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Abstract. Function clones are sets of functions on a fixed domain that are closed under
composition and contain the projections. They carry a natural algebraic structure, provided
by the laws of composition which hold in them, as well as a natural topological structure,
provided by the topology of pointwise convergence, under which composition of functions
becomes continuous. Inspired by recent results indicating the importance of the topological
ego of function clones even for originally algebraic problems, we study questions of the
following type: In which situations does the algebraic structure of a function clone determine
its topological structure? We pay particular attention to function clones which contain an
oligomorphic permutation group, and discuss applications of this situation in model theory
and theoretical computer science.

1. Introduction

A function clone (in the literature hitherto just clone) over a set D is a set of functions
of finite arity on D which is closed under composition and which contains the projections.
Function clones appear naturally in algebra in the form of sets of term operations of algebras,
which always form a function clone; indeed, every function clone is of this form. Since many
important properties of an algebra, for example its subalgebras and its congruence relations,
only depend on its term operations, function clones are of primordial importance in the
understanding of algebras [KK13, HM88]. Function clones moreover generalize transformation
monoids, i.e., sets of unary functions on a set D closed under composition and containing
the identity function. The latter generalize in turn permutation groups on D, i.e., sets of
permutations on D closed under inverses and composition.

Similarly to (abstract) groups in group theory, abstract clones have been studied exten-
sively in universal algebra, though in disguise of varieties [Tay93, KK13, HM88]: roughly
speaking, an abstract clone is an algebraic structure whose elements can be imagined as fini-
tary functions on a fixed domain, together with composition operations on these elements and
constant operations denoting the projections. Just as in the case of groups, every function
clone gives rise to an abstract clone and vice-versa. Many insights about an algebra can be
gained from the abstract clone associated with its term clone; this abstract clone basically
encodes the equations which hold in the algebra [KK13, HM88].

Permutation groups carry a natural topology, the topology of pointwise convergence. Under
this topology, the corresponding group becomes a topological group since composition and
taking inverses are continuous operations. Similarly, function clones are naturally equipped
with the topology of pointwise convergence, and again composition is continuous with respect
to this topology. As in the case of groups, where the study of topological groups has without
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doubt been a fruitful venture for numerous fields of mathematics, it therefore makes sense
to consider topological clones, which consist of an abstract clone together with a topology
on this structure under which the composition operations are continuous. The relationship
between function clones and topological clones is in perfect analogy to the relationship between
permutation groups and topological groups.

Given the enormous literature on topological groups as the simultaneous topological and
algebraic abstraction of permutation groups, and given the fact that the study of function
clones and abstract clones constitute a considerable part of universal algebra, it is surprising
that the analogous notion of topological clones has been entirely neglected in the literature.
Inspired by the recent result [BP] which indicates that a topological perspective on function
clones in addition to the algebraic one is not only useful, but even inevitable if we strive for
infinite versions of theorems about finite algebras, we here study for the first time topological
clones explicitly. One of the purposes of this article is to demonstrate that topological clones
exhibit a rich mathematical structure, and lead to many interesting and challenging problems.
In particular, in this article we investigate the following research questions:

• (Reconstruction of Topology) In which situations does the abstract clone of a function
clone already determine its topology?
• (Automatic Continuity) In which situations are homomorphisms or isomorphisms be-

tween function clones automatically continuous?

The corresponding questions for topological groups have been the source of a wealth of
beautiful results (see the survey article [Ros09]), in particular for automorphism groups of ω-
categorical structures (see, e.g., [Bar04, Rub94, BM07, Her98, Tru89, DPT86]). A countable
structure Γ is said to be ω-categorical if and only if all countable models of the first-order
theory of Γ are isomorphic to Γ. We will be particularly interested in topological clones
which arise in a similar way from ω-categorical structures, namely as their polymorphism
clones: for a structure Γ, the polymorphism clone Pol(Γ) is the function clone consisting of
all homomorphisms from finite powers of Γ into Γ. Such topological clones have remarkable
applications for which the answers to the questions posed above have strong consequences.
We shall now discuss these applications.

2. Three Applications

2.1. Reconstruction of ω-categorical structures from their polymorphism clones.
A permutation group is closed in the set of all permutations of its domain with respect to the
topology of pointwise convergence if and only if it is the automorphism group Aut(Γ) of a
relational structure Γ. It is natural to ask how much about a relational structure Γ is coded
in Aut(Γ). If Γ is ω-categorical, then Aut(Γ) determines Γ up to first-order interdefinability,
that is, any structure Γ′ with Aut(Γ′) = Aut(Γ) has the property that all relations of Γ have a
first-order definition in Γ′ and vice-versa (see [Hod97]). In fact, this reconstruction property
of a countably infinite structure is equivalent to ω-categoricity.

A function clone is closed in the set of all finitary functions on its domain with respect
to the topology of pointwise convergence if and only if it is the polymorphism clone Pol(Γ)
of a relational structure Γ. The function clone Pol(Γ) encodes even more about Γ than
its automorphism group Aut(Γ). In particular, if Γ is ω-categorical and Γ′ is such that
Pol(Γ′) = Pol(Γ), then Γ′ and Γ are primitive positive interdefinable, that is, every relation
in Γ has a primitive positive definition in Γ′ and vice versa [BN06].
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Reconstruction from: Reconstruction up to: Reference:
Permutation group First-order interdefinability Ryll-Nardzewski [Hod97]
Topological group First-order bi-interpretability Ahlbrand and Ziegler [AZ86]
Function clone Primitive positive interdefinability Bodirsky and Nešetřil [BN06]
Topological clone Primitive positive bi-interpretability Bodirsky and Pinsker [BP]

Figure 1. A schema for reconstruction of ω-categorical structures.

On the other hand, if Γ and Γ′ are countable ω-categorical structures that only share the
same automorphism group when it is viewed as a topological group rather than as a concrete
permutation group, we obtain a different form of reconstruction [AZ86]: the automorphism
groups of Γ and Γ′ are isomorphic as topological groups if and only if Γ and Γ′ are first-order
bi-interpretable (see e.g. [Hod97]).

It has been shown recently that the latter theorem and the theorem about polymorphism
clones mentioned above can be naturally combined [BP]: two countable ω-categorical struc-
tures Γ and Γ′ have isomorphic topological polymorphism clones if and only if Γ and Γ′

are primitive positive bi-interpretable. Figure 1 gives a summary of all mentioned forms of
reconstruction of ω-categorical structures.

Positive answers to our two research questions combine nicely with the above result about
primitive positive bi-interpretability: when an ω-categorical structure Γ is such that clone
isomorphisms between Pol(Γ) and other closed function clones are automatically homeomor-
phisms, then this shows that already the abstract polymorphism clone of Γ determines Γ up
to primitive positive bi-interpretability.

The analogous combination for groups has been studied intensively: for many of the clas-
sical ω-categorical structures it is known that they are determined by their abstract auto-
morphism group up to first-order bi-interpretability. And indeed it is known to be consistent
with ZF+DC that all ω-categorical structures are determined by their abstract automorphism
group up to first-order bi-interpretability ([Las91]; cf. the discussion in Section 8 in [BP]).

2.2. Complexity of Constraint Satisfaction Problems. Polymorphism clones and the
topological clones they induce have applications in theoretical computer science. Every re-
lational structure Γ in a finite language defines a computational problem, called the con-
straint satisfaction problem of Γ and denoted by CSP(Γ), as follows: an instance of the
problem is a primitive positive sentence φ in the language for Γ, i.e., a sentence of the form
∃x1, . . . , xn(φ1 ∧ · · · ∧ φm) where φ1, . . . , φm are atomic formulas; the problem is to decide
whether or not φ holds in Γ. An instance of this problem therefore asks about the exis-
tence of elements of Γ satisfying a given conjunction of atomic conditions. The structure Γ
is called the template of the problem, and can be finite or infinite. Constraint satisfaction
problems with infinite templates can model natural finite computational problems – we refer
to [Bod12, BP11b, BP11a, BK09] for an abundance of examples.

For finite and ω-categorical structures Γ, the complexity of CSP(Γ) depends, up to polynomial-
time interreducibility, only on Pol(Γ). More precisely, if Γ and Γ′ are ω-categorical structures
in finite relational languages on the same domain, and if Pol(Γ′) = Pol(Γ), then CSP(Γ)
and CSP(Γ′) are polynomial-time equivalent (cf. [BKJ05, BKJ00, BN06]). This fact is the
basis of what is known as the algebraic approach to constraint satisfaction. But the algebraic
approach goes even further: for finite structures Γ the complexity of CSP(Γ) depends up to
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polynomial time only on Pol(Γ), viewed as an abstract clone [BKJ05, BKJ00]. In the ω-
categorical case, it has been shown recently to depend only on Pol(Γ), viewed as a topological
clone [BP]. Moreover, up to now no two ω-categorical structures with abstractly isomorphic
polymorphism clones but CSPs of different (up to polynomial-time reductions) complexity
are known.

2.3. Pseudovarieties of oligomorphic algebras. The term clone Clo(A) of an algebra A
with signature τ is the set of all functions with finite arity on the domain of A which can be
written as τ -terms over A. Clearly, Clo(A) is always a function clone, and all function clones
are of this form.

Let A, B be algebras of the same signature τ . The assignment which sends every term
function over A to the corresponding term function over B is a well-defined function from
Clo(A) to Clo(B) if and only if all equations which hold between terms over A also hold over
B. In that case, it is in fact a surjective clone homomorphism, i.e., it preserves projections
and composition of functions (cf. Section 3); it is then called the natural homomorphism from
Clo(A) onto Clo(B).

A pseudovariety is a class of algebras of the same signature which is closed under subal-
gebras, homomorphic images, and finite products. Since these operators are among the most
fundamental and natural for algebras, pseudovarieties play an important role in the study of
algebras. The pseudovariety generated by a finite algebra A, i.e., the smallest pseudovariety
which contains A, was characterized in a classical theorem due to Garrett Birkhoff via Clo(A),
viewed as an abstract clone: it contains precisely those finite algebras B for which the natural
homomorphism from Clo(A) onto Clo(B) exists ([Bir35]; cf. also Exercise 11.5 in combination
with the proof of Lemma 11.8 in [BS81]).

Birkhoff’s theorem has recently been generalized to oligomorphic algebras. A permuta-
tion group on a countable set D is called oligomorphic iff its componentwise action on any
finite power of D has finitely many orbits. A function clone is called oligomorphic iff it con-
tains an oligomorphic permutation group. It follows from the theorem of Ryll-Nardzewski
(see [Hod97]) that the closed oligomorphic clones are precisely the polymorphism clones of
ω-categorical structures. An algebra is oligomorphic iff the topological closure of its term
clone is oligomorphic and hence the polymorphism clone of an ω-categorical structure.

It is easy to see that all elements of the pseudovariety generated by an oligomorphic algebra
A must be finite or oligomorphic. Now the generalization of Birkhoff’s theorem states that
if B is an oligomorphic or finite algebra in the signature of A, then B is contained in the
pseudovariety generated by A if and only if the natural homomorphism from the closure of
Clo(A) to the closure Clo(B) exists and is continuous [BP]. In Birkhoff’s finite version of
this theorem, there is of course no continuity condition on the natural homomorphism, since
function clones on a finite domain are discrete and so homomorphisms from finite function
clones are always continuous. The present paper addresses the question for which oligomorphic
algebras we can drop continuity in the generalized theorem.

3. Main Notions, More Background, and Results

We introduce the notion of a topological clone, and recall the definitions of a function clone
and abstract clone in more detail. We then define variants of several reconstruction notions
from the literature on topological groups for topological clones, and give an overview of the
results we will obtain.
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3.1. Function clones and abstract clones.

Definition 1. A function clone C (in the literature simply clone) over a set D is a set of
functions of finite arity over D such that

• C contains for all 1 ≤ k ≤ n < ω the k-th n-ary projection πnk : Dn → D, uniquely
defined by the equation πnk (x1, . . . , xn) = xk;
• whenever f ∈ C is n-ary, and g1, . . . , gn ∈ C are m-ary, then the m-ary function
f(g1, . . . , gn) defined by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

is an element of C .

