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Abstract

In this paper we investigate the connections between Ramsey
properties of Fraïssé classes K and the universal minimal flow M(GK)
of the automorphism group GK of their Fraïssé limits. As an exten-
sion of a result of Kechris, Pestov and Todorcevic [14] we show that if
the class K has finite Ramsey degree for embeddings, then this degree
equals the size of M(GK). We give a partial answer to a question of
Angel, Kechris and Lyons [1] showing that if K is a relational Ram-
sey class and GK is amenable, then M(GK) admits a unique invariant
Borel probability measure that is concentrated on a unique generic
orbit.
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1 Introduction

With a Fraïssé class of finite structures K one can associate in a natural
way a topological group GK, namely, the automorphism group of the Fraïssé
limit of K. For example, the Fraïssé limit of finite dimensional vector spaces
over a fixed finite field F is the ℵ0-dimensional vector space V∞,F over F with
automorphism group GL(V∞,F ). The groups of the form GK are precisely
the Polish groups that are non-archimedian in the sense that they have a
basis at the identity consisting of open subgroups ([2]).

In [14] Kechris, Pestov and Todorcevic developed a “duality theory” [13,
§4(A)] linking finite combinatorics of K with topological dynamics of GK,
more precisely, it links combinatorial properties of K with properties of the
universal minimal GK-flow M(GK). For groups of the form GK the flow
M(GK) is an inverse limit of metrizable GK-flows (cf. [14, T1.5]), and in
many interesting cases is metrizable itself. If so, M(GK) either has the size
of the continuum or else is finite [14, §1(E)]. An extreme case is thatM(GK)

is a single point, that is, GK is extremely amenable. It is shown in [14] that
for ordered K this happens if and only if K is Ramsey. For example, V∞,F
together with the so-called “canonical order” has an extremely amenable
automorphism group.

We give a characterisation ofM(GK) having an arbitrary finite cardinal-
ity in terms of Ramsey properties of K. Namely, we use Fouché’s Ramsey
degrees [8, 9, 10] and show that M(GK) has finite size d if and only if K has
Ramsey degree d (Theorem 3.1). We do not assume K to be ordered, but
use Ramsey degrees for embeddings instead (see e.g. [17, 3]). These coincide
with the usual Ramsey degrees on rigid structures, so our characterisation
generalises the mentioned result of [14] and so does its proof. As a corollary
we get (Corollary 3.15) that Ramsey degrees for embeddings are asymptotic
in the sense that all structures in K have degree at most d if all large enough
structures have degree at most d (i.e. every structure embeds into one of
degree at most d).

Given an appropriate (unordered) class K one can first produce a so-
called reasonable order expansion K∗ whose Fraïssé limit expands the limit
of K by a (linear) order <∗. The group GK acts naturally on orders and one
gets a GK-flow XK∗ as the orbit closure GK· <∗. Again, as shown in [14],
minimality of this flow corresponds to a combinatorial property of K∗ called
the ordering property (cf. [17]), and indeed XK∗ is M(GK) if and only if K∗
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additionally is Ramsey.1 Moreover, the Ramsey degree of A ∈ K equals the
number of non-isomorphic order expansions it has in K∗([14, §10],[18, §4]).

For example, the universal minimal GL(V∞,F )-flow is the orbit closure
of the canonical order. This canonical order is forgetful in the sense that
any finite dimensional F -vector space gets up to isomorphism only one or-
der expansion, so Ramsey degrees are 1 in this case. The Ramsey degrees
for embeddings on the other hand are unbounded (cf. Corollary 3.11). In
general, the relationship between the two degrees is not trivial. We show
that if a Ramsey class in a relational language has finite Ramsey degree for
embeddings, then this degree must be a power of 2 (Theorem 3.12).

