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Abstract. Confidentiality, integrity and authentication are more relevant issues in Ad hoc networks
than in wired fixed networks. One way to address these issues is the use of symmetric key cryptography,
relying on a secret key shared by all members of the network. But establishing and maintaining such
a key (also called the session key) is a non-trivial problem. We show that Group Key Agreement
(GKA) protocols are suitable for establishing and maintaining such a session key in these dynamic
networks. We take an existing GKA protocol, which is robust to connectivity losses, and discuss all
the issues for the correct functioning of this protocol in Ad hoc networks. We give implementation
details and network parameters, which significantly reduce the computational burden of using public
key cryptography in such networks.

1 Introduction

A Mobile Ad hoc NETwork (MANET) is a collection of mobile nodes connected via a wireless medium form-
ing an arbitrary topology. Implicit herein is the ability for the network topology to change over time as links
in the network appear and disappear. To maintain network connectivity, a routing protocol must be used.
An important security issue is that of the integrity of the network itself. A considerable number of studies
have already been carried out to resolve security issues in existing routing protocols (see [14],[29],[3],[1]).

An orthogonal security issue is that of maintaining confidentiality and integrity of data exchanged between
nodes in the network. The task of ensuring end-to-end security of data communications in MANETs is
equivalent to that of securing end-to-end security in traditional wired networks. Many studies have been
carried out to solve this problem. One widespread solution is to create a virtual private network (VPN) in a
tunnel between the two communicating nodes. IPSec is a well known security architecture which allows such
VPNs to be built between two communicating nodes. However this solution requires a different secret key for
each end-to-end connection. Moreover the VPN solution can simply handle unicast traffic. An alternative
solution is the use of a shared secret key. Such an approach raises many issues. First this key must be
distributed among the network nodes. Second, to avoid the compromising of this key it is necessary to
renew the key often. One solution to these two issues is the use a Group Key Agreement protocol, which
relies on the principles of public key cryptography.

A Group Key Agreement protocol (GKA) is a key establishment technique in which a shared secret is
derived by more than two participants as a function of information publicly contributed by each of them.
They are especially well suited to moderate sized groups with no central authority to distribute keys. An
authenticated group key agreement protocol provides the property of key authentication (also called implicit
key authentication), whereby each participant is assured that no other party besides the participants can gain
access to the computed key. GKA protocols are different from group key distribution (or key transport)
protocols wherein one participant chooses the group key and communicates it to all the others. GKA
protocols help in deriving keys which are composed of each one’s contribution. This ensures that the resulting
key is fresh (for a given session) and does not favor one participant in any way. The following security goals
can be identified for any GKA protocol.

1) Key Secrecy: The key can be computed only by the participants.



2) Key Independence: Knowledge of any set of group keys does not lead to the knowledge of any other
group key not in this set (see [6]).

3) Forward Secrecy: Knowledge of some long-term secret does not lead to the knowledge of past group
keys.

An important advantage of a group key agreement protocol over a simple group key distribution scheme
is the forward secrecy. This property can be particularly interesting in situations where some nodes are
likely to be compromised (e.g. in military scenarios). In such scenarios, using a GKA, the knowledge of the
long-term secret of this node does not compromise all past session keys. From a functional point of view, it
is desirable to have procedures to handle the dynamism in the network. These procedures enable efficient
merging or partitioning of two groups in the network.

2 Related Work

Key establishment protocols for networks can be broadly classified into three classes: Key transport using
symmetric cryptography, Key transport using asymmetric cryptography and Key agreement using asymmetric
cryptography. In key transport protocols, one participant chooses the group key and securely transfers it
to the other participants using a priori shared secrets (symmetric or asymmetric). These protocols are not
suitable for ad hoc networks for two reasons: firstly, they require a single trusted authority to distribute
keys and secondly, if the a priori secret of any participant is compromised, this breaches the security of all
past group keys, thus failing to provide forward secrecy. Thus GKA protocols are more relevant since they
provide this forward secrecy property.