We write C (n) for the n-ary functions in C , for all n ≥ 1. The set D is also called the domain
of C , and the elements of C are also referred to as the operations of C .

An important source of examples for function clones are polymorphism clones of structures.
For a structure Γ with domain D, a polymorphism of Γ is a homomorphism from Γn to Γ for
some n ≥ 1. It is easy to verify that the set Pol(Γ) of all polymorphisms of a structure Γ is
a function clone.

The algebraic structure of function clones can best be understood via the appropriate
notion of a clone homomorphism.

Definition 2. Let C ,D be function clones (not necessarily over the same set). Then a
function ξ : C → D is called a (clone) homomorphism iff

• it preserves arities of functions;
• for all 1 ≤ k ≤ n < ω, the k-th n-ary projection in C is sent to the k-th n-ary

projection in D ;
• ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)) whenever n,m ≥ 1, f ∈ C is n-ary, and
g1, . . . , gn ∈ C are m-ary.

The structure given by this notion of a clone homomorphism can also be formalized ab-
stractly; and where from permutation groups we obtain (abstract) groups, we obtain (ab-
stract) clones from function clones. In practice we will not need this formalization, but only
the corresponding notion of homomorphism, but we include the definition for the sake of
completeness.

Definition 3. A clone C (in the literature abstract clone) is a multi-sorted structure with

sorts {C(n) | n ≥ 1} and the signature {πnk | 1 ≤ k ≤ n} ∪ {compnm | n,m ≥ 1}. The elements

of the sort C(n) will be called the n-ary operations of C. We denote a clone by

C = (C(1), C(2), . . . ; (πnk )1≤k≤n, (compnm)n,m≥1)

and require that πnk is a constant in C(n), and that compnm : C(n) × (C(m))n → C(m) is an
operation of arity n + 1. Moreover, compnn(f, πn1 , . . . , π

n
n) = f , compnm(πnk , f1, . . . , fn) = fk,

and

compnm(f, compmk (g1, h1, . . . , hm), . . . , compmk (gn, h1, . . . , hm))

= compmk (compnm(f, g1, . . . , gn), h1, . . . , hm) .

We also write f ◦ (g1, . . . , gn) or f(g1, . . . , gn) instead of compnm(f, g1, . . . , gn) when m is
clear from the context.
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There is a more convenient way to write equations that hold in a clone; e.g., we will say
that f ∈ C(2) satisfies ∀x, y.f(x, y) = f(y, x), or f(x, y) = f(y, x) holds in C instead of
writing comp2

2(f, π2
1, π

2
2) = comp2

2(f, π2
2, π

2
1); this can be viewed as syntactic sugar. Note that

a homomorphism from a clone C to a clone D is just a function which preserves all equations
that hold in C. An example of an equation which will be important throughout the paper is
the following. A unary element e of a clone is called invertible iff there exists a unary element
f in the clone such that ∀x.f(e(x)) = e(f(x)) = x is satisfied. Clearly the invertible elements
of a clone form an abstract group, and the unary elements of a clone form an abstract monoid
with the composition operation comp1

1.
Every function clone C gives rise to an (abstract) clone C in the obvious way. Conversely,

a straightforward generalization of Cayley’s theorem for groups shows that for every clone C
there exists a function clone whose abstract clone is C. We call any such realization of C as
a function clone C on a set D an action of C on the set D.

3.2. Topological clones. On any set D, there is a largest function clone OD, which consists
of all finitary operations on D. The set OD is naturally equipped with the topology of
pointwise convergence, with respect to which the composition of functions is continuous. A
basis of open sets of this topology is given by the sets of the form

{f : Dn → D | f(a1
1, . . . , a

1
n) = a1

0, . . . , f(am1 , . . . , a
m
n ) = am0 } .

For countably infinite D, OD becomes a Polish space with this topology; in fact, OD is then
homeomorphic to the Baire space. A compatible complete metric can be defined as follows.
For each n, we fix an enumeration an1 , a

n
2 , . . . of Dn. When f, g ∈ OD have the same arity n,

then put d(f, g) = 1/2min(i | f(ani )6=g(ani )). When f and g have distinct arity, put d(f, g) = 1.
The function clones on D which are closed in OD with respect to this topology are precisely

the clones of the form Pol(Γ) for some first-order structure Γ with domain D. As a subset
of OD, any function clone on D inherits a topology from OD. Hence, it carries a topological
structure in addition to its algebraic structure, motivating the following new definition.

Definition 4. A topological clone C is a clone

C = (C(1), C(2), . . . ; (πnk )1≤k≤n, (compnm)n,m≥1)

together with a topology on
⋃
n≥1C

(n) such that each C(n) is a clopen set and such that the
composition operations are continuous.

As discussed above, every function clone gives rise to a topological clone. We will be
interested in topological clones induced by function clones on a countably infinite set D, and
write O for the topological clone of the function clone OD; cf. [GP08] for a survey of function
clones on D. Moreover, we write S for the topological group of the full symmetric group SD

over a countably infinite set D. It is known that the closed subgroups of S are precisely those
topological groups that are Polish and have a left-invariant ultrametric [BK96]. We do not
have an analogous characterization of the closed subclones of O; confer the open problems
section (Section 6).

3.3. Topological monoids. We are going to consider various reconstruction notions for
topological groups and clones; in particular, we will use known reconstruction results for
groups to obtain such results for clones. A natural class of objects between the two classes is
the class of monoids. Here we distinguish transformation monoids, i.e., sets of unary functions
on a fixed set which are closed under composition and which contain the identity function;
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(abstract) monoids, with their well-known definition; and topological monoids, i.e., abstract
monoids which in addition carry a topology under which composition is continuous. We

denote the transformation monoid of all unary functions on a set D by O
(1)
D , and write O(1)

for topological monoid induced by O
(1)
D when D is countably infinite. For any set D, the

closed submonoids of O
(1)
D are precisely the endomorphism monoids of first-order structures

on D; if Γ is such a structure, then we write End(Γ) for its endomorphism monoid.
Every permutation group (abstract group, topological group) can be seen as a transfor-

mation monoid (abstract monoid, topological monoid); conversely, the invertible elements of
a transformation monoid (abstract monoid, topological monoid) form a permutation group

(abstract group, topological group). We would like to point out that S is not closed in O(1),

and that consequently closed subgroups of S need not be closed in O(1).
Similarly, monoids can be interpreted as clones by adding the projections and closing

under composition; and conversely, the set of unary functions of a function clone (or the
unary elements of an abstract clone) form a transformation monoid (an abstract monoid).
Some of our examples of topological clones will really be examples of topological monoids.

It is worth noting, however, that not every monoid homomorphism can be extended to
a clone homomorphism between the corresponding clones; indeed, there is a slight technical
condition which has to be added in order to ensure this. An n-ary element f of a clone is
called a constant iff ∀x1, . . . , xn, y1, . . . , yn. f(x1, . . . , xn) = f(y1, . . . , yn) holds in the clone;
note that this formula can be written without quantifiers in the language of clones. In the
language of monoids, constants cannot be defined without quantifiers, a fact which is reflected
in the following proposition.

Proposition 5. Let M, N be monoids, and let M′, N′ be the corresponding clones. Then:

• the restriction of any homomorphism ξ : M′ → N′ to M is a monoid homomorphism;
• the natural extension of a homomorphism ξ : M→ N to M′ is a clone homomorphism

if and only if ξ sends constants to constants.

Proof. The first statement is clear, since every equation in the language of monoids is also an
equation in the language of clones. Now consider the second item. If ξ sends a constant to
a non-constant, then its natural extension is not a clone homomorphism. For the converse,
it is easily verified that all equations which hold in M′ are equivalent to equations of the
form ∀x, y. f(x) = g(y) or ∀x. f(x) = g(x). The first type is equivalent to the two equations
∀x, y. f(x) = f(y) and ∀x. f(x) = g(x). These two are preserved by ξ: the first one because
ξ preserves constants, and the second one is trivially preserved because ξ is a function. �

Observe that as for continuity questions, it is irrelevant whether we see a monoid as a
monoid or as a clone; that is, a homomorphism between monoids is continuous iff its (unique)
extension to the corresponding clones is.

The link between topological clones and primitive positive bi-interpretability mentioned in
Section 2.1 has an analog for topological monoids and existential positive bi-interpretability,
which however does not hold for all ω-categorical structures [BJ11]: the reason for this is the
inability of monoids to express constants exhibited in Proposition 5.

Our motivation to also study reconstruction for monoids is two-fold: firstly, several chal-
lenges for clones already become apparent in the less complex case of monoids; secondly,
our reconstruction results for clones typically build on reconstruction results for the monoids
given by their unary functions.
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3.4. Oligomorphicity. We will be interested in topological clones induced by oligomor-
phic function clones on a countable set (recall the definition of oligomorphic in Section 2.3).
Whether or not a topological group G has a continuous action that induces an oligomorphic
permutation group has an elegant characterization using the terminology from Polish groups
(without referring to any particular action of G); confer [Tsa12]. It also turns out that if
G has such an action, then every continuous action of G on a countable set with finitely
many orbits induces an oligomorphic permutation group. We therefore call such topological
groups oligomorphic. We say a subclone of O (submonoid of O(1)) is oligomorphic iff the set
of invertible elements of the clone (monoid) forms an oligomorphic topological group.

3.5. Reconstruction notions. We study the question whether we can reconstruct the topol-
ogy of closed subclones of the topological clone O (or equivalently, of the function clone OD)
from the abstract clone structure alone. In this context, several reconstruction notions make
sense. The following definitions are inspired by the literature on topological groups.

Definition 6. Let C be a closed subclone of O. We say that

• C is reconstructible (or that C has reconstruction) iff for every other closed subclone
D of O, if there exists a clone isomorphism between C and D, then there also exists
a clone isomorphism between C and D which is a homeomorphism;
• C has automatic homeomorphicity iff every clone isomorphism between C and a closed

subclone of O is a homeomorphism;
• C has automatic continuity iff every clone homomorphism from C into O is continu-

ous.

All these notions are analogously defined for closed subgroups of S and closed submonoids of
O(1).

Note that automatic homeomorphicity implies reconstruction; otherwise, the notions are
not obviously related. However, for groups automatic continuity implies automatic homeo-
morphicity.

Proposition 7 (Corollary 2.8 in [Las91]). Any continuous isomorphism between closed sub-
groups of S is a homeomorphism.

Proposition 7 shows that automatic continuity of closed subgroups of S is a property of
the abstract group in the sense that if two closed subgroups of S are isomorphic as abstract
groups, and one has automatic continuity, then so has the other.

3.6. The situation for topological groups. There are two dominant methods for proving
reconstruction of group topology; the two methods have in common that they imply recon-
struction via automatic homeomorphicity. A method for proving reconstruction which would
apply also to groups without automatic homeomorphicity seems hardly conceivable.

The first method is showing automatic continuity, or equivalently, the small index property.
A topological group G has the small index property iff every subgroup of G of at most
countable index is open. It is a folklore fact, and not difficult to show, that a topological
group has automatic continuity if and only if it has the small index property. The small index
property has been verified for the following groups:

• S [Rab77, Sem81, DPT86] – that is, Aut(N; =);
• the automorphism groups of countable vector spaces over finite fields [Eva86];
• Aut(Q;<) and the automorphism group of the atomless Boolean algebra [Tru89];
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• the ω-categorical dense semi-linear order giving rise to a meet-semilattice [DHM89];
• the automorphism group of the random graph [HHLS93];
• all automorphism groups of ω-categorical ω-stable structures [HHLS93];
• the automorphism groups of the Henson graphs [Her98].