Recently, Angel, Kechris and Lyons [1] extended the duality theory to
other important properties of M(GK), namely whether or not there is a
(unique) GK-invariant Borel probability measure on M(GK). In this case,
the group GK is called amenable (uniquely ergodic), and this happens if and
only if all minimal GK-flows admit such a (unique) measure ([1, P8.1]). For
example, GL(V∞,F ) is uniquely ergodic.

The GK-flows XK∗ have a generic (i.e. comeager) orbit GK· <∗ which
is in fact dense Gδ [1, P14.3]. In many examples, a GK-invariant measure
on M(GK), if exists, turns out to be concentrated on this generic orbit.
However, answering a question in [1, Q15.3], Zucker [23, T1.2] showed that
the measure on M(GL(V∞,F )) is not concentrated on the generic orbit.

We show that such counterexamples rely on the language containing
function symbols. More precisely, we show that if K is Ramsey over a rela-
tional language and GK is amenable, then GK is uniquely ergodic and the
unique GK-invariant Borel probability measure onM(GK) is indeed concen-
trated on a dense Gδ orbit (Theorem 4.1).

2 Preliminaries

2.1 Notation

For k ∈ N we let [k] denote {0, . . . , k − 1} and understand [0] = ∅. If X, Y
are sets, f a function from X to Y , n ∈ N and Z ⊆ Xn we write f(Z) for
the set {f(x̄) | x̄ ∈ Z} where f(x̄) denotes the tuple (f(x0), . . . , f(xn−1)) for
x̄ = (x0, . . . , xn−1) ∈ Xn. For X0 ⊆ X we let f � X0 denote the restriction
of f to X0; for a relation Z as above, Z � X0 denotes Z∩ (Xn

0 ). The identity
on X is denoted by idX .

1See [19] for a discussion of how to characterise universality alone.
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2.2 Fraïssé theory

Fix a countable language L. We let A,B, . . . range over (L-)structures. The
distinction between structures and their universes are blurred notationally.
We speak of relational structures and classes of structures if the underlying
language L is relational. We write A ≤ B to indicate that there exists an
embedding from A into B, and we let BA denote the set of embeddings from
A into B.

The age Age(F ) of a structure F is the class of finitely generated struc-
tures which embed into F . A structure F is locally finite if its finitely gen-
erated substructures are finite. For A ∈ Age(F ) we call F A-homogeneous
if for all a, a′ ∈ FA there is g ∈ Aut(F ) such that g ◦ a = a′. If F is
A-homogeneous for all A ∈ Age(F ), it is (ultra-)homogeneous.

A structure F is Fraïssé if it is countably infinite, locally finite and
homogeneous. The age K := Age(F ) of a Fraïssé structure F

– is hereditary: for all A,B, if A ≤ B and B ∈ K, then A ∈ K;

– has joint embedding: for all A,B ∈ K there is C ∈ K such that both
A ≤ C and B ≤ C;

– has amalgamation: for all A,B0, B1 ∈ K and a0 ∈ BA
0 , a1 ∈ BA

1 there
are C ∈ K and b0 ∈ CB0 , b1 ∈ CB1 such that b0 ◦ a0 = b1 ◦ a1.

A class K of finite structures that has these three properties, contains count-
ably many structures up to isomorphism, and for every n ∈ N contains a
structure (with universe) of size at least n, is a Fraïssé class. The following
is well-known [21, T4.4.4]:

Theorem 2.1 (Fraïssé 1954). For every Fraïssé class K there exists a
Fraïssé structure F with age K.

A standard back-and-forth argument shows that the structure F in The-
orem 2.1 is unique up isomorphism; it is called the Fraïssé limit of K and
denoted by Flim(K).

We mention some standard examples:

Examples 2.2. The Fraïssé limit of the class of linear orderings is the
rational order (Q, <). The Fraïssé limit of the class of finite Boolean algebras
is the countable atomless Boolean algebra B∞. The Fraïssé limit of the class
of finite graphs is the random graph R. The Fraïssé limit of the class of finite
vector spaces over a fixed finite field F is the vector space V∞,F of dimension
ℵ0 over F .