Most group key agreement protocols are derived from the two-party Diffie-Hellman key exchange protocol.
GKA protocols, not based on Diffie-Hellman, are few and include the protocols of Pieprzyk and Li [28], Tzeng
and Tzeng [33] and Boyd and Nieto [7]. Both the protocols of Pieprzyk and Li [28] and Boyd and Nieto [7]
fail to provide forward secrecy while the protocol of Tzeng and Tzeng [33] is quite resource-intensive and
prone to certain attacks [7]. Forward Secrecy is a very desirable property for key establishment protocols in
ad hoc networks, as some nodes can be easily compromised due to low physical security of the nodes. Thus it
is essential that if one single node is compromised, this does not compromise all past session keys. In Table
1 we summarize and compare in Table 1 existing GKA protocols based on Diffie-Hellman protocols. We
compare essentially the unauthenticated versions of the protocols, as most achieve authentication by using
digital signatures in a very similar manner and thus have similar added costs to achieve authentication. We
compare the efficiency of these protocols based on the following parameters:

– Number of synchronous rounds: In a single synchronous round, multiple independent messages can
be sent in the network. The total time required to run a round-efficient GKA protocol can be much less
than other GKA protocols that have the same number of total messages but more rounds; because the
nodes spend less time waiting for other messages before sending their own.

– Number of messages: This is the total number of messages (unicast or broadcast) exchanged in the
network to derive the group key. For multiple hop ad hoc networks, the distinction between unicast
and broadcast messages is important as the latter can be much more energy consuming (for the whole
network) than the former.

– Number of exponentiations: All Diffie-Hellman based GKA protocols require a number of modular
exponentiations to be performed by each participant. Relative to all cryptographic operations, a modular
operation is the most computationally intensive operation and thus gives a good indication of the
computational cost for each node.

Communication costs still remain the critical factor for choosing energy-efficient protocols for most ad hoc
networks. A modular exponentiation (which is most efficiently done using elliptic curve cryptography) can
be performed in a few tens of milliseconds on most palmtops, whereas message propagation in multi-hop ad
hoc networks can be easily of the order of a few seconds and has energy implications for multiple nodes in
the network. As can be seen in Table 1, most existing GKA protocols require O(m) rounds of communication
for m participants in the protocol. Such protocols do not scale well in ad hoc networks. Even tree-based



GKA protocols with O(log m) rounds can be quite demanding for medium to large sized ad hoc networks.
Therefore constant-round protocols are more suitable for ad hoc networks.

Expo per Ui Messages Broadcasts Rounds

ITW [15] m m(m− 1) 0 m− 1
GDH.1 [32] i + 1 2(m− 1) 0 2(m− 1)

GDH.2 [32, 10] i + 1 m− 1 1 m
GDH.3 [32] 3 2m− 3 2 m + 1
TGDH [20] ≤ log2 m 2m− 2 2m− 2 log2 m
Perrig [27] log2 m + 1 m m− 2 log2 m
Dutta [13] log3 m m m log3 m

Table 1. Comparison of non constant rounds GKA protocols

Expo Mes- Broad- Rounds Structure FS
per Ui sages casts

Octopus [5] 4 3m− 4 0 4 Hypercube Yes
BDB [12, 17] 3 2m m 2 Ring Yes

BCEP [9] 2† 2m 0 2 None No
Catalano [8] m + 1 2m 0 2 None Yes

KLL [18] 3 2m 2m 2 Ring Yes

NKYW [24] 2‡ m 1 2 None Yes
STR [31, 19, 23] (m− i)∗ m 1 2 Skewed tree Yes

TFAN [21] 0(m) m O(m) 3 or 4 Tree Yes
Ours (AGDH) 2∗∗ m 1 2 None Yes

†: m exponentiations for the base station.
‡: m + 1 exponentiations and m-1 inverse calculations for the parent node.
∗: Up to 2m exponentiations for the sponsor node.
∗∗: m exponentiations for the leader.

Table 2. Comparison of constant round GKA protocolsAmong the constant round protocols (see Table 2), Octopus [5], BDB [17] and KLL [18] require special
ordering of the participants. This results in messages sent by some participant being dependent on that of
others. In such a case, failure of a single node can often halt the protocol. Thus such protocols are not robust
enough to adapt well to the dynamism of ad hoc networks. The BCEP protocol [9] involves a base station,
and fails to provide forward secrecy if the long-term secret of the base station is revealed. The Bresson
and Catalano protocol [8] is computationally demanding with O(m) exponentiations for each participant.
Another drawback is that if any participant’s message is lost in first round, the whole protocol is brought
to a halt, as the secret sharing schemes implies that all m contributions are required to compute the key.