The second method for proving reconstruction is Rubin’s forall-exists interpretations. Their
attractive feature is that they allow us to recover an automorphism group as a permutation
group from the abstract group strcuture when one restricts the category of structures whose
automorphism groups one is interested in. More precisely, if Γ is an ω-categorical structure
which has weak forall-exists interpretations, and if ∆ is another ω-categorical structure with-
out algebraicity and with an isomorphism ξ between Aut(Γ) and Aut(∆), then there exists
a bijection i between the domain of Γ and the domain of ∆ such that for all α ∈ Aut(Γ) we
have ∀x. ξ(α)(x) = i(α(i−1(x))). Discussing forall-exists interpretations is beyond the scope
of this paper, but the automorphism groups of the following structures can be shown to have
automatic homeomorphicity via forall-exists interpretations:

• the random graph, (Q;<), all homogeneous countable graphs, and various ω-categorical
semi-linear orders [Rub94];
• the universal partial ordering, the universal tournament [Rub94] (for those structures

it is not known whether they have the small index property);
• universal homogeneous k-hypergraphs, and the Henson digraphs [BM07].

3.7. Density of the invertibles. It is a fact that every CSP of an ω-categorical structure Γ
is equal (as the set of instances with a positive answer) to the CSP of another ω-categorical
structure Γ′ which is a model-complete core [BHM10], i.e., a structure whose automorphisms
are dense in its endomorphisms; in other words, Aut(Γ′) is dense in the unary part of Pol(Γ′).
We are therefore particularly interested in this situation. Surprisingly, it turns out to be a
non-trivial task to show for a given closed oligomorphic subgroup G of S with automatic
continuity (the strongest form of reconstruction) that the closure G of G in O(1) has some
form of reconstruction. Note that when Γ is a structure whose automorphism group induces
G, then G is the topological monoid induced by the monoid Aut(Γ) of elementary self-
embeddings of Γ, i.e., of self-embeddings preserving all first-order formulas over Γ.

The somewhat inverse problem, namely proving that oligomorphic groups are isomorphic as
topological groups when their closures are isomorphic as abstract (non-topological) monoids
has been investigated in [Las91]; confer also Section 4 for a result we will use from this work.

3.8. Results.

3.8.1. Positive results. We present methods for proving automatic homeomorphicity of closed
subclones C of O. Our first result concerns the closure of closed subgroups of S in O(1).

• If ∆ is a homogeneous structure over a finite relational language without algebraicity,
with the joint extension property, and such that Aut(∆) has automatic continuity,

then its closure Aut(∆) has automatic homeomorphicity (Section 4).

The task of proving automatic homeomorphicity for other clones is then split into proving
that isomorphisms between C and closed subclones of O are continuous, and proving that
these isomorphisms are open. For proving continuity, we present a technique based on so-
called gates as well as the above result:

• If M is a closed submonoid of O(1) such that the closure of the set of its invertible
elements has automatic homeomorphicity, and which has a gate with respect to this
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closure, then every isomorphism from M onto another closed submonoid of O(1) is
continuous (Section 5.4.3).
• If C is a closed subclone of O which has a gate covering , and if ξ is an isomorphism

from C onto another closed subclone of O(1) whose restriction to the unary elements
is continuous, then ξ is continuous (Section 5.4).

We also present another technically unrelated method for proving continuity via Birkhoff’s
HSP theorem [Bir35] in Section 5.1.

Concerning openness, we first obtain two results serving different classes of clones:

• function clones that contain all constant functions in Section 5.2;
• transitive function clones in Section 5.3.

We then show how a recent topological variant of Birkhoff’s theorem from [BP] can be ex-
ploited in this context in Section 5.5.

Using these general results and methods, we obtain automatic homeomorphicity for several
transformation monoids and function clones.

• The monoids of self-embeddings of the empty structure, the random graph, and the
random tournament have automatic homeomorphicity (Section 4).
• The Horn clone and the polymorphism clone of the random graph have automatic

homeomorphicity (Section 5).

• Any closed subclone of Oω containing O
(1)
ω has automatic continuity and automatic

homeomorphicity (Section 5.1).

3.8.2. Negative results. On the negative side, we will show the following.

• There exists a closed oligomorphic submonoid M of O(1) and an isomorphism ξ : M→
M which is not continuous; in particular, M does not have automatic homeomorphic-
ity (Section 4). The example lifts to clones via Proposition 5.
• There are simple conditions on monoids which imply that they cannot have automatic

continuity; in particular, no monoid of self-embeddings of an ω-categorical structure
has automatic continuity (Section 4).

The second statement stands in sharp contrast with the situation for groups, and indicates
that the notion of automatic continuity is somewhat too strong for topological monoids.

4. Topological Monoids

4.1. Negative results.

Theorem 8. There exist a closed oligomorphic submonoid M of O(1) and an automorphism
ξ : M → M which is not continuous. In particular, M does not have automatic homeo-
morphicity. Moreover, ξ sends constants to constants, and hence ξ lifts to a discontinuous
automorphism of the corresponding clone.

Proof. Let (Tn)n≥2 be a sequence of relational symbols such that Tn is n-ary for all n ≥ 2.
Consider the class of all finite structures in this language such that Tn is interpreted as a
totally symmetric n-ary relation of injective tuples, and let (V0; (Sn0 )n≥2) and (V1; (Sn1 )n≥2)
be two copies of the Fräıssé limit of this class with disjoint domains V0 and V1. Fix an
isomorphism ι : V0 → V1 between them. Set V := V0 ∪ V1 and α := ι ∪ ι−1; then α is
a permutation on V which is equal to its own inverse. For notational simplicity, we write
Ei := S2

i , for i ∈ {0, 1}; clearly, (Vi, Ei) is isomorphic to the random graph. Let E :=
E0 ∪ E1 ∪ {(v, α(v)) | v ∈ V }, and Sn := Sn0 ∪ Sn1 for all n ≥ 3. For any self-embedding
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e of (V0;E0), let ē be the self-embedding of (V ;E) defined by ē(v) := e(v) if v ∈ V0, and
ē(v) := α(e(α(x))) if v ∈ V1. Note that embeddings of the form ē commute with α, i.e.,
ē ◦ α = α ◦ ē.
Claim. Let f be a self-embedding of (V ;E). Then either there exists a self-embedding e
of (V0;E0) such that f = ē or f = αē = ēα, or the range of f is contained in Vi for some
i ∈ {0, 1}.

To verify the claim, take any u ∈ V0, and assume that f(u) ∈ Vi, where i ∈ {0, 1}. We
show that the neighbors of u in (V0;E0) are also mapped to Vi under f . So let v ∈ V0 be such
that (u, v) ∈ E0. If f(v) = α(f(u)), then let w ∈ V0 be so that {u, v, w} induces a complete
graph in (V0;E0). Then f(w) must be connected to f(u) and f(v) in (V ;E), a contradiction.
Hence, f(v) 6= α(f(u)). Thus f(v) ∈ Vi, as f(u) is in (V ;E) adjacent to no element of V1−i
except for α(f(u)). As the random graph has diameter 2, we obtain that f [V0] is contained
in either V0 or V1. Similarly, f [V1] is contained in either V0 or V1. Hence there are four
possibilities. If f maps V into V0 or V1, then we are done. If f [Vi] ⊆ Vi for both i ∈ {0, 1},
then f is of the form ē. If f [V0] ⊆ V1 and f [V1] ⊆ V0, then αf is as in the preceding case, and
hence αf = ē for a self-embedding e of (V0;E0). Consequently, f = αē.

The claim implies that α commutes with all elements of Aut(V ;E). However, whenever
the range of a self-embedding of (V ;E) is contained in V0, then this embedding does not
commute with α.

Now take the structure (V ;E, (Sn)n≥3), and consider the structure ∆ which consists of two
copies Γ, Γ′ of this structure on disjoint domains V and V ′, plus an extra element c outside
V ∪ V ′ and predicates for V and V ′. Write D for the domain V ∪ V ′ ∪ {c} of ∆; abusing the
notation slightly, we write E and (Sn)n≥3 for the relations of ∆ (so each of these relations is
the union of the relations with the same name in Γ and in Γ′). Thus the automorphism group
of ∆ really is Aut(Γ)×Aut (Γ′). In particular, it is oligomorphic since Aut(Γ) is oligomorphic:
this follows readily from the easily verified fact that (V ;E, (Sn)n≥3, V0, V1) is homogeneous.

In the following, we say that a function f : D → D eradicates a relation Sn iff Sn holds
for no tuple in the range of f . Now writing Emb(Ξ) for the monoid of self-embeddings of a
structure Ξ, set for all 3 ≤ m ≤ ω

Fm := {f ∈ Emb(D;E, (Sn)n≥m) | f [V ] ⊆ V ′, f [V ′ ∪ {c}] = {c}, and

f eradicates all Sn with 3 ≤ n < m}.

Writing fc : D → D for the constant function with value c, set moreover

M∞ := Aut(∆) ∪ {fc} ∪Fω,

M<∞ := Aut(∆) ∪ {fc} ∪
⋃

3≤m<ω
Fm, and

M := M∞ ∪M<∞.

Note that M is a closed monoid, that M∞ is a closed submonoid of M , and that M<∞ is
a submonoid of M which is dense in M . Moreover, M∞ ∩M<∞ = Aut(∆) ∪ {fc}.

Recall the function α, and imagine it acts on D keeping c fixed, and acting on V and V ′

as above. Now define a mapping ξ : M →M by

ξ(f) :=

{
f , f ∈M<∞

α ◦ f ◦ α , f ∈M∞.
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Then ξ is well-defined because α commutes with all functions in M∞∩M<∞ = Aut(∆)∪{fc}.
Clearly, the restriction of ξ to M∞ and M<∞, respectively, is an inner automorphism of those
monoids.

We claim that ξ is an automorphism of M . To see this, let f ∈M∞ and g ∈M<∞ such
that f, g /∈ Aut(∆) be given. Then f ◦ g = fc = ξ(f ◦ g) and ξ(f) ◦ ξ(g) = fc, proving
ξ(f ◦ g) = ξ(f) ◦ ξ(g). The same argument works when f ∈M<∞ and g ∈M∞.

However, if g ∈M∞ is so that it does not commute with α, and (fn)n∈ω is a sequence in
M<∞ converging to g, then (ξ(fn))n∈ω will still converge to g, proving that ξ is not continuous.

�

We will now see that many closed submonoids of O(1) do not have automatic continuity,
so that this notion is arguably less useful that for closed subgroups of S.

Proposition 9. Let M be a closed submonoid of O(1). Suppose that M contains a submonoid
N such that

• N is not closed in M;
• composing any element of M with an element outside N yields an element outside N.

Then M does not have automatic continuity.

Proof. Let D be a countable set, and let M ⊆ O
(1)
D be an action of M on D. Write N for

the transformation monoid corresponding to N. Let i be a bijection between D and D \ {c}
for some c ∈ D. We define a monoid homomorphism ξ from M to O

(1)
D . Elements e of N

are mapped to the operation e′ defined as follows: e′(c) = c, and for x ∈ D \ {c} we set
e′(x) = i(e(i−1(x))). All elements outside N are mapped to the constant operation x 7→ c.

Clearly, ξ is a monoid homomorphism into O
(1)
D . But ξ is not continuous: if f ∈ M \N is

contained in the closure of N , then ξ(f) is constant with value c, and hence no more in the
closure of ξ[N ]. �

Note that closed submonoids of O
(1)
D have certain natural submonoids, e.g., the invertible

functions, or the surjective functions. Often, this yields a situation where Proposition 9
applies, for example in the following corollary.

Corollary 10. No monoid of self-embeddings of an ω-categorical structure has automatic
continuity.

Proof. Let ∆ be an ω-categorical structure on a countably infinite domain D, and let M be
the monoid of self-embeddings of ∆; we may assume that the language of ∆ is countable.
We apply Proposition 9 for the submonoid N of surjective functions in M . We only have
to show that the closure of N contains a non-surjective function. Then by the compactness
theorem, ∆ has a countable elementary expansion ∆′ whose domain properly contains D.
Now ∆ and ∆′ are isomorphic by ω-categoricity, and any isomorphism from ∆′ to ∆ is a
non-surjective elementary self-embedding of ∆′. Since ∆′ has such a self-embedding, so does
∆. This elementary self-embedding of ∆ is contained in the closure of the automorphisms of
∆, and in particular in the closure of N . �

4.2. Positive results: from groups to monoids. We will focus in the following on monoids
M with a dense subset of invertible elements. Our first results are a general technique for
proving automatic homeomophicity for such monoids: the basic idea is to reduce the task to
questions about certain endomorphisms of the monoid M.
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We then present lemmata that perform this analysis of the endomorphisms of M under
certain assumptions on M; in particular, we will assume that the permutation group of
invertible elements of M has no algebraicity and the joint extension property.