We refer to [6, 7, 15] as surveys on homogeneous structures.
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2.3 Ramsey degrees

Write
(
B
A

)
for the set of substructures of B which are isomorphic to A.

Note that
(
B′

A

)
⊆
(
C
A

)
whenever B′ ∈

(
C
B

)
. If k, d ∈ N then C → (B)Ak,d

means that for every colouring χ :
(
C
A

)
→ [k] there exists B′ ∈

(
C
B

)
such

that |χ(
(
B′

A

)
)| ≤ d. The Ramsey degree of A in a class of structures K is

the least d ∈ N such that for all B ∈ K and k ≥ 2 there is C ∈ K such
that C → (B)Ak,d – provided that such a d exists; otherwise it is ∞. Taking
the supremum over A ∈ K gives the Ramsey degree of K, and the Ramsey
degree of a structure F is understood to be the Ramsey degree of Age(F );
if this degree is 1, then K resp. F are simply called Ramsey.

Examples 2.3. (Q, <), B∞ and V∞,F are Ramsey [14]. The random graph
R has Ramsey degree ∞; indeed, a finite graph G has Ramsey degree
|G|!/|Aut(G)| in the class of finite graphs [14, §10].

Ramsey degrees have been introduced by Fouché in [8]. We refer to the
surveys [11, 16] on Ramsey theory.

2.4 Topological dynamics

With a Fraïssé class K we associate the topological group

GK := Aut(Flim(K)),

the identity having basic neighbourhoods

G(A) := {g ∈ GK | g � A = idA}

for all finite substructures A of Flim(K). For any topological group G a
G-flow is a continuous action a : G×X → X of G on a compact Hausdorff
space X. When the action is understood we shall refer to X as a G-flow and
write g·x or gx for a(g, x). For Y ⊆ X we writeG·Y :=

⋃
g∈G gY =

⋃
y∈Y Gy

where Gy := {gy | g ∈ G} denotes the orbit of y and gY := {gy | y ∈ Y }.

Example 2.4. Let G = Aut(F ) for a countable structure F . The space of
linear orders (on F ) is LO := {R ⊆ F 2 | R is a linear order on F} with
topology given by basic open sets {R | R0 ⊆ R} for R0 a linear order on
a finite subset A of F . This space is compact and Hausdorff, and a G-flow
with respect to (g,R) 7→ g(R), the logic action of G on LO.

A subset Y ⊆ X is G-invariant if G ·Y ⊆ Y . Closed G-invariant subsets
Y are G-flows with respect to the restriction of the action. Such G-flows
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are subflows of X. The flow X is minimal if X and ∅ are its only subflows,
that is, if and only if every orbit is dense. By Zorn’s lemma, every G-flow
contains a minimal subflow. A homomorphism (isomorphism) of a G-flow
X into another Y is a continuous (bijective) G-map π : X → Y ; being a
G-map means that π(g · x) = g · π(x) for all g ∈ G, x ∈ X.

The following is well-known (cf. [22, §3]).

Theorem 2.5. For every Hausdorff topological group G there exists a min-
imal G-flow M(G) which is universal in the sense that for every minimal
G-flow Y there is a homomorphism from X into Y . Any two universal min-
imal G-flows are isomorphic.

An interesting case is that |M(G)| = 1, equivalently, every G-flow X

has a fixed point, i.e. an x ∈ X such that G · x = {x}. In this case G is
called extremely amenable. Being amenable means that there exists a (Borel
probability) measure µ on M(G) which is G-invariant (i.e. µ(X) = µ(g ·X)

for every Borel X ⊂M(G) and g ∈ G). If there is exactly one such measure
then G is uniquely ergodic. It is shown in [1, P8.1] that for a uniquely ergodic
G in fact every minimal G-flow has a unique G-invariant measure.

We refer to [14, §1] for a survey on universal minimal flows.