NKYW[24]: The original paper proposes this protocol for ad hoc networks composed of devices with
unequal computational powers.

In the first round, each participant Mi unicasts its contribution gri , i ∈ [1, n− 1] to a fixed node Mn, called
the parent node. The parent node chooses random r and rn and computes w = gr, xn = grrn and xi =
(gri)r for each received gri . It broadcasts w and {xn ∗Πj 6=ixj}i. The key is derived from Πixi. The protocol
remains somewhat expensive computationally compared to the protocol that will be described in this paper.

STR[31, 19]: This protocol was proposed by Steer et al. in [31] for static groups. Perrig et al. proposed
procedures to handle group changes in [19]. In [23] a suite of protoocls called µSTR are proposed to optimize
the STR protocol for MANETs.

TFAN [21] is a merge of µSTR and µTGDH, which are optimizations of STR and TGDH, also proposed
in [21]. TFAN provides a trade-off between computational and communication costs.

Among all the reviewed GKA protocols reviewed only a few of them [23, 22, 21] are designed for MANETs.
The protocol proposed in this paper is more robust to messages losses than the previous one. If a contribution



of a given member is lost then this member can not compute the key but the others can still agree on shared
secret key.

The contributions of this paper are the following:

– an authenticated dynamic group key agreement protocol is recalled [4],
– the mechanisms that must be used in a MANET to implement this group key agreement protocol are

described,
– a precise study of the cryptographic parameters that this group key agreement protocol must use in the

context of an ad hoc network is carried out.

Finally the adapted version of the group key agreement protocol that we propose, we call this protocol AGDH
for Asymmetric Group Diffie Hellman, is among the very few group key agreement protocols suitable for ad
hoc networks. Note that, in this paper, we do not consider malicious insiders and also the unrelated issue
of selfishness.

The paper is organized as follows:

– Section 3 recalls the group key agreement protocol. We only describe the basic functioning of the
protocol,

– Section 4 explains how this group key agreement protocol can be implemented in an ad hoc network.
The main issues discussed in this section include the election of a leader in the ad hoc network and the
actions that must be undertaken to handle splits and mergers in the ad hoc network,

– Section 5 discusses the overhead of cryptographic operations.

3 Presentation of AGDH

We recall an existing group key agreement protocol in this section. We first illustrate the basic principle
of key exchange, followed by a detailed explanation of how it is employed to derive Initial Key Agreement,
Join/Merge and Delete/Partition procedures to handle dynamism in ad hoc groups.

3.1 Notation

G: A subgroup (of prime order q with generator g) of some group.
Ui: ith participant amongst the n participants in the current session.
Ul: The current group leader (l ∈ {1, . . . , n}).
ri: A random number (from [1, q − 1]) generated by participant Ui. Also called the secret for Ui.
gri : The blinded secret for Ui.
grirl : The blinded response for Ui from Ul.
M: The set of indices of participants (from P) in the current session.
J : The set of indices of the joining participants.
D: The set of indices of the leaving participants.
x← y: x is assigned y.
x

r← S: x is randomly drawn from the uniform distribution S.
Ui −→ Uj : {M}: Ui sends message M to participant Uj .

Ui
B−→M : {M}: Ui broadcasts message M to all participants indexed byM.

Ni: Random nonce generated by participant Ui.
VPKi{msgi, σi}: Signature verification algorithm which returns 1 if σi is a valid signature on message msgi

and else returns 0.



3.2 A Three Round Protocol

The formal description Please note that in the following rounds each message is digitally signed by the
sender (σj

i is signature on message msgj
i in Tables 3- 5) and is verified (along with the nonces) by the

receiver before following the protocol. Thus we do not to describe these steps which are formally shown in
Tables 3- 5.

Protocol Steps:

Round 1: The chosen group leader, Ml makes an initial request (INIT) with its identity, Ul and a random
nonce Nl to the group M.

Round 2: Each interested Mi responds to the INIT request, with a IREPLY message which contains its
identity Ui, a nonce Nl and a blinded secret gri to Ml (see Table 3 for exact message contents).