The following proposition has already been outlined by Lascar in [Las91].

Proposition 11. Let M and M′ be closed submonoids of O(1) with dense subsets of invertibles
G and G′. Let ξ : G→ G′ be a continuous homomorphism. Then:

• ξ extends to a continuous homomorphism ξ̄ : M→M′;
• if ξ is an isomorphism, then ξ : M→M′ is an isomorphism and a homeomorphism.

Proof. Let M ,M ′ be actions of M,M′ on a countably infinite set D, and write G ,G ′ for
the corresponding groups of invertible functions. We first show that ξ, as a function from G
to G ′, is uniformly continuous with respect to the metric d of Subsection 3.2. Let ε > 0 be
given. By continuity, there exists δ > 0 such that d(idD, g) < δ implies d(idD, ξ(g)) < ε for
all g ∈ G , where idD denotes the identity function in D. Now note that d is on SD invariant
under composition from the left, i.e., d(h ◦ g1, h ◦ g2) = d(g1, g2) for all g1, g2, h ∈ SD. Hence,
d(g1, g2) = d(idD, g

−1
1 ◦ g2) for all g1, g2 ∈ SD. We conclude that whenever g1, g2 ∈ G and

d(g1, g2) < δ, then d(ξ(g1), ξ(g2)) = d(idD, ξ(g1)−1 ◦ ξ(g2)) < ε.
Since ξ is uniformly continuous, it extends to a continuous mapping ξ̄ : M → M ′. Iden-

tifying the elements of M with equivalence classes of Cauchy sequences in G in the natural
way, the mapping ξ sends equivalence classes of Cauchy sequences in G to such classes in
G ′. Via this identification one easily sees that ξ is a homomorphism; this has been explictly
verified in [Las91].

If ξ is in addition an isomorphism, then it is a homeomorphism by Proposition 7. In this
situation, is clear from the identification in [Las91] that ξ is bijective, and that (ξ)−1 = (ξ−1),
because Cauchy sequences in G correspond to Cauchy sequences in G ′ in a one-to-one manner.
Hence, ξ is an isomorphism and a homeomorphism. �

Lemma 12. Let M be a closed submonoid of O(1) whose group of invertible elements G is
dense in M and has automatic homeomorphicity. Assume that the only injective endomor-
phism of M that fixes every element of G is the identity function idM on M. Then M has
automatic homeomorphicity.

Proof. Let M′ be a closed submonoid of O(1), and let ξ : M→M′ be an isomorphism. Writing
G′ for the set of invertible elements of M′, we have that ξ�G is an isomorphism between G
and G′. The group G (and likewise G′) is a closed subgroup of S: when we view M as a

closed subset of O(1), and S as the subset of invertibles of O(1), then G = M ∩ S. As G
has automatic homeomorphicity, we have that ξ�G is a homeomorphism between G and G′.
Hence, by Proposition 11 it extends to a mapping ξ�G from M to the closure G′ of G′ in M′;
this extension is an isomorphism and homeomorphism between M and G′.

Let Φ := ξ−1 ◦ ξ�G. Then Φ ∈ End(M) is injective and fixed G pointwise. Thus Φ is
the identity on M, and consequently ξ = ξ�G. In particular, G′ is dense in M′, and ξ is a
homeomorphism between M and M′ = G′. �

Following Fräıssé (see [Hod93]), the age of a relational structure ∆ is the class of all finite
structures that embed into ∆, and denoted by Age(∆).

Definition 13. Let ∆ be a relational structure. We call a subset U of the domain of ∆ rich
iff for every embedding a : Γ→ ∆, where Γ ∈ Age(∆) is finite, and every p in the domain of Γ
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there exists an embedding b : Γ→ ∆ such that b(p) ∈ U , and which agrees with a on all other
elements of the domain of Γ. We call a subset of the domain of ∆ co-rich iff its complement
in ∆ is rich.

When ∆ is a countable homogeneous structure, then a simple back-and-forth argument
shows that the structure induced by a rich subset of the domain of ∆ is isomorphic to ∆.

The following definition of the concept of no algebraicity of permutation groups has been
given in [Cam90]. When the permutation group under consideration is the automorphism
group of an ω-categorical structure ∆, then this definition coincides with the model-theoretic
definition of no algebraicity for ∆ (see, e.g., [Hod97]).

Definition 14. A permutation group G is said to have no algebraicity iff for every finite
tuple (a1, . . . , an) of elements of the domain of G , the set of all permutations of G that fix
each of a1, . . . , an fixes no other elements of the domain.

Note that when G is a permutation group has no algebraicity, and a1, . . . , an are elements
of the domain of G , then the group of all permutations in G that fix each of a1, . . . , an has
only infinite orbits, except for the orbits of a1, . . . , an.

Lemma 15. For a countable homogeneous relational structure ∆ the following are equivalent:

• Aut(∆) has no algebraicity;
• ∆ has a rich and co-rich subset.

Proof. Suppose first that Aut(∆) has no algebraicity. Let σ be the expansion of the signature
τ of ∆ by a new unary relation symbol U , and let C be the class of all finite σ-structures
whose τ -reduct is in Age(∆). Then C is a Fräıssé class. We only indicate how to verify
the amalgamation property of C. Let Γ0,Γ1,Γ2 ∈ C, and let s1 : Γ0 → Γ1 and s2 : Γ0 →
Γ2 be embeddings. By homogeneity of ∆ there exists a finite substructure Γ′3 of ∆, and
embeddings t1, t2 of the τ -reducts of Γ1 and Γ2 into Γ′3 such that t1 ◦ s1 = t2 ◦ s2. It is known
(see (2.15) in [Cam90]) that the automorphism group of a countable homogeneous (but not
necessarily ω-categorical) structure ∆ has no algebraicity if and only if the age of ∆ has
strong amalgamation. That is, t1 and t2 can be chosen such that t1[Γ1] ∩ t2[Γ2] = t1[s2[Γ0]].
Therefore, there exists an expansion Γ3 of Γ′3 such that t1 and t2 are even embeddings of Γ1

and Γ2 into Γ3, showing the amalgamation property for C. We write Γ for the Fräıssé-limit
for C. It can be shown by a back-and-forth argument that the τ -reduct of Γ is homogeneous
and has the same age as ∆. By Fräıssé’s theorem (see [Hod97]) it is isomorphic to ∆, so let
us identify the τ -reduct of Γ with ∆. It is straightforward to verify that the set denoted by
U in Γ is rich and co-rich with respect to ∆.

For the converse implication, observe that if Aut(∆) has algebraicity, then there is a tuple
(u, v1, . . . , vn) of elements of ∆ such that u does not appear in {v1, . . . , vn} and is fixed by all
automorphisms of ∆ that fix each of v1, . . . , vn. When u ∈ U for a subset U of the elements
of ∆, consider the structure S induced by {u, v1, . . . , vn} in ∆. If there were an embedding b
of S into ∆ such that b(u) is in the complement U ′ of U in ∆, and b(vi) = vi for all 1 ≤ i ≤ n,
then by the homogeneity of ∆ there exists an automorphism of ∆ extending b, contradicting
the fact that u is fixed by all automorphisms of ∆ which fix each of v1, . . . , vn. Hence, U ′ is
not rich. �

In the following, a partial isomorphism of a structure ∆ is an isomorphism between finite
substructures of ∆. We write Dom(a) for the domain and Im(a) for the image of a partial
isomorphism a.
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Lemma 16. Let ∆ be a countable homogeneous relational structure such that Aut(∆) has no

algebraicity. Let f ∈ Aut(∆) have rich and co-rich image, and suppose that a, b are partial
isomorphisms of ∆ such that

• Dom(a) ∩ Im(f) = f [Im(b)],
• Im(a) ∩ Im(f) = f [Dom(b)], and
• afb(x) = f(x) for all x ∈ Dom(b).

Then a and b can be extended to automorphisms α, β of ∆ such that αfβ = f .

Proof. We construct α and β by a back-and-forth argument, extending a and b in turns in
one of the following four ways. In each step, the three conditions on a and b given in the
statement will be preserved. We write D for the domain of ∆.

(1) Extending the domain of b. Let u ∈ D \Dom(b) be arbitrary. Since Im(a) ∩ Im(f) =
f [Dom(b)] and u /∈ Dom(b), we have that f(u) /∈ Im(a). Therefore, and since ∆ is
homogeneous, a has an extension to a partial isomorphism a′ of ∆ whose domain
additionally contains a new element s such that a′(s) = f(u). Since Im(f) is rich, s
can be chosen from Im(f). Let b′ be the extension of b to the new element u such
that b′(u) = f−1(s). Then b′ is a partial isomorphism of ∆, and a′fb′(x) = f(x) for
all x ∈ Dom(b′). Moreover,

Dom(a′) ∩ Im(f) = (Dom(a) ∩ Im(f)) ∪ {s} = f [Im(b′)] and

Im(a′) ∩ Im(f) = (Im(a) ∩ Im(f)) ∪ {f(u)} = f [Dom(b′)] .

(2) Extending the image of b. Let v ∈ D \ Im(b) be arbitrary. Since ∆ is homogeneous,
a has an extension to a partial isomorphism a′ of ∆ with domain Dom(a) ∪ {f(v)}.
Since Im(f) is rich, t := a′(f(v)) can be chosen from Im(f). Let b′ be the extension
of b to the new element f−1(t) such that b′(f−1(t)) = v. Then b′ is an isomorphism
of ∆, and a′fb′(x) = f(x) for all x ∈ Dom(b′). The other two conditions for a′ and b′

can be verified analogously to the previous case.
(3) Extending the domain of a. Let s ∈ D \Dom(a).

Case (3.1): s ∈ Im(f). By the homogeneity of ∆ the partial isomorphism a can be
extended to a partial isomorphism a′ of ∆ that is additionally defined on s; since Im(f)
is rich, we can even find an extension such that a′(s) ∈ Im(f). Then the extension
b′ of b to f−1(a′(s)) such that b′(f−1(a′(s))) = f−1(s) is a partial isomorphism of ∆,
and a′ and b′ clearly satisfy the three conditions on a and b given in the statement.

Case (3.2): s 6∈ Im(f). By the homogeneity of ∆ the partial isomorphism a can be
extended to a partial isomorphism a′ of ∆ that is additionally defined on s; since Im(f)
is co-rich, we can even find an extension such that a′(s) 6∈ Im(f). Then a′fb′(x) = f(x)
for all x ∈ Dom(b). Moreover, Dom(a′) ∩ Im(f) = Dom(a) ∩ Im(f) = f [Im(b)] and
Im(a′) ∩ Im(f) = Im(a) ∩ Im(f) = f [Dom(b)].

(4) Extending the image of a. Let t ∈ D \ Im(a).
Case (4.1): t ∈ Im(f). Similar to Case (3.1).
Case (4.2): t 6∈ Im(f). By the homogeneity of ∆ the partial isomorphism a can

be extended to a partial isomorphism a′ of ∆ whose domain additionally contains
an element s such that a′(s) = t. Since Im(f) is co-rich, s can be chosen from
D \ Im(f). Then a′fb(x) = f(x) for all x ∈ Dom(b). Moreover, Dom(a′) ∩ Im(f) =
Dom(a) ∩ Im(f) = f [Im(b)] and Im(a′) ∩ Im(f) = Im(a) ∩ Im(f) = f [Dom(b)].
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By infinite repetition of those four extension steps in turns, we arrive at automorphisms α, β
of ∆ such that αfβ = f . �

Lemma 17. Let ∆ be a countable homogeneous relational structure such that Aut(∆) has

no algebraicity. Let F ⊆ Aut(∆) be the set of all self-embeddings of ∆ with rich and co-

rich image. Let ξ be an injective endomorphism of the monoid Aut(∆) which fixes Aut(∆)
pointwise. Then ξ fixes F pointwise.

