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Abstract

We describe a deterministic algorithm for computing a normal basis of
Fqn over Fq. The number of arithmetic Fq-operations needed to perform
the computation is O(n3 + n2 log q). This algorithm is better than any
previously known deterministic one, and compares well with probabilistic
algorithms. Our method is heavily based on linear algebra techniques.

1 Introduction

Let Fqn denote the finite field of size qn, and let σ be the Frobenius automor-
phism, σ(x) = xq.

Definition 1 An element α ∈ GF (qn) is said to be normal if α, αq, . . . , αqn−1

form a basis of GF (qn) over GF (q). A set α, αq, . . . , αqn−1
which is a basis of

GF (qn) over GF (q) is a normal basis.

Normal bases can be used for implementing the arithmetic of finite fields.
The significance of normal bases is mainly due to the fact that exponentia-
tion is cheap when using a normal basis [1]. The reader is informed that low-
complexity [2] normal bases are not sought for in this paper.

We consider the problem as a linear algebra problem. It is the problem of
finding a cyclic vector for a given matrix. Let us recall a few definitions.

Definition 2 Let A ∈ Mn(k) be a linear operator over a field k. The minimal
polynomial of A relatively to a vector v ∈ kn is the lowest degree monic polyno-
mial πv(X) such that πv(A)v = 0. Let π(X) denote the minimal polynomial of
matrix A, a vector v ∈ kn is said to be cyclic if πv(X) = π(X).

Theorem 1 ([5]) Let A ∈ Mn(k), there exists a cyclic vector for A.

A normal element for GF (qn) is a cyclic vector for the matrix representing
the Frobenius automorphism. We first consider the case where n is prime to
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q. The minimal polynomial of the Frobenius automorphism is Xn − 1 which in
this case is a square-free polynomial.

The algorithm presented here computes a cyclic vector of an operator A ∈
Mn(k) whose characteristic polynomial is square-free. The complexity of this
algorithm is O(n3), and thus the cost of computing a normal basis is O(n3 +
n2 log q), counting O(n3 + n2 log q) for computing a matrix representing the
Frobenius automorphism.

We recall that Bach, Driscoll et Shallit have presented an algorithm of com-
plexity O((n2 + log q)(n log q)2) in terms of the number of bit operations, and
H. W. Lenstra has presented an algorithm of the same complexity [4].

2 A useful lemma

We try to find a cyclic vector by elementary operations on the rows and the
columns of the matrix A (linear combinations and permutations). The aim is
to find a companion matrix similar to A. However, this is not always straight-
forward, and the following form of matrix may occur.

Definition 3 A matrix H ∈ Mn(k) is said to be a Shift-Hessenberg matrix if
it has the form:

H = (hi,j) =

2
66666666666666666664

× × ×
1 × × ×

1 × × ×
0 × ×

1 × ×
. . . ×

1 × ×
0 ×

1 ×
. . .

×

3
77777777777777777775

i.e. hi,j = 0 if i > j+1, and (hi+1,i 6= 0) ⇒ (hi+1,i = 1 and ∀j 6= i+1, hj,i = 0).

Proposition 1 For every matrix A ∈ Mn(k) there exists a Shift-Hessenberg
matrix H and an invertible matrix P such that H = P−1AP . Matrix H and
matrix P can be obtained in O(n3) operations in k.

A Shift-Hessenberg matrix is a slightly modified Hessenberg matrix [6, 3], and
the algorithm for computing a Shift-Hessenberg matrix similar to a given matrix
is simple. A Shift-Hessenberg can be partitionned as follows.

H =




HB1,B1 HB1,B2 · · · HB1,Bm

0 HB2,B2 · · · HB2,Bm

...
. . .

...
0 · · · 0 HBm,Bm


 .
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where the matrices HBi,Bi are companion matrices. If the minimal polynomial
of matrix H is square-free, then the minimal polynomials of the matrices HBi,Bi

are pairwise coprime.
If the resulting matrix only has one block, then it is a companion matrix,

and the result is found. The next lemma tells that the result can be achieved if
there are only two blocks.

Lemma 1 Let H be a block matrix of the form:
[

HB1,B1 HB1,B2

0 HB2,B2

]
(1)

and let vB1 , vB2 be cyclic vectors for HB1,B1 and HB2,B2 with minimal polyno-
mials f1(X) and f2(X) respectively. If f1(X) and f2(X) are coprime, a cyclic
vector v for H can be constructed on the data of vB1 , vB2 , at cost O(n3).

3 A recursive construction

When the Shift-Hessenberg form of A contains more than two blocks, we use
Lemma 1 recursively. The strategy is to split the matrix H into a matrix Hsplit

of the form (1), such that the sizes of the matrices HB1,B1 and HB2,B2 are kept
under control.

Lemma 2 (Splitting the matrix) Let H be a Shift-Hessenberg matrix. It is
possible to compute, at cost O(n3), a Shift-Hessenberg matrix Hsplit and an
invertible matrix P such that H = PHsplitP

−1, Hsplit of the form

Hsplit =

[
H ′

BI ,BI
H ′

BI ,BJ

0 H ′
BJ ,BJ

]
, (2)

where H ′
BI ,BI

and H ′
BJ ,BJ

are Shift-Hessenberg matrices, and

1. either H ′
BI ,BI

is a single companion block of size ≥ 2
3n (thus H ′

BJ ,BJ
has

size ≤ 1
3n).

2. either both matrices H ′
BI ,BI

and H ′
BJ ,BJ

have size not greater than 2
3n.

For computing a cyclic vector for a matrix A, the algorithm is as follows:
Step 1∗: computation of an Shift-Hessenberg form of A. This step

needs to be performed only once.
Step 2: splitting the matrix. We perform the splitting showed by

Lemma 2, and obtain two submatrices HBI ,BI
and HBJ ,BJ

. The algorithm
is applied recursively on submatrices which are not companion matrices.

Step 3: reconstruction of a cyclic element in a new basis. We
have the results returned by our algorithm for the two subcases of Hsplit. By
Lemma 1, we can construct a cyclic element vsplit for Hsplit at cost O(n3).
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Step 4: reconstruction of the cyclic element in the original basis.
From a cyclic vector of Hsplit, changing basis gives a cyclic vector for H from
the vector vsplit.

Step 5∗: reverting to the original basis. From a cyclic vector for H, we
compute a cyclic vector for A by changing basis. This is performed only once,
at the end of the algorithm.

Proposition 2 Let A ∈ Mn(k) be a matrix whose characteristic polynomial
is square-free. A cyclic vector for A can be computed in O(n3) elementary
operations.

Computing a matrix for the Frobenius automorphism, at cost O(n3+n2 log q)
leads to a complexity of O(n3 + n2 log q) for a normal basis in GF (qn), n prime
to q.

In [3], it is shown how to find a normal basis at cost O(n3) for GF (qpm

),
where p is the characteristic of GF (q), by computing a Shift-Hessenberg matrix
of the Frobenius automorphism. It is known how to compute a normal basis for
GF (qn1n2), gcd(n1, n2) = 1, when normal elements for GF (qn1) and GF (qn2)
are known. Consequently, in the general case, a normal basis for GF (qn) can
be found in O(n3 + n2 log q).

The algorithm has been implemented in Axiom, and is superior to the algo-
rithm already implemented, which is a probabilistic algorithm. Computational
times are given.
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