Round 3: Ml collects all the received blinded secrets, raises each of them to its secret (rl) and broadcasts
them along with the original contributions to the group, i.e. it sends an IGROUP message which contains
{Ui, Ni, g

ri , grirl} for all i ∈M \ {l}.
Key Calculation: Each Mi checks if its contribution is included correctly and obtains grl by computing
(grirl)r−1

i . The group key is

Key = grl ∗Πi∈M\{l}grirl = grl(1+
P

i∈M\{l} ri).

Note:
1) The original contributions gri are included in the last message as they are required for key calculation in
the case of group modifications (see below), and also because it may be possible that a particular contribution
has not been received by some member.

2) Even though Πi∈M\{l}grirl is publicly known, it is included in key computation to derive a key composed
of everyone’s contribution. This ensures that the key can not be pre-determined and is unique to this session.

The protocol is formally defined in Table 3. Table 4 (respectively Table 5) show how the protocol is run
when a group wants to join (respectively leave) an existing group

Example runs of the protocol We now see how this protocol can be used to derive Initial Key Agreement
(IKA), Join/Merge and Delete/Partition procedures for ad hoc networks.

Round 1

l
r←M, Nl

r← {0, 1}k
Ul

B−→M : {msg1
l = { INIT , Ul, Nl}, σ1

l }
Round 2
∀i ∈M \ {l}, if(VPKl{msg1

l , σl} == 1),

ri
r← [1, q − 1], Ni

r← {0, 1}k,
Ui −→ Ul : {msgi = { IREPLY, Ul, Nl, Ui, Ni, g

ri}, σi}
Round 3

rl
r← [1, q − 1], ∀i ∈M \ {l},
if(VPKi{msgi, σi} == 1) and Nl is as contributed

Ul
B−→M : {msg2

l =
{IGROUP, Ul, Nl, {Ui, Ni, g

ri , grirl}i∈M\{l}}, σ2
l }

Key Computation

if(VPKl{msg2
l , σ2

l } == 1) and gri and Ni are as contributed

Key = grl(1+
P

i∈M\{l} ri)

Table 3. IKA

Initial Key Agreement Secure ad hoc group formation procedures typically involve peer discovery and
connectivity checks before a group key is derived. Thus, an INIT request is issued by a participant and all



interested peers respond. The responses are collected and connectivity checks are carried out to ensure that
all participants can listen/broadcast to the group (see for instance [30]). After the group membership has
been defined, GKA procedures are implemented to derive a group key. Such an approach is quite a drain
on the limited resources of ad hoc network devices. Thus an approach which integrates the two separate
procedures of group formation and group key agreement is required. The above protocol fits well with
this approach. Round 1 and Round 2 of the above protocol can be incorporated into the group formation
procedures. In this way, blinded secrets, gri ’s, of all potential members, Ui’s, are collected before the group
composition is defined. When the fully connected ad hoc group has been defined, a single broadcast message
(Round 3 in Table 3) from the group leader, Ul, (using contributions of only the joining participants) helps
every participant to compute the group key. An example is provided below.

Suppose U1 initiates the group discovery and initially 5 participants express interest and send gr2 , gr3 ,
gr4 , gr5 and gr6 respectively along with their identities and nonces. Finally only 3 join because of the full-
connectivity constraint. Suppose the participants who finally join are U2, U4 and U5. Then the group leader,
U1, broadcasts the following message: {gr2 , gr4 , gr5 , (gr2)r1 , (gr4)r1 , (gr5)r1}. On receiving this message,
each participant can derive gr1 using its respective secret. Thus the key gr1(1+r2+r4+r5) can be computed.

Round 1

∀i ∈ J , ri
r← [1, q − 1], Ni

r← {0, 1}k,

Ui
B−→M : {msgi = { JOIN, Ui, Ni, g

ri}, σi}
Round 2

∀i ∈ J , if(VPKi{msgi, σi} == 1) rl
r← [1, q − 1], l′

r←M∪J
Ul −→ Ul′ : {msgl = { JREPLY, {Ui, Ni, g

ri}∀i∈M∪J }, σl}
Round 3

if(VPKi{msgl, σl} == 1), l← l′, rl
r← [1, q − 1],M←M∪J

Ul
B−→M : {msg2

l =
{ JGROUP, Ul, Nl, {Ui, Ni, g

ri , grirl}i∈M\{l}}, σ2
l }

Key Computation

if(VPKl{msg2
l , σ2

l } == 1) and gri and Ni are as contributed

Key = grl(1+
P

i∈M\{l} ri)