Proof. Let f ∈ F and define S(f) := {(α, β) ∈ Aut(∆)2 | αfβ = f}. Let u and s be elements
of ∆ with s 6= f(u). We first construct a pair (α, β) ∈ S(f) such that β(u) = u and α(s) 6= s.

• Case 1: s ∈ Im(f). Let u′ be the preimage of s under f ; by assumption, u′ 6= u. Since
Im(f) is rich, there exists an element t ∈ Im(f) and a partial isomorphism a of ∆ such
that Dom(a) = {f(u), s}, Im(a) = {f(u), t}, a(f(u)) = f(u), and a(s) = t. We can
additionally require that t ∈ Im(f) is distinct from s: to see this, observe that there
exists an s′ distinct from s such that s and s′ lie in the same orbit in the group of
all automorphisms of ∆ that fix f(u), since Aut(∆) has no algebraicity. Let S be the
structure induced by {f(u), s, s′}. Since Im(f) is rich there exists an embedding e of S
into ∆ such that e(s) ∈ Im(f), and applying the definition of richness of Im(f) another
time, there also exists an embedding e′ of S into ∆ such that {e′(s), e′(s′)} ⊆ Im(f).
Now, at least one of e′(s) and e′(s′) is distinct from s.

The mapping b such that Dom(b) = {u, f−1(t)}, Im(b) = {u, u′}, b(u) = u, and
b(f−1(t))) = u′ is a partial isomorphism of ∆. Moreover, a and b satisfy the conditions
of Lemma 16: we have Dom(a) ∩ Im(f) = {f(u), s} = {f(u), f(u′)} = f({Im(b)}),
Im(a) ∩ Im(f) = {f(u), t} = {f(u), f(f−1(t))} = f(Dom(b)), and afb(x) = f(x) for
x ∈ {u, f−1(t)}.
• Case 2: s /∈ Im(f). Let b be the partial isomorphism of ∆ such that Dom(b) = {u},

Im(b) = {u}. Since Im(f) is co-rich, there is an element t of ∆ outside of Im(f)
and a partial isomorphism a of ∆ such that Dom(a) = {f(u), s}, Im(a) = {f(u), t},
a(f(u)) = f(u), and a(s) = t. Using the fact that Im(f) is co-rich, and arguing as in
the previous item, we can additionally assume that t is distinct from s.

Then a and b satisfy the conditions of Lemma 16: Dom(a) ∩ Im(f) = {f(u)} =
f({Im(b)}), Im(a) ∩ Im(f) = {f(u)} = f(Dom(b)), and afb(u) = f(u).

In both cases, by Lemma 16, there are (α, β) ∈ S(f) such that β(u) = u and α(s) = t 6= s.
We can now describe how the element f(u) can be recovered from S(f), namely as

{f(u)} =
⋂

(α,β)∈S(f)
β(u)=u

{s | α(s) = s} .(1)

Thus, ξ(f) = f .
For the inclusion “⊆” in Equation (1), note that the conditions β(u) = u and (α, β) ∈ S(f)

imply that α(f(u)) = f(u). Hence, f(u) belongs to the right-hand-side of Equation (1). For
the inclusion “⊇”, let s be any element of ∆ distinct from f(u). Then we have seen above
that there exists (α, β) ∈ S(f) such that β(u) = u and α(s) 6= s. Hence, s does not belong to
the right-hand-side of Equation (1). �

Definition 18. We say that a structure ∆ has the joint extension property iff for all partial
isomorphisms a1, a2 of ∆ with Dom(a1) = Dom(a2) and a−1

1 (x) = a−1
2 (x) for all x ∈ Im(a1)∩

Im(a2), and for every element u of ∆ outside of Dom(a1) = Dom(a2) there exist extensions
a′1 of a1 and a′2 of a2 such that a′1(u) = a′2(u).
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Examples of structures with the joint extension property are the random graph, the random
tournament, and the random digraph. Examples of structures without the joint extension
property are (Q;<) and for n ≥ 3 the countable universal homogeneous Kn-free graph G. To
see this for n = 3, let v be a vertex of G, and let a1, a2 be maps with domain {v} such that
a1(v) is adjacent to a2(v). Let u be a vertex adjacent to v in G. Then in any extension of
a′1 of a1 and a′2 of a2 with domain Dom(a′1) = Dom(a′2) = {u, v} such that a′1(u) = a′2(u) we
must have that a′1(u) is not adjacent to a′1(v) or a′2(u) is not adjacent to a′2(v), since otherwise
the three vertices a′1(v), a′1(u) = a′2(u), a′2(v) would form a triangle. Hence, a1 and a2 cannot
be embeddings, showing that the joint extension property fails.

Lemma 19. Let ∆ be a countable homogeneous relational structure and with the joint ex-
tension property such that Aut(∆) has no algebraicity. Let f ∈ Aut(∆), and suppose that
a1, a2, b are partial isomorphisms of ∆ such that

• f [Im(b)] ⊆ Dom(a1) = Dom(a2),
• a−1

1 (x) = a−1
2 (x) for all x ∈ Im(a1) ∩ Im(a2), and

• a1fb(x) = a2fb(x) for all x ∈ Dom(b).

Then a1, a2, b extend to α1, α2, β ∈ Aut(∆) with rich and co-rich image such that α1fβ =
α2fβ.

Proof. We construct α1, α2, and β by a back-and-forth argument, stepwise extending a1, a2,
and b. In our construction, we also maintain finite subsets A1, A2, B of D such that at each
stage during the construction, Im(a1)∩A1 = ∅, Im(a2)∩A2 = ∅, and Im(b1)∩B = ∅. Initially,
we set A1 = A2 = B = ∅. In each step, we either extend a1, a2, and b to partial isomorphisms
of ∆ such that the three conditions from the statement on a1, a2, b remain valid, or we add
elements to A1, A2, and B to make sure that the images of α1, α2 and β will be co-rich.

(1) Extending the domain of b. Let u ∈ D\Dom(b) be arbitrary. Since Aut(∆) is without
algebraicity, there exists an element v ∈ D \ (B ∪ f−1[Dom(a1)]) and an extension
b′ of b to a partial isomorphism of ∆ such that b′(u) = v. By the joint extension
property of ∆, there are partial isomorphisms a′1 extending a1 and a′2 extending a2

that are additionally defined on f(v) and a′1(f(v)) = a′2(f(v)). Since Aut(∆) has no
algebraicity we can assume that a′1(f(v)) = a′1(f(v)) /∈ A1 ∪A2.

(2) Extending the domain of a1 and a2. Let s ∈ D\Dom(a1). Since ∆ is homogeneous and
Aut(∆) is without algebraicity, there is an extension of a1 to a partial isomorphisms
a′1 of ∆ which is additionally defined on s such that a′1(s) /∈ (A1 ∪ Im(a2)). Similarly,
there is an extension of a2 to a partial isomorphisms a′2 of ∆ which is additionally
defined on s such that a′2(s) /∈ (A2 ∪ Im(a′1)).

(3) Extending B. Pick d ∈ D \ (B ∪ Im(b)), and add d to B.
(4) Extending A1 and A2. Pick d ∈ D \ (A1 ∪ Im(a1)), and add d to A1. We extend A2

similarly.
(5) Enriching the image of b. Let S ∈ Age(∆), let p ∈ S, and let e be an embedding of

S into ∆ such that e(x) ∈ B ∪ Im(b) for all x ∈ S \ {p}. Since ∆ is homogeneous
and Aut(∆) is without algebraicity, there is an element q ∈ D \ (Im(b) ∪ B) and an
embedding e′ of S into ∆ such that e′(p) = q and e′(x) = e(x) for all x ∈ S \ {p}. By
the homogeneity of ∆, there is u ∈ D and an extension of b to a partial isomorphism
b′ of ∆ with Dom(b′) = Dom(b) ∪ {u} such that b′(u) = q. Since Aut(∆) has no
algebraicity and the joint extension property, there exist extensions a′1 and a′2 of a1

and a2 that are additionally defined on f(q) such that a′1(f(q)) = a′2(f(q)) /∈ A1 ∪A2.
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(6) Enriching the image of a1 and a2. Let S ∈ Age(∆), and p ∈ S, and e be an embedding
of S into ∆ such that e(x) ∈ Im(a1)∪A1 for all x ∈ S \ {p}. Since ∆ is homogeneous
and Aut(∆) has no algebraicity, there is an element q ∈ D \ (Im(a1) ∪ A1) and an
embedding e′ of S into ∆ such that e′(p) = q and e′(x) = e(x) for all x ∈ S \ {p}. By
the homogeneity of ∆ there is an element s ∈ D \Dom(a1) and an extension a′1 of a1

to a partial isomorphism of ∆ that is additionally defined on s such that a′1(s) = q.
Since ∆ is homogeneous and Aut(∆) is without algebraicity, a2 has an extension a′2
to a partial isomorphism of ∆ that is additionally defined on s such that a′1(s) /∈ A1.
We extend a2 similarly.

(7) Enriching B. Let S ∈ Age(∆), and p ∈ S, and e an embedding of S into ∆ such that
e(x) ∈ Im(b) ∪ B for all x ∈ S \ {p}. Since ∆ is homogeneous and Aut(∆) without
algebraicity, there is an element q ∈ D \ (Im(b)∪B) and an embedding e′ of S into ∆
such that e′(p) = q and e′(x) = e(x) for all x ∈ S \ {p}. Add q to B.

(8) Enriching A1 and A2. Let S ∈ Age(∆), let p ∈ S, and let e an embedding of S into ∆
such that e(x) ∈ Im(a1)∪A1 for all x ∈ S \ {p}. Since ∆ is homogeneous and Aut(∆)
without algebraicity, there is an element q ∈ D \ (Im(a1) ∪ A1) and an embedding e′

of S into ∆ such that e′(p) = q and e′(x) = e(x) for all x ∈ S \ {p}. Add q to A1.
Similarly, we extend A2.

We perform these steps in turns so that each step is performed infinitely often. Because
of (1) and (2) we can make sure that we arrive at self-embeddings α1, α2, β of ∆ such that
α1fβ = α2fβ. Step (3) makes sure that the union over the sets B from the construction
equals the complement of Im(β). Similarly, step (4) makes sure that the union of the A1

and over the A2 yield the complement of Im(α1) and Im(α2), respectively. Repeating step
(5) infinitely often for all possible S ∈ Age(∆) ensures that Im(β) is rich. Repeating step
(6) infinitely often for all possible S ∈ Age(∆) ensures that Im(α1) and Im(α2) are rich.
Repeating step (7) infinitely often for all possible S ∈ Age(∆) ensures that the complement
of Im(β) is rich. Repeating step (8) infinitely often for all possible S ∈ Age(∆) makes sure
that the complement of Im(α1) and the complement of Im(α2) are rich. Since α1, α2, and β
are embeddings, and every set that contains a rich set is rich, the images of α1, α2, and β are
rich, too. �

Lemma 20. Let ∆ be a countable homogeneous relational structure with the joint extension
property such that Aut(∆) has no algebraicity. Let ξ be an injective endomorphism of the

monoid Aut(∆) which fixes Aut(∆) pointwise. Then ξ is the identity.

Proof. We write F for the set of self-embeddings of ∆ with rich and co-rich image. For
any element f of Aut(∆) define T (f) := {(α1, α2, β) ∈ F 3 | α1fβ = α2fβ}. Let u, s be
elements of ∆ with s 6= f(u). Our goal is to construct a triple (α1, α2, β) ∈ T (f) such
that β(u) = u and α1(s) 6= α2(s). Since Aut(∆) has no algebraicity, there are two distinct
elements t1, t2 and partial isomorphisms a1, a2 of ∆ with Dom(a1) = Dom(a2) = {f(u), s},
a1(f(u)) = a2(f(u)) = f(u), a1(s) = t1, and a2(s) = t2. Let b be the partial isomorphism
such that Dom(b) = Im(b) = {u}. Then the conditions of Lemma 19 are satisfied, and we
obtain the desired triple (α1, α2, β). The conditions β(u) = u and (α1, α2, β) ∈ T (f) imply
that α1(f(u)) = α2(f(u)). Hence, the element f(u) can be recovered from T (f), namely

{f(u)} =
{
s ∈ ∆ | for all (α1, α2, β) ∈ T (f) with β(u) = u it holds that α1(s) = α2(s)

}
.