2.5 Duality theory

Let < be a binary relation symbol. A class K∗ of finite L∪{<}-structures is
ordered if each of its members has the form (A,<A) for a (linear) order <A

(on A) and some finite L-structure A; the order <A is called a K∗-admissible
one (cf. [17]).

The following is [14, T4.8].

Theorem 2.6. Assume that K∗ is an ordered Fraïssé class. Then GK∗ is
extremely amenable if and only if K∗ is Ramsey.

Let K := {A | (A,<A) ∈ K∗} be the L-reduct of K∗; K∗ is reasonable if
for all A,B ∈ K, all a ∈ BA and all K∗-admissible orders <A on A there is a
K∗-admissible order <B on B such that a(<A) ⊆<B, i.e. a ∈ (B,<B)(A,<

A).

Lemma 2.7. Let K be a Fraïssé class and let F = Flim(K). Then K∗ =

Age(F,R) is reasonable for every order R on F .

Proof. Let A,B ∈ K, a ∈ BA and <A be a K∗-admissible order on A. Let
a0 ∈ (F,R)(A,<

A) and b ∈ FB. In particular, a0 ∈ FA and b ◦ a ∈ FA, and
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then by homogeneity of F there exists an α ∈ Aut(F ) such that α◦b◦a = a0.
We define

<B:= (b−1 ◦ α−1)(R � (α ◦ b)(B))

We need to show that a−1(<B� a(A)) =<A. We have that

a−1(<B� a(A)) = a−1((b−1 ◦ α−1)(R � (α ◦ b)(B)) � a(A)) =

a−1((b−1 ◦ α−1)(R � (α ◦ b)(a(A)))) = a−10 (R � a0(A)) =<A

The last equality holds as a0 ∈ (F,R)(A,<
A).

The following is [14, P5.2, T10.8]. Recall that LO denotes the space of
orders (Example 2.4).

Theorem 2.8. Let K∗ be a reasonable ordered Fraïssé class in the language
L ∪ {<} and K its L-reduct.

1. Then K is Fraïssé and Flim(K∗) = (Flim(K), <∗) for some linear
order <∗.

2. Let XK∗ := GK· <∗ be the orbit closure of <∗ in the logic action of GK
on LO. Then XK∗ is the universal minimal GK-flow if and only if K∗

is Ramsey and has the ordering property.

That K∗ has the ordering property means that for all A ∈ K there is a
B ∈ K such that (A,<A) ≤ (B,<B) for all K∗-admissible orders <A on A
and <B on B.

In [1] Kechris et al. showed that a certain quantitative version of the
ordering property characterises unique ergodicity for so-called Hrushovski
classes. Here, we shall only need the following [1, P9.2].

Proposition 2.9. Let K∗ be a reasonable ordered Fraïssé class which is
Ramsey and satisfies the ordering property, and let K be its L-reduct. Then
GK is amenable (uniquely ergodic) if and only if there exists a consistent
random K∗-admissible ordering (RA)A∈K (and for every other consistent
random K∗-admissible ordering (R′A)A∈K we have that RA and R′A have the
same distribution for every A ∈ K).

Indeed, if (RA)A∈K is a random K∗-admissible ordering, then there is a
GK-invariant Borel probability measure µ on XK∗ such that for every A ∈ K
and every K∗-admissible ordering < on A we have2 µ(U(<)) = Pr[RA =<]

where
U(<) := {R ∈ XK∗ | R � A =<}.

2Given a random variable we always use Pr to denote the probability measure of its
underlying probability space.
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A random K∗-admissible ordering is a family (RA)A∈K of random vari-
ables such that each RA takes values in the set of K∗-admissible orders
on A. It is consistent if for all A,B ∈ K and a ∈ BA the random variables
a−1(RB � im(a)) and RA have the same distribution.