Table 4. Join/Merge

Join/Merge Suppose new participants, U9 and U10 join the group of U1, U2, U4 and U5 with their contri-
butions gr9 and gr10 respectively. Then the previous group leader (U1) changes its secret to r

′
1 and sends

gr
′
1 , gr2 , gr4 , gr5 , gr9 , gr10 to U10 (say the new group leader). U10 generates a new secret r

′
10 and broadcasts

the following message to the group: {gr
′
1 , gr2 , gr4 , gr5 , gr9 , gr

′
10r

′
1 , gr

′
10r2 , gr

′
10r4 , gr

′
10r5 , gr

′
10r9}. And the new

key is gr
′
10(1+r

′
1+r2+r4+r5+r9).

Delete/Partition When participants leave the group, they send a DEL message, the group leader changes its
secret contribution and sends an IKA Round 3 like message to the group, omitting the leaving participants’
contributions. Refer to Table 5 and below for an example.

Suppose a participant, U2, leaves the group of U1, U2, U4, U5, U9 and U10. Then the leader, U10 changes its
secret to r

′′
10 and broadcasts {gr

′
1 , gr4 , gr5 , gr9 , (gr

′
1)r

′′
10 , (gr4)r

′′
10 , (gr5)r

′′
10 , (gr9)r

′′
10} to the group. And the

new key is gr
′′
10(1+r

′
1+r4+r5+r9).

Security proof A full security proof has been given in [4] either for the case of the passive adversary or
for the case of the active adversary in the widely used security model of [11]. This proof ensures the secrecy
of the key under the assumption of the hardness of the Decisional Diffie-Hellman problem.



In the next Section we discuss how to adapt this protocol when message losses occur. Note however that
the security proof of [4] does not provide a security proof of the adapted protocol.

Round 1
∀i ∈ D, Ui −→ Ul : {msgi = { DEL, Ui, Ni}, σi}
Round 2
∀i ∈ D, if(VPKi{msgi, σi} == 1),

rl
r← [1, q − 1],M←M\D

Ul
B−→M : {msgl = {
DGROUP, Ul, Nl, {Ui, Ni, g

ri , grirl}i∈M\{l}}, σl}
Key Computation

if(VPKl{msgl, σl} == 1) and gri and Ni are as contributed

Key = grl(1+
P

i∈M\{l} ri)

Table 5. Delete/Partition

4 Using this GKA protocol within an ad hoc network

In the following we consider a multi-hop ad hoc network. We do not assume any particular property of
the routing protocol which ensures the connectivity of the network. We can use reactive protocols such as
AODV or DSR [26, 16] where the connectivity is created on demand when a route is needed. We can also use
proactive protocols as such as OLSR or TBRPF [2, 25] where synchronous packets are used to maintain the
knowledge of the topology. We will assume that we have a broadcast mechanism to flood messages within
the ad hoc network. We do not assume that this flooding mechanism is reliable, but we do assume that the
network is connected and that flooding messages finally reach all the network nodes 4.

A key point in the GKA protocol described above is the existence of a group leader. Thus it is necessary to
have a robust mechanism to elect such a leader in an ad hoc network. This is the first issue that we study.

4.1 Election of a group leader

A key requirement is that all members of a group agree on the same group leader. A simple solution is that
the group leader periodically broadcasts messages. These messages then serve as a proof, for nodes that are
within reach of the group leader, that a group leader exists and is operating properly. We can simply use
the INIT message of GKA protocol to demonstrate the existence and the correct functioning of the group
leader. When the other nodes in the network receive this INIT message, each replies with an IREPLY
message including their contribution. Using these IREPLY messages, the group leader defines a group and
sends an IGROUP message to all members of the group. The INIT message can be seen as an IGROUP
message when the group has not yet been defined. In the following we will only use the term IGROUP
message.