Thus ξ(f) = f . �
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Theorem 21. Let ∆ be a countable homogeneous relational structure such that Aut(∆) has no
algebraicity and with the joint extension property such that Aut(∆) has automatic homeomor-

phicity. Then the monoid Aut(∆) of self-embeddings of ∆ has automatic homeomorphicity.

Proof. By Lemma 20, every injective endomorphism ξ of the monoid Aut(∆) with ξ �Aut(∆)=

idAut(∆) is the identity. Hence, the conditions of Lemma 12 hold, and thus Aut(∆) has
automatic homeomorphicity. �

Corollary 22. The self-embedding monoids of the following structures have automatic home-
omorphicity: the structure without structure, (N; =); the random tournament; the random
graph; the random directed graph; the random k-uniform hypergraph for k ≥ 2.

Proof. It is well-known that all structures that appear in the statement are homogeneous
structures and have automorphism groups without algebraicity. It is easy to verify that
all these structures have the joint extension property. References for the proofs of automatic
continuity of the respective groups have been given in Section 3.6; automatic homeomorphicity
of the groups follows from Proposition 7. Finally, automatic homeomorphicity of the given
monoids follows from Theorem 21. �

5. Topological Clones

5.1. Birkhoff’s theorem and continuity.

Definition 23. If C is a function clone acting on a set C, then we write (C; C ) for any
algebra on C whose fundamental operations are precisely the operations of C . Note that
there are many such algebras, depending on the indexing of the functions in C ; we emphasize
that we also allow multiple appearances of the same function in C in an indexing.

When C is a class of algebras with common signature τ , then P(C) denotes the class of all
products of algebras from C, S(C) denotes the class of all subalgebras of algebras from C, and
H(C) denotes the class of all homomorphic images of algebras from C. The following classical
theorem from universal algebra gives us representations of all actions factors of the abstract
clone of a given function clone C by means of these operators.

Theorem 24 (Birkhoff [Bir35]). Let C ,D be function clones acting on sets C, D respectively.
Then there exists a surjective homomorphism ξ : C → D if and only if (D; D) ∈ HSP(C; C )
for some indexing of those algebras.

Theorem 25. Any function clone C with domain C which contains O
(1)
C has automatic

continuity.

Proof. Let D be a countably infinite set, and let ξ : C → D be a homomorphism onto a (not
necessarily closed) subclone D of OD. Then (D; D) ∈ HSP(C; C ) by Theorem 24. In other
words, there is a subset S of some power CI and an equivalence relation ∼ on S such that both
S and ∼ are invariant under the componentwise action of C on CI and such that the algebra
(S; C )/∼ is isomorphic to (D; D). The clone isomorphism ξ is then obtained by sending every
function f ∈ C to the corresponding function (with the same name) in (S; C )/∼.

In the following, we view tuples in CI as functions from I to C, and in particular are going

to speak of the range and the kernel of a tuple. Note first that since S is invariant under O
(1)
C ,

it contains with every tuple a ∈ CI all tuples whose kernel is at least as coarse as the kernel
of a; in other words, whether or not a tuple is in S only depends on its kernel, and the kernels
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of tuples in S are upward closed in the lattice of equivalence relations on I (where the order
is containment). Now let F ⊆ S consist of those tuples which have finitely many values (i.e.,
whose kernel has finitely many classes). Then (F ; C ) is a subalgebra of (S; C ). We will now
show that every tuple in S is ∼-equivalent to a tuple in F with finite range. We then have
that (F ; C )/∼ and (S; C )/∼ are isomorphic. But the mapping which sends every function in
C to its corresponding function in (F ; C )/∼ is continuous: among H, S,P, the only operator
which might act discontinuously on the clone is the operator P; however, it is easy to see that
it does act continuously if the product is finite, or consists only of finite range tuples.

So given t ∈ S, we show that it is ∼-equivalent to a tuple in F . We may assume that t
has infinite range, for otherwise there is nothing to show; in particular, C is infinite. Next
observe that if there exists t′ ∈ S with the same kernel as t which is ∼-equivalent to a tuple

in F , then t is equivalent to a tuple in F as well: for in that situation, there exists f ∈ O
(1)
C

sending t′ to t. Hence, if c ∈ F is so that t′ ∼ c, then t ∼ f(c), and f(c) ∈ F . Now there is a
continuum of tuples with the same kernel as t and such that the ranges of any two tuples of
the continuum have finite intersection (the ranges form an almost disjoint family, see [Jec03]).
Because D is countable, ∼ has only countably many classes, and thus there exist t′, t′′ in the

continuum with t′ ∼ t′′. Pick any function f ∈ O
(1)
C which is injective on the range of t′ and

takes only finitely many values on the range of t′′. We then have f(t′) ∼ f(t′′), and hence
f(t′) is equivalent to a tuple in F . But f(t′) has the same kernel as t, and hence also t is
equivalent to a tuple in F . �

Recall from Section 3.6 that S has automatic continuity; we obtain the analogous statement
for O and O(1) as a corollary of Theorem 25.

Corollary 26. O and O(1) have automatic continuity.

5.2. Constants and openness.

Proposition 27. Let C be a closed function clone with domain C which contains all constant
functions on C, and let ξ : C → D be an isomorphism onto a function clone D . Then the
image of any open subset of C under ξ is open in D .

Proof. For n ≥ 1 and a1, . . . , an, b ∈ C, let U be the basic clopen set of all n-ary functions
f ∈ C with f(a1, . . . , an) = b. Then writing ga for the unary constant function on C with
value a for all a ∈ C, we have that U consists precisely of those n-ary functions f ∈ C
for which the equation gb(x) = f(ga1(x), . . . , gan(x)) holds. Because ξ is an isomorphism,
ξ[U ] consists precisely of those n-ary functions f in D for which the equation ξ(gb)(x) =
f(ξ(ga1)(x), . . . , ξ(gan)(x)) holds. Hence, ξ[U ] is a closed subset of D (in fact, since ξ is a
clone homomorphism, the functions ξ(gak) are constant, so that one even sees right away that
ξ[U ] is clopen). �

Corollary 28. Any closed function clone C with domain C which contains O
(1)
C has automatic

homeomorphicity. In particular, O and O(1) have automatic homeomorphicity.

Proof. This is a direct consequence of Theorem 25 and Proposition 27. �

5.3. Transitivity and openness.

Definition 29. We call a function clone transitive iff the permutation group of its invertible
unary functions acts transitively on the domain of the clone. We call a topological clone
transitive iff it is the topological clone of a transitive function clone.
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The following example shows that contrary to closed oligomorphic subgroups of S, which
always have a transitive action, closed oligomorphic subclones of O need not be transitive.

Proposition 30. There exists an oligomorphic closed subclone of O which is not transitive.

Proof. Let D be the disjoint union of countable sets A and B, and set C := Pol(D;A,B).
Clearly, C is oligomorphic; let C be its topological clone. Suppose that C is also the topolog-
ical clone of a transitive function clone C ′ with domain D′. Then (D′; C ′) ∈ HSP(D; C ) by
Theorem 24. Let I be a set, S be a subuniverse of (DI ; C ), and ∼ be an equivalence relation
on S which is invariant under C such that (D′; C ′) is isomorphic to (S; C )/∼. Consider two
arbitrary equivalence classes P,Q ⊆ S of ∼. By the transitivity of C ′, there exists an invert-
ible α ∈ C (1) such that α(P ) = Q in the interpretation of α in the algebra (S; C )/∼. Now if
t is an arbitrary tuple in P , then α(P ) = Q equals the ∼-class of α(t) ∈ S. The tuple α(t)
takes values in A precisely when t does. Therefore, if f, g ∈ C are binary functions which
agree on A2 and B2, then f(P,Q) = g(P,Q) in their action in (S; C )/∼, since f(P,Q) and
g(P,Q) is the ∼-class of the tuple f(t, α(t)) = g(t, α(t)). Hence, f and g are equal in their
interpretation in (S; C )/∼, even if they differ on A × B. This contradicts the fact that the
mapping which sends every f ∈ C to the function with the same name in (S; C )/∼ is an
isomorphism. �

The proof of Theorem 25 can basically be copied to obtain that the function clone of
Proposition 30 without transitive action has automatic continuity.

Proposition 31. Let D be a countable set, and let A ⊆ D. Then Pol(D;A) and Pol(D;A,B)
have automatic continuity.

We will now see how transitivity of a topological clone helps to lift openness of isomorphisms
from this clone from the unary part to higher arities.

Proposition 32. Let C be a transitive topological clone, and let ξ be an injective homomor-
phism from C into a topological clone C′. If the restriction of ξ to C(1) is open, then so is
ξ.

Proof. For any clone W and g1, . . . , gk ∈W(1), let pg1,...,gk be the mapping pg1,...,gk : W(k) →
W(1) defined by

pg1,...,gk(f(x1, . . . , xk)) := f(g1(x), . . . , gk(x)).

Let C be a transitive function clone acting on a set D such that C is the topological clone of
C . Now let k ≥ 1 and a0, . . . , ak ∈ D be given, and let U = {f ∈ C (k) | f(a1, . . . , ak) = a0};
since all basic open sets of C are of this form, and since ξ is injective, it is enough to show
that ξ[U ] is open. Let G be the permutation group of invertibles of C (1). Since G acts
transitively, there are α1, . . . , αk ∈ G and b ∈ D such that αi(b) = ai for all 1 ≤ i ≤ k. Set

U ′ := {g ∈ C (1) | g(b) = a0}. We claim that

ξ[U ] = ξ[p−1
α1,...,αk

[U ′]] = p−1
ξ(α1),...,ξ(αk)[ξ[U

′]].

The first equation is clear since U is the preimage of U ′ under pα1,...,αk . To see the sec-
ond equation, let f ∈ ξ[p−1

α1,...,αk
[U ′]], and pick g ∈ p−1

α1,...,αk
[U ′] such that f = ξ(g). Since

g(α1, . . . , αk) ∈ U ′, we have ξ(g(α1, . . . , αk)) = f(ξ(α1), . . . , ξ(αk)) ∈ ξ[U ′], which implies
f ∈ p−1

ξ(α1),...,ξ(αk)[ξ[U
′]]. These implications can be reversed using the fact that ξ is injective,

showing the other inclusion.
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We thus have that ξ[U ] is open since ξ[U ′] is open and pξ(α1),...,ξ(αk) is continuous, proving
the proposition. �

Corollary 33. Let C be a closed function clone with countably infinite domain D which
contains the group SD of all permutations on D, and let ξ : C → D be an isomorphism onto
a function clone D . Then the image of any open subset of C under ξ is open in D .

Proof. It is known that either C contains all constant functions, or its unary part consists
precisely of all injections (i.e., the closure of SD in O(1)) [BCP10]. In the first case the claim
follows from Corollary 28, in the latter case from Corollary 22 and Proposition 32. �

Proposition 32 can also be used in the other direction for showing continuity. Although
the proof is dual, we include it for the convenience of the reader.

Proposition 34. Let C be a topological clone, and let ξ be a homomorphism from C onto
a transitive topological clone C′. If the restriction of ξ to C(1) is continuous, then ξ is
continuous as well.

Proof. Let D be the set on which C′ acts transitively as a function clone C ′. Now let k ≥ 1
and a0, . . . , ak ∈ D be given, and let U = {f ∈ C ′(k) | f(a1, . . . , ak) = a0} be a basic open
set; we need to show that ξ−1[U ] is open. Let G ′ be the permutation group of invertibles of

C ′(1). Since G ′ acts transitively, there are α1, . . . , αk ∈ G ′ and b ∈ D such that αi(b) = ai for

all 1 ≤ i ≤ k. Set U ′ := {g ∈ C ′(1) | g(b) = a0}. Using the fact that ξ is onto, pick βi ∈ C
such that ξ(βi) = αi, for all 1 ≤ i ≤ k. We claim that

ξ−1[U ] = ξ−1[p−1
α1,...,αk

[U ′]] = p−1
β1,...,βk

[ξ−1[U ′]].