Examples 2.10. In [14, §6] the reader can find constructions of reasonable
ordered Fraïssé classes K∗ whose reduct K is any of the classes mentioned
in Example 2.2; in all these cases K∗ is Ramsey and has the ordering prop-
erty. By Theorem 2.6 one sees that the automorphism groups of (Q, <)

and of certain ordered versions of B∞, R, V∞,F are extremely amenable [14].
Theorem 2.8 allows us to calculate the universal minimal flows of the au-
tomorphism groups of B∞, R and V∞,F . Aut(B∞) is not amenable, while
Aut(R) and Aut(V∞,F ) are uniquely ergodic [1].

3 Automorphism groups with finite universal
minimal flows

Theorem 2.6 characterises the condition that the universal minimal flow has
size 1. In this section we provide a similar characterisation for the condition
that it has an arbitrary finite size. To this end we consider Ramsey degrees
for embeddings. The main result in this section reads:

Theorem 3.1. Let d ∈ N and K be a Fraïssé class. The following are
equivalent.

1. M(GK) has size at most d;

2. the Ramsey degree for embeddings of K is at most d.

We start with some preliminary observations concerning finite universal
minimal flows in Section 3.1. In Section 3.2 we define Ramsey degrees for
embeddings and discuss their relationship to Ramsey degrees. The results
proved in Sections 3.1 and 3.2 are mainly folklore. In Section 3.3 we prove
the result above and in Section 3.4 we note some corollaries.

3.1 Finite universal minimal flows

Lemma 3.2. Let G be a topological Hausdorff group and d ∈ N. Then
M(G) has size at most d if and only if every nonempty G-flow has an orbit
of size at most d.
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Proof. Assume that |M(G)| ≤ d, and let X be a nonempty G-flow. Then
there is a minimal subflow X ′ of X and a homomorphism π of M(G) onto
X ′. Thus |X ′| ≤ d.

Conversely, if every nonempty G-flow has an orbit of size at most d, then
so does M(G). Since M(G) is minimal, this orbit is dense in M(G), so it is
equal to M(G) by finiteness.

Lemma 3.3. Let G be a topological Hausdorff group and H an extremely
amenable closed subgroup of G with finite index. Then H is a normal clopen
subgroup of G and M(G) is isomorphic to the action of G on G/H by left
multiplication.

Proof. Clearly, a closed subgroup of finite index is open. We first show that
G/H is the universal minimal G-flow. Since H is open G/H is discrete, and
as |G : H| is finite, G/H is compact. Hence, G/H is a G-flow. It is minimal,
because G acts transitively on G/H. If Y is an arbitrary G-flow, then its
restriction to H is an H-flow, so it has a fixed point y ∈ Y . Then gH 7→ gy

is a homomorphism from G/H into Y .
As gHg−1 is a closed subgroup of finite index for every g ∈ G, so is

H ′ = H ∩ gHg−1. As above, we see that G/H ′ is a minimal G-flow. By
universality of G/H there exists a surjection from G/H onto G/H ′, so
|G : H ′| ≤ |G : H|. Thus H = gHg−1 for every g ∈ G, that is, H is
normal.

Proposition 3.4. Let G be a topological Hausdorff group and d ∈ N. Then
M(G) has size d if and only if G has an extremely amenable, open, normal
subgroup of index d.

Proof. The backward direction follows from Lemma 3.3. Conversely, assume
that X := M(G) has size d. For x ∈ X let Hx ≤ G be the stabiliser of x.
Then there is a bijection between the set of left cosets of Hx and the orbit
G · x. Since G · x is finite, G · x = G · x, so G · x = X by minimality.
Hence, |G : Hx| = |X| = d. As Hx is closed and of finite index, so is
N :=

⋂
x∈X Hx, and hence N is clopen. Since N is the pointwise stabiliser

of X, it is normal. Let Y be a minimal N -flow. Let τ : G/N → G be a
function with τ(hN) ∈ hN . Define a : G×G/N → N by setting

a(g, hN) := τ(hN)−1 · g−1 · τ(ghN).