These IGROUP messages are sent periodically; depending on the dynamics of the group, the group leader
will send a new IGROUP message or exactly the same message as before. If the network only comprises
of the group leader, the latter will send periodically empty IGROUP messages. It will stop sending this
message when a node joins its network by replying to its IGROUP message with an IREPLY message.
The mechanism to elect a group leader simply follows from the property that, in a network with a group
leader, periodic messages are broadcast by the group leader and are, in principle, received by the group
members. If a node does not receive a message for a fixed period T, known a priori by the network nodes,
this node sets a random timer. At the expiration of this timer and if no IGROUP message has been received
meanwhile, the node becomes the group leader. It then sends an empty IGROUP message.
4 We mean that synchronous flooded messages will finally reach all the network nodes even if there are message

losses



There may be a collision on IGROUP messages if two or more nodes or more have selected the same value
for their random timer. In such a case, there may be IGROUP messages generated by two (or more) group
leaders. To select a group leader, we can use additional rules. The first rule is that when a group leader
A receives an IGROUP message from a group leader B which has a smaller ID than its own ID, group
leader A just stops sending its periodic messages. The group members that receive periodic messages from
more than two group leaders will only consider the message issued by the group leader with the smallest
index. Thus if an IGROUP message showing a larger ID than a previously received IGROUP message is
received, then this message is simply discarded and no IREPLY message is issued. On the other hand, if
an IGROUP message showing a smaller ID is received then the node issues a IREPLY message.

Another issue is how the GKA protocol takes into account the dynamism of an ad hoc network. For instance a
node may leave the network without being able to send the group leader a message pointing out its departure
from the network. This issue is handled in the next subsection

4.2 Handling the joining and withdrawal of a node

A node which joins the network will receive the periodic IGROUP message of the group leader. He will just
have to send JREPLY message, with its contribution, to join the group. The group leader will incorporate
this new contribution in its next IGROUP message. Actually there is no need in the protocol to differentiate
between JREPLY and IREPLY. Thus, for simplicity sake, we will only keep the IREPLY message.

In an ad hoc network, the only conceivable way for the group leader to be sure that a node remains in a
group is to receive a message from it. Thus to handle the dynamism of a group, the group leader will use
the periodic reception of the IREPLY messages. The period with which an IREPLY message is sent by a
member of the group should be the same for all the nodes of the group. If the group leader is not receiving
a IREPLY message for a given number of periods (greater than 1 to handle possible packet loss), the lack
of reception of these messages should be handled in the same way as the reception of a DEL message. In
such a case the group leader will change its own contribution in the IGROUP message and will re-send
the IGROUP message.

When a node deliberately wishes to withdraw from a group it can use the DEL message to announce this
wish to the group leader. Upon reception of such a message the group leader will change its own contribution
in the IGROUP message and will re-send the IGROUP message. The use of the DEL message will speed
up the taking into account of the node withdrawal.

4.3 Handling the merging or spliting of groups

The merger of (two or more) groups leads group leaders to receive IGROUP messages from other group
leaders. The scheme used in the group leader election can be used to resolve the conflict. When the conflict
is resolved only one group leader remains in the group. If a group splits, a part of the group will remain
without a group leader. The technique used in the group leader election can be used in the subgroups
without a leader to elect a new leader.

4.4 Renewing its contribution

The group leader and group members will have to renew their contribution periodically. For the group
leader, the change of its contribution or of some member of the group will lead to a change in the content of
the IGROUP message. To simplify we can assume that the group leader and the group members change
their contribution at the same rate.

We have given all the principles of the protocol. We specify the details of the whole protocol in the next
section.



4.5 Implementation issues

We will consider a given period T . To simplify, this period will be used both by the group leader and by the
member of the group as a period to send their GKA messages.

A node can be in one of the following two states : member state or group leader state. A node in a
member state will enter the process to become a group leader if it has not received an IGROUP message
for a duration kT . A node which has not received any message from a group leader for a duration kT with
k ≥ 2 will suppose that there is no group leader and starts the procedure to become a leader. Since a node
may not have received a packet of the group leader because this packet has been lost, k must be selected
so that the probability that k − 1 successive transmissions of a GKA message are lost is small. Then, to
become a group leader, the node selects a random integer ir between 1 and a given number l (backoff window
size) and initializes a timer at irtrtd, where trtd is a predefined duration computed to be at least the round
trip delay of a message throughout the ad hoc network. With such a figure for trtd we can be sure that
if two nodes draw different integers ir and ir′ , the node having selected the larger integer will receive the
IGROUP message of the other node and then will stop its election process. The backoff window size l must
be chosen with respect to the total number of nodes in the network so that the probability of two nodes
choosing the same integer is small. This back-off procedure is performed to avoid possibly multiple group
leader candidates, for instance, when a group is set up or split into two subgroups.