The first equation is clear since U is the preimage of U ′ under pα1,...,αk . To see the second
equation, let f ∈ ξ−1[p−1

α1,...,αk
[U ′]]. Then ξ(f(β1, . . . , βk)) = ξ(f)(α1, . . . , αk) ∈ U ′, so that

indeed f ∈ p−1
β1,...,βk

[ξ−1[U ′]]. The implications can be reversed, proving the other inclusion.

We thus have that ξ−1[U ] is open since ξ−1[U ′] is open and pβ1,...,βk is continuous, proving
the proposition. �

5.4. Gates and continuity.

5.4.1. Simple gate coverings. The following concept will be useful when we wish to prove
continuity of a clone homomorphism knowing that it is continuous on unary functions.

Definition 35. A gate covering of a topological clone C consists of

• an open covering U of C and
• functions fU ∈ U for all U ∈ U

such that for all U ∈ U and all Cauchy sequences (gj)j∈ω of functions in U of the same arity

n ≥ 1 there exist unary functions αj , βji ∈ C, where j ∈ ω and 1 ≤ i ≤ n, such that

• gj(x1, . . . , xn) = αj(fU (βj1(x1), . . . , βjn(xn)));

• (αj)j∈ω, (βji )j∈ω are Cauchy for all 1 ≤ i ≤ n.

The functions fU are called the gates of the covering, and each fU the gate for U .

Lemma 36. Let C be a topological clone which has a gate covering, and let ξ : C→ C′ be a
homomorphism to a topological clone C′. If the restriction of ξ to C(1) is Cauchy continuous,
then so is ξ.
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Proof. Let (gj)j∈ω be a Cauchy sequence in C; we have to show that (ξ(gj))j∈ω is Cauchy
in C′. Let U be a gate covering of C. We may assume that all gj have equal arity n ≥ 1,

and that there exists U ∈ U containing all gj . Let αj , βji be as in the definition of a gate

covering. Then because the restriction of ξ to C(1) is Cauchy continuous, the images of

the sequences (αj)j∈ω, (βji )j∈ω under ξ are Cauchy. Hence, (ξ(gj))j∈ω is Cauchy as well,

because ξ(gj)(x1, . . . , xn) = ξ(αj)(ξ(fU )(ξ(βj1)(x1), . . . , ξ(βjn)(xn))) for all j ∈ ω and because
composition is continuous. �

Theorem 37. Let C be a closed subclone of O which has a gate covering, is transitive, and
such that C(1) has automatic homeomorphicity. Then C has automatic homeomorphicity.

Proof. Let C′ be another closed subclone of O and let ξ : C→ C′ be an isomorphism. Then ξ
is open by Proposition 32 since C is transitive and since the restriction of ξ to unary functions
is a homeomorphism. By Lemma 36, ξ is continuous. �

We will now apply Theorem 37 to the Horn clone, a well-studied (cf. [BCP10]) function
clone on a countable domain which plays an important role for equality constraint satisfaction
problems [BK08, BC10].

Definition 38. The Horn clone H is the smallest closed function clone on a countably
infinite domain D which contains all injections from finite powers of D into D. It is easy to
see that H consists of all functions of the form

f(πni1(x1, . . . , xn), . . . , πnik(x1, . . . , xn)),

where 1 ≤ k ≤ n, f : Dk → D is injective, and i1, . . . , ik ∈ {1, . . . , n} are such that i1 < · · · <
ik; in this representation of a fixed function in H , the parameters n, k, f , and i1, . . . , ik are
unique. We call the functions in H essentially injective.

Proposition 39. H has automatic homeomorphicity.

Proof. We show that H has a gate covering. As open sets we pick the sets H
(n)
i1,...,ik

of

functions of the form f(πni1(x1, . . . , xn), . . . , πnik(x1, . . . , xn)), as in Definition 38. For each set

H
(n)
i1,...,ik

, we pick a function

f(x1, . . . , xn) := f ′(πni1(x1, . . . , xn), . . . , πnik(x1, . . . , xn)),

where f ′ : Dk → D is bijective. It is clear that every g ∈H
(n)
i1,...,ik

can be uniquely written as

g(x1, . . . , xn) = α(f(x1, . . . , xn)),

where α ∈H (1) and f is the function we picked for H
(n)
i1,...,ik

. Now if (gj)j∈ω is a converging

sequence of functions in H
(n)
i1,...,ik

, and we write gj(x1, . . . , xn) = αj(f(x1, . . . , xn)), then the

αj converge because the gj converge and because f is onto. Hence H has a gate covering.
Because H (1) has automatic homeomorphicity by Theorem 21, and because H is transitive,
Theorem 37 implies that H has automatic homeomorphicity as well. �

5.4.2. Advanced gate coverings. Often the function clone for which we want to show automatic
homeomorphicity does not have a gate covering itself, but a closely related clone does. We
will now refine our gate covering technique to deal with this situation.
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Definition 40. For a clone C and a unary element e in C, we write e ◦ C for the smallest
subclone of C which contains all elements of the form e◦f , where f ∈ C. That is, e◦C consists
of elements of the form e ◦ f as well as the projections.

Lemma 41. Let C ,C ′ be function clones, and let ξ : C → C ′ be an isomorphism. Let
moreover e ∈ C be unary and so that both e and ξ(e) are injective. If the restriction of ξ to
e ◦ C is continuous (open), then also ξ is continuous (open).

Proof. The mappings ψ : C → e ◦ C and ψ′ : C ′ → ξ(e) ◦ C ′ defined by f 7→ e ◦ f and
f 7→ ξ(e) ◦ f , respectively, are continuous, injective, and open. Writing ξ′ for the restriction
of ξ to e ◦ C , we have ξ = ψ′−1 ◦ ξ′ ◦ ψ, proving the lemma. �

Theorem 42. Let C be a closed subclone of O which is transitive, and such that C(1) has
automatic homeomorphicity. If there exists e ∈ C(1) in the closure of the invertibles of C(1)

such that e ◦C has a gate covering, then C has automatic homeomorphicity.

Proof. Let ξ : C→ C′ be an isomorphism onto a closed subclone C′ of O. Then the restriction
of ξ to C(1) is a homeomorphism onto C′(1), because C(1) has automatic homeomorphicity.
Since e is in the closure of the invertibles of C(1) we have that ξ(e) is in the closure of the

invertibles of C′(1). Hence, e and ξ(e) are injective in any actions of C and C′ as function
clones, and Lemma 41 applies. Because e ◦ C has a gate covering, and the restriction of ξ
to the unary functions in e ◦ C is continuous, the restriction of ξ to e ◦ C is continuous by
Lemma 36. Hence, ξ is continuous by Lemma 41. By Proposition 32, ξ is open. �

We now give an example of a function clone where we have to use Theorem 42 rather than
Theorem 37 in order to prove automatic homeomorphicity. In the following, let N denote the
non-edge relation on the random graph (V ;E), i.e., the relation defined on the random graph
by the formula x 6= y ∧ ¬E(x, y).

Lemma 43. Let e be a self-embedding of the random graph (V ;E) whose range is co-rich.
Then e ◦ (Pol(V ;E) ∩H ) has a gate covering.

Proof. For every n ≥ 1 we construct a gate for the set Fn := e◦ (Pol(V ;E)∩H
(n)

1,...,n) of n-ary

injective functions in e ◦ Pol(V ;E) (which is clopen subset of this clone). The proof for sets

of the form Pol(V ;E)∩H
(n)
i1,...,ik

(i.e., n-ary functions with a fixed set of dummy variables) is
similar.

Consider the language τ := {A,B,EA, EB, φ, ψ1, . . . , ψn}, in which A,B are unary predi-
cates, EA, EB are binary relational symbols, φ is an n-ary function symbol, and ψ1, . . . , ψn
are unary function symbols. We define the following axioms.

(1) The sets A,B form a partition of the domain;
(2) EA, EB are the edge relation of an undirected graph without loops on A and B,

respectively;
(3) φ is an injective partial function whose domain is An and whose range is contained in

B such that
∧

1≤k≤nEA(uk, vk) implies EB(φ(u1, . . . , un), φ(v1, . . . , vn));

(4) each ψk is a partial function defined on the range of φ such that ψk(φ(u1, . . . , un)) = uk
for all (u1, . . . , un) in the domain of φ.

Let C be the class of all τ -structures satisfying these axioms. In the following, when Γ ∈ C,
then we write AΓ and so forth for the interpretations of the symbols of τ in Γ. Every triple
(g, S, T ) where g ∈ Fn, S, T ⊆ V , and g[Sn] ⊆ T , gives rise to a structure Γ(g,S,T ) in C:



RECONSTRUCTING THE TOPOLOGY OF CLONES 25

AΓ := S ; BΓ := T ; the relations EΓ
A, E

Γ
B are just the appropriate restrictions of E; φΓ equals

g; and the ψΓ
k are defined as required by Item (4). Conversely, every countable structure in C

is of the form Γ(g,S,T ) as above. We write Γg for Γ(g,V,V ).
The class of finite structures in C is a Fräıssé class if we extend the classical definition of a

Fräıssé class as in [Hod97] to structures with partial functions; this could also be avoided by
adding a distinguished element ∞ to the structures and working with total functions which
yield ∞ whenever our partial functions were undefined. To see the amalgamation property
of C, we indicate how given finite structures Γ0,Γ1,Γ2 ∈ C and embeddings s1 : Γ0 → Γ1 and
s2 : Γ0 → Γ2 one can build a structure Γ3 in C and embeddings t1 : Γ1 → Γ3 and t2 : Γ2 → Γ3

such that t1 ◦ s1 = t2 ◦ s2. We may assume that Γ0 is a substructure of Γ1 and Γ2, and that
s1, s2 are the identity embeddings. To begin with, AΓ3 equals AΓ1 ∪ AΓ2 . For φΓ3 , one first
takes the union of φΓ1 and φΓ2 , and then extends the function to AΓ3 injectively, using new
elements as values; BΓ3 will consist of BΓ1 ∪BΓ2 plus these new values. Finally, one extends
EB on BΓ3 so that Item (3) is satisfied, and defines the ψk as prescribed by Item (4). The
embeddings t1, t2 are just the identity functions on Γ1 and Γ2, respectively. The Fräıssé limit
of C is of the form Γf for some f ∈ Fn; we claim that any such f is a gate for Fn.

Let any g ∈ Fn be given. We will find self-embeddings α, β1, . . . , βn of (V ;E) such that
g(x1, . . . , xn) = α(f(β1(x1), . . . , βn(xn)). It will be convenient to construct β := (β1, . . . , βn)
as a function from V n into itself which respects equality of coordinates.

V n g−−−−→ V

β

y xα
V n f−−−−→ V

We will construct β and α simultaneously by a back-and-forth argument using the univer-

sality and homogeneity of Γf : each βk will be an embedding from the structure (AΓg ;E
Γg
A ) =

(V ;E) into (AΓf ;E
Γf
A ) = (V ;E), and α will be an embedding from (BΓf ;E

Γf
B ) = (V ;E) into

(BΓg ;E
Γg
B ) = (V ;E); moreover, we will have φΓg = α ◦ φΓf ◦ β. Suppose that β is already

defined on {p1, . . . , pr} ⊆ V n, and α is already defined on {v1, . . . , vw} ⊆ V . We will show
that we can extend the domains of β and α whilst staying consistent (i.e., whilst maintaining
the above conditions).

Consider first the case where we wish to extend the domain of β to some p ∈ V n. Then let
p′ ∈ V n be so that

(1) the type of p′ over (β(p1), . . . , β(pr), v1, . . . , vw) in Γf equals the type of p
over (p1, . . . , pr, α(v1), . . . , α(vw)) in Γg (in particular, β remains an embedding).