A straightforward calculation shows that a satisfies the so-called cocycle
identity, that is, for all g1, g2, h ∈ G

(1) a(g1g2, hN) = a(g2, hN) · a(g1, g2hN).
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We can construct an action of G on (G/N × Y ) by

(g, (hN, y)) 7→ (ghN, a(g, hN)−1 · y).

That this indeed defines a group action follows directly from (1). The action
is continuous and (G/N × Y ) is compact, so (G/N × Y ) is a G-flow.

Let h ∈ G, y ∈ Y be arbitrary. We show that

(2) Y (h, y) := {a(n, hN)−1 · y | n ∈ N} is dense in Y.

Indeed, as N is normal, we have Y (h, y) = τ(hN)−1 ·N · τ(hN) · y = N · y.
Since Y is a minimal N -flow, the orbit N · y is dense in Y .

The orbit G · (hN, y) contains N · (ghN, y′) for every g ∈ G and y′ :=

a(g, hN)−1 · y. But N · (ghN, y′) = {(nghN, a(n, hN)−1 · y′) | n ∈ N} =

{ghN}×Y (h, y′), where the last equality holds because N is normal. So the
orbit G · (hN, y) contains

⋃
g∈G({gN} × Y (h, yg)) for certain yg’s, and this

set is dense in (G/N × Y ) by (2). Thus (G/N × Y ) is a minimal G-flow.
By the universality ofX there exists a surjection fromX onto (G/N×Y ).

In particular, |G/N × Y | ≤ d. By definition of N we have |G : N | ≥ d, so
|Y | = 1, |G/N | = d. This means N is extremely amenable and has index d
in G.

Example 3.5. For d ∈ N let G∗ be the automorphism group of (Q, <
, 0, 1, . . . , d− 1), the structure with universe Q that interprets for all i ∈ [d]

a constant by i and a binary relation symbol < by the rational order. Let G
be the group generated by G∗ and the permutation α = (0 1 . . . d−1). This
is a closed subgroup of the group of all permutations of Q, so G = GK for
some Fraïssé class K (see e.g. [2]). Since α commutes with G, G∗ is normal
in G. Moreover, G∗ has index d in G, and it follows from [5, L13] (see also [4,
P24]) that G∗ is extremely amenable. By Lemma 3.3, |M(G)| = |G/G∗| = d.

Example 3.6. Let G be the automorphism group of (Q, Ed, <) where <
is the rational order and Ed is an equivalence relation with d classes each
of which is dense in (Q, <). Let H be the subgroup of G consisting of
those automorphisms that preserve each of the classes. It is shown in [14,
T8.4] that H is extremely amenable and of index d! in G. By Lemma 3.3,
|M(G)| = |G/H| = d!.

3.2 Ramsey degrees for embeddings

Let k, d ∈ N and K be a class of finite structures. Then C ↪→ (B)Ak,d means
that for every colouring χ : CA → [k] there exists a b ∈ CB such that
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|χ(b ◦ BA)| ≤ d. Naturally here, b ◦ BA denotes {b ◦ a | a ∈ BA}. The
Ramsey degree for embeddings of A in K is the least d ∈ N such that for
all B ∈ K and k ≥ 2 there is a C ∈ K such that C ↪→ (B)Ak,d – provided
that such a d exists; otherwise it is ∞. Taking the supremum over A ∈ K
gives the Ramsey degree for embeddings of K. If this degree is 1 we call K
Ramsey for embeddings.

Lemma 3.7. Let d ∈ N, K be a Fraïssé class, F = Flim(K) and A ∈ K.
The Ramsey degree for embeddings of A in K is at most d if and only if
F ↪→ (B)Ak,d for all B ∈ K and k ≥ 2.

Proof. Assume that the Ramsey degree for embeddings of A in K is at most
d. Let B ∈ K, k ≥ 2 and χ : FA → [k]. We are looking for b′ ∈ FB such that
|χ(b′◦BA)| ≤ d. Choose C ∈ K such that C ↪→ (B)Ak,d. Choose a c ∈ FC and
let χ′ : CA → [k] map a ∈ CA to χ(c ◦ a). By C ↪→ (B)Ak,d there is a b ∈ CB

such that |χ′(b ◦ BA)| ≤ d, i.e. |χ(c ◦ b ◦ BA)| ≤ d. Then b′ := c ◦ b ∈ FB is
as desired.