When the node in the member state sends its first IGROUP message, it is in the group leader state.In
the group leader state, a node must collect IREPLY messages and form the related IGROUP message.
When there is a change in the group (arrival or withdrawal) the group leader must change its contribution.
Additionally, irrespective of the modification of the composition of the group, the group leader must change
its contribution periodically, to maintain the security of the session key.

When a group leader is elected, it may choose to wait additional periods before sending an IGROUP
containing the contributions of the group members. In doing so, the group leader may avoid unnecessary
changes to the session key due to not having received all the contributions in time.

In the group leader state, a node will also look out for IGROUP messages from another group leader. If
it receives such a message from another group leader holding a smaller node index, the node changes its
state to the member state. In the member state, a node will have to send IREPLY messages periodically.
Like the group leader, a group member must change its contribution periodically with a period P see figure
1. We will assume that P is a large multiple of T . To simplify the procedure and to avoid unnecessary
computations we can assume that the group leader does not instantly include a new contribution of a group
member in the IGROUP message, but rather it will wait for the change of its own contribution to take
into account all new contributions of the nodes. This is possible since the contribution of the node member
is included in the IGROUP message.

Fig. 1. Sending IGROUP and IREPLY messages



Both IGROUP and IREPLY messages must be sent periodically for each interval T . In order to reduce
the probability of collision of these messages, we add a jitter to the times when the GKA messages will be
sent by the group members and the group leader.

In table 6, we give examples of figures for our GKA protocol. We can notice that l and trtd will greatly
depend on the number of nodes in the network and on the topology of the network.

Parameter Value Constraint

P : key renew period 20 min

T : period of
IGROUP messages 5s

k: number of message large enough to be sure
that

losses before assuming 3 the message is not sim-
ply

a node has left lost

l: backoff window 20 large enough to avoid
collision during the
group leader election

trtd: backoff slot for more than a round
leader election 100 ms trip delay

Table 6. Protocol parameters

5 Computational overhead

Group Size of contrib. blindings/second
=recoveries/second

Modular Field 1024 bits 10

Elliptic curve 160 bits 93

Fig. 2. Performance of elliptic curve cryptography, versus a classical group (modular integers)on a iPAQ,
StrongARM-1110, using the openssl implementation, for a security level of 280. Blinding means computing gri ,
and recovering means computing gr0 from the blinded response grir0 of the leader .

Figure 2 describes the cost, on an average small device (COMPAQ iPAQ) of elliptic curve cryptography,
which is more efficient than classical cryptographic relying on bigger groups. Basically, for a security level
of 280, such a device can perform almost 100 operations per second. Thus the latency of elliptic curve
exponentiation is 10 msec per device, except for the leader whose computational cost grows linearly with
the size of the group. Thus there is concern for this particular node. Assuming that the leader devotes half
its time to cryptographic operations, managing a group of size 50 will impose a delay of 1 second before
being able to send the blinded response.

The above computational load on the group leader is in the case where the group leader receives all the
blinded secrets at once, and has to give the blinded response also at once. In practice, the group leader
will receive the blinded secret at different time slots. It is then possible to perform operations in batch: the
group leader can generate its own secret in advance, and compute on the fly the blinded responses (gri)r0

upon reception of each blinded secret gri . It can also compute stepwise the product (gr1)r0 · · · (grm)r0 ,
where m is the index of the last received contribution. When it has to broadcast the IGROUP message, all
the computationaly intense cryptographical operations, necessary to generate the blinded responses, have
already been performed.



6 Conclusion

We have discussed a group key agreement protocol for handling ad hoc groups of small to moderate size.
We have fully specified the implementation details needed to use of the protocol, relying on known network
techniques such as self election, periodic broadcast and back-off techniques. The protocol is robust in the
sense that connectivity losses does not impair its functioning. Experiments have shown that the computa-
tional cost of public key cryptography is kept reasonably low. If we consider constraints in ad hoc networks:
no network structure, high dynamism, restricted bandwidth, etc the presented protocol is among the few
GKA protocols which are suitable for ad hoc networks.

To give a proof of security in presence of message losses seems to be a non trivial task. For instance the
security model of [11] does not apply easily for this case. Work is ongoing to define a security model coping
with message losses and then to prove the security of the AGDH protocol.
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