free. A cyclic vector for A can be computed in O(n3) elementary
operations.

Computing a matrix for the Frobenius automorphism, at cost O(n®+n?log q)
leads to a complexity of O(n®+ n?logq) for a normal basis in GF(q"), n prime
to q.

In [3], it is shown how to find a normal basis at cost O(n?) for GF(¢?"),
where p is the characteristic of GF(q), by computing a Shift-Hessenberg matrix
of the Frobenius automorphism. It is known how to compute a normal basis for
GF(¢™"™), ged(ni,ne) = 1, when normal elements for GF(¢™) and GF(¢"?)
are known. Consequently, in the general case, a normal basis for GF(¢™) can
be found in O(n? + n?logq).

The algorithm has been implemented in Axiom, and is superior to the algo-
rithm already implemented, which is a probabilistic algorithm. Computational
times are given.
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