We set β(p) := p′ and α(f(p′)) := g(p). Easy!
Next consider the case where we wish to extend the domain of α to some v ∈ V . If v is

contained in the range of f , and for the unique element p′ ∈ V n with f(p′) = v we have that
there exists p ∈ V n such that the condition above is valid, then we can simply extend β to
p as above, hence thereby extending α to v. However, v may either not be contained in the
range of f , or p might not exist, because Γg is not necessarily universal or homogeneous; in
this case, we have to use the fact that we can send v to an element outside the range of g. It
is here that we use the co-richness of the image of g. In this situation, let v′ ∈ V be so that

(2) v′ is not contained in the range of g;
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(3) the type of v′ over (α(v1), . . . , α(vw)) in (V ;E) equals the type of v over (v1, . . . , vw)
in (V ;E) (i.e., α remains an embedding).

Condition (2) ensures that we do not get stuck in the future when we wish to extend β to
some p ∈ V n with g(p) = v. Now set α(v) := v′.

The fact that these two steps are always possible proves the gateness of f for Fn, since we
can extend the embeddings α and β in an alternating fashion to obtain total functions.

Now let (gj)j∈ω be a converging sequence of functions in Fn. By the above, we can write
every gj as

gj(x1, . . . , xn) = αj(f(βj1(x1), . . . , βjn(xn))),

for self-embeddings αj , βj1, . . . , β
j
n of (V ;E). Write βj := (βj1, . . . , β

j
n). Now for every finite

set F ⊆ V n there exists dF ∈ ω such that all gj with j ≥ dF agree on F . We can start
the construction of βj assuming that βj agrees with βdF on F , since our construction only
depends on what gj does on F , and not on what it does outside. Hence, we can assure that
the βj agree on F from dF on, and thus assure that (βj)j∈ω converges. In the same way, for
every finite set S ⊆ V , we can start our construction of αj and of βj with any given values
for αj on S. We can thus also assure that (αj)j∈ω converges. �

Corollary 44. The clone Pol(V ;E) ∩H of essentially injective functions in Pol(V ;E) has
automatic homeomorphicity.

Proof. This is a direct consequence of Lemma 43, Theorem 21, and Theorem 42. �

There exist 17 closed function clones containing the automorphism group of the ran-
dom graph such that a relational structure with a first-order definition in (V ;E) has a
tractable CSP if and only if its polymorphism clone contains one of the function clones
of that list [BP11b]. The clones of that list are called minimal tractable polymorphism clones
over the random graph. With one exception, they all consist of essentially injective functions
with a certain predescribed behavior with respect to edges and non-edges. The method of
Lemma 43 yields the following.

Corollary 45. All minimal tractable polymorphism clones over the random graph have au-
tomatic homeomorphicity.

Proof. The exception among the 17 function clones mentioned above is the function clone cor-
responding to the transformation monoid consisting of Aut(V ;E) plus all constant functions.
If ξ is an isomorphism from this clone onto another closed subclone of OV , then the restriction
of ξ is to Aut(V ;E) is continuous and open by Corollary 22; since constant functions are sent
to constant functions, it is clear that ξ is continuous and open as well.

The other 16 function clones all have Aut(V ;E) as their unary part and consist of essentially
injective functions, similarly to Pol(V ;E) ∩H . The only difference with the latter clone is
that there are stronger requirements on the functions in the clone than preservation of E (for
example, in all cases they also preserve N). Adjusting Item (3) in the axioms of the Fräıssé
class accordingly, the very same proof as in Lemma 43 goes through to show automatic
homeomorphicity. �

5.4.3. Gates for endomorphisms and decomposing functions: Pol(V ;E). One can also use the
gate technique in order to show continuity of, say, homomorphisms from the endomorphism
monoid of a structure given continuity of their restrictions to the embedding monoid. Con-
sider, for example, the random graph (V ;E); then its self-embedding monoid Aut(V ;E) has
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automatic homeomorphicity by Corollary 22. Using the same method as in Lemma 43, we
can construct an endomorphism f of (V ;E) such that for all converging sequences (gj)j∈ω of
functions in e ◦End(V ;E), where e is a fixed self-embedding of (V ;E) with co-rich range, we
have self-embeddings αj , βj of (V ;E) such that

• gj = αj ◦ f ◦ βj for all j ∈ ω;
• (αj)j∈ω and (βj)j∈ω converge.

Lemma 46. Let ξ be an isomorphism from End(V ;E) onto another closed submonoid of

O
(1)
V . Then ξ is continuous.

Proof. When constructing the gate f as in Lemma 43, we of course set n = 1, and do not
require φ to be injective (since we do not have to maintain injectivity in the amalgamation,
we can also drop Item (4)). The rest of the proof is identical with the proof of Lemma 43. �

Lemma 47. Let ξ be an isomorphism from Pol(V ;E) onto another closed subclone of OV .
Then ξ is continuous.

Proof. We know that the restrictions of ξ to End(V ;E) and to Pol(V ;E)∩H are continuous
by Corollary 44 and Lemma 46. Let e be a self-embedding of the random graph (V ;E) whose
range is co-rich. We show that the restriction of ξ to e ◦Pol(V ;E) is continuous; the theorem
then follows from Lemma 41.

We first show that if g is any n-ary function in e◦Pol(V ;E) for some fixed n ≥ 1, then g can
be written as h ◦ f , where f ∈ Pol(V ;E) is an n-ary injective function, and h ∈ End(V ;E).

To this end, suppose that values under h and f have already been defined for v1, . . . , vw ∈ V
and for p1, . . . , pr ∈ V n, respectively.

If we wish to define f on some p ∈ V n, then pick f(p) ∈ V \ {v1, . . . , vw} such that
E(f(p), vi) iff E(g(p), h(vi)), for all 1 ≤ i ≤ w; subsequently, set h(f(p)) := g(p). Clearly,
that way h remains a partial self-embedding of (V ;E). To see that the extended function f
still preserves E, suppose that p and pj are adjacent in all components. Then E(g(p), g(pj)),
or written differently, E(g(p), h ◦ f(pj)) holds. Writing vi = f(pj) we see that our choice of
f(p) implies E(f(p), vi), and so E(f(p), f(pj)).

If we wish to extend the domain of h to some v ∈ V , then simply pick h(v) outside the
range of g so that it remains an embedding.

Given a sequence (gj)j∈ω of functions in e ◦ Pol(V ;E), we can write each gj as hj ◦ f j as
above. Moreover, we can pick the hj and f j so that they converge: for from the construction of
those functions we see that if they are (consistently) predefined on finite domains, then one can
always extend them and complete the construction. Since (hj)j∈ω and (f j)j∈ω converge, so do
(ξ(hj))j∈ω and (ξ(f j))j∈ω, because the restrictions of ξ to End(V ;E) and to Pol(V ;E)∩H are
continuous by Corollary 44 and Lemma 46. Hence, (ξ(gj))j∈ω = (ξ(hj) ◦ ξ(f j))j∈ω converges
to ξ(h) ◦ ξ(f) = ξ(h ◦ f) = ξ(g), where h, f, g are the limits of the sequences (hj)j∈ω, (f j)j∈ω,
and (gj)j∈ω, respectively. �

5.5. Topological Birkhoff and openness. When C is a class of algebras with common
signature τ , then Pfin(C) denotes the class of all finite products of algebras from C. The
following is an strengthening of Theorem 24 for certain function clones.

Theorem 48 (Bodirsky and Pinsker [BP]). Let C ,D be closed function clones acting on
countable sets C, D respectively such that C is oligomorphic and such that the algebra (D; D)
is finitely generated. Then there exists a surjective continuous homomorphism ξ : C → D if
and only if (D; D) ∈ HSPfin(C; C ) for some indexing of those algebras.
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Lemma 49. Let ξ : Pol(V ;E) → D be an isomorphism onto a closed subclone D of OV .
Then ξ is open.

Proof. Consider any finitely generated subalgebra B of (V ; D) with at least two elements.
By Lemma 47 we know that ξ is continuous, and hence so is the mapping ξ′ which sends
every function f ∈ Pol(V ;E) to ξ(f)�B. Hence, by Theorem 48, the algebra (B; D) is a
homomorphic image of a subalgebra of the algebra (V ; Pol(V ;E))n, for some n ≥ 1. We
write S for the universe of that subalgebra, and ∼ for the congruence relation on S such that
(S; Pol(V ;E))/∼ is isomorphic to (B; D). We will show that ξ′ is open and injective. Then
ξ is open as well, because ξ = r−1 ◦ ξ′ for the continuous mapping r which restricts every
function in ξ[Pol(V ;E)] to B.

Let QE (Q=) consist of all pairs (i, j) such that 1 ≤ i, j ≤ n and such that E(ai, aj)
(ai = aj) for all a ∈ S. Write P for those (i, j) with 1 ≤ i, j ≤ n which are contained in
neither of the two sets. Then there exists a tuple t ∈ S such that N(ti, tj) for all (i, j) ∈ P :
it is enough to pick for every pair (i, j) ∈ P tuples tEi,j and t=i,j witnessing that (i, j) /∈ QE
and (i, j) /∈ Q=, and then apply a function f ∈ Pol(V ;E) to all those tuples so that the
result is a tuple t as desired. Now it is clear that for any two tuples a, c in S, there exists
a binary function f ∈ Pol(V ;E) such that f(a, t) = c: setting the values on (a, c) does not
violate E, and f can be extended to a total function by the universality and homogeneity of
the random graph. For a, b ∈ S, write I(a, b) for the set of all 1 ≤ i ≤ n such that ai = bi.
Then if a, b, c, d ∈ S are so that I(a, b) ⊆ I(c, d), then f(a, t) = c and f(b, t) = d for an
appropriate function f ∈ Pol(V ;E), by the same argument as above. Hence, in this situation
a ∼ b implies c ∼ d. In particular, whether or not a ∼ b holds for given a, b ∈ S only depends
on I(a, b). Let W be the set of all subsets of {1, . . . , n} of the form I(a, b), where a, b ∈ S
and a ∼ b. Then by the above, W is upward closed and for a, b ∈ S we have a ∼ b if and only
if I(a, b) ∈ W . Moreover, W is closed under intersections: when I, J ∈ W , then there exist
tuples a, b, c ∈ S such that I(a, b) = I, I(b, c) = J , and I(a, c) = I ∩ J . Since a ∼ b and b ∼ c
imply a ∼ c we infer I ∩ J ∈ W . We cannot have ∅ ∈ W , for otherwise W would contain
all subsets of {1, . . . , n}, and hence ∼ would identify all tuples of S; but this contradicts our
assumption that B has more than one element. Consequently, the intersection of all sets in
W is non-empty. Picking any 1 ≤ i ≤ n in this intersection, we have that ai 6= bi implies that
a ∼ b does not hold, for all a, b ∈ S. Moreover, because Aut(V ;E) acts transitively on V , the
projection of the set S onto its i-th coordinate equals V .

It follows immediately that ξ′ is injective. Let U be a basic open subset of Pol(V ;E), i.e., U
consists of all k-ary f ∈ Pol(V ;E) which satisfy f(a1, . . . , ak) = a0, for fixed a0, . . . , ak ∈ V .
Then picking any ∼-classes A0, . . . , Ak such that t ∈ Aj implies ti = ai for all 1 ≤ j ≤ k, the
set U can be described via the action of Pol(V ;E) on B as follows: it consists of those k-ary
f ∈ Pol(V ;E) which satisfy f(A1, . . . , Ak) = A0. Hence, ξ[U ] is clopen. �

Theorem 50. Pol(V ;E), the polymorphism clone of the random graph, has automatic home-
omorphicity.

Proof. This follows from Lemmas 47 and 49. �

6. Open Problems

It is known that the closed subgroups of S are precisely those topological groups that are
Polish and have a left-invariant ultrametric [BK96].
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Question 1. Give a characterization of those topological monoids that appear as closed sub-
monoids of O(1).

Question 2. Give a characterization of those topological clones that appear as closed sub-
clones of O.

In connection with Theorem 8 and the known counterexample for closed oligomorphic
groups [EH90], we ask the following.

Question 3. Is there a closed oligomorphic subclone of O which does not have reconstruction?

The following is an example of a relatively simple function clone where our techniques fail.

Question 4. Does Pol(Q;<) have automatic homeomorphicity?
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d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at arXiv:1201.0856,
2012.



30 MANUEL BODIRSKY, MICHAEL PINSKER, AND ANDRÁS PONGRÁCZ
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