Assume that there is an A ∈ K whose Ramsey degree for embeddings is
bigger than d. Choose B ∈ K, k ≥ 2 such that for every finite substructure C
of F there is a colouring χ : CA → [k] which is good for C, i.e. |χ(b◦BA)| > d

for all b ∈ CB. The set G(C) := {χ ∈ [k]F
A | χ � CA is good for C} is

nonempty and closed in [k]F
A carrying the product topology with [k] being

discrete. Given finitely many such sets G(C1), . . . , G(Cn) their intersection
contains the nonempty set G(C) where C is the substructure generated by
C1∪ . . .∪Cn in F (note that C is finite by local finiteness of F ). Since [k]F

A

is compact,
⋂
C G(C) 6= ∅ where C ranges over the finite substructures of

F . Any χ ∈
⋂
C G(C) is good for F , so F 6↪→ (B)Ak,d.

We shall need the following result of Nešetřil [17, T3.2]. We include the
short proof.

Lemma 3.8. Let K be a hereditary class of finite structures with joint
embedding. If K is Ramsey for embeddings, then it has amalgamation.

Proof. Let A,B0, B1 ∈ K and a0 ∈ BA
0 , a1 ∈ BA

1 . Let B ∈ K and b0 ∈
BB0 , b1 ∈ BB1 . Choose C ∈ K with C ↪→ (B)A4,1. We claim that there exist
e0 ∈ CB0 , e1 ∈ CB1 such that e0 ◦ a0 = e1 ◦ a1. Consider the following
colouring χ : CA → P ({0, 1}): for a ∈ CA the colour χ(a) ⊆ {0, 1} contains
i ∈ {0, 1} if and only if there exists an e ∈ CBi such that e ◦ ai = a. Choose
b ∈ CB such that χ(b◦BA) contains precisely one colour. Then this colour is
{0, 1}, because for i ∈ {0, 1} we have i ∈ χ(b◦ bi ◦ai) and b◦ bi ◦ai ∈ b◦BA.
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Let a ∈ BA. Then χ(b ◦ a) = {0, 1}, thus there are e0 ∈ CB0 , e1 ∈ CB1 such
that e0 ◦ a0 = a = e1 ◦ a1.

Remark 3.9. Clearly, C ↪→ (B)Ak,d is equivalent to C → (B)Ak,d when A

is rigid (i.e. Aut(A) = {idA}). In particular, the Ramsey degree and the
Ramsey degree for embeddings coincide for rigid structures. The following
proposition generalises this observation.

Proposition 3.10. Let d ∈ N, and let K be a class of finite structures. Let
A ∈ K and ` = |Aut(A)|. The Ramsey degree for embeddings of A in K is
at most d · ` if and only if the Ramsey degree of A in K is at most d.

Proof. First assume that the Ramsey degree for embeddings of A in K is
at most d · `. Let B ∈ K and k ≥ 2. We are looking for a C ∈ K such that
C → (B)Ak,d. By assumption we find some C ∈ K with C ↪→ (B)Ak,d·` and
we claim that this C is as desired. Let a colouring χ :

(
C
A

)
→ [k] be given.

For every A′ ∈
(
C
A

)
there are precisely ` embeddings aA′0 , . . . , aA

′

`−1 ∈ CA

with image A′. Define χ′ : CA → [k] × [`] to map a ∈ CA to (i, j) for
i := χ(im(a)) and j such that a = a

im(a)
j . Since C ↪→ (B)Ak,d·` there is

b ∈ CB such that |χ′(b◦BA)| ≤ d · `. Observe that (i, j) ∈ χ′(b◦BA) implies
{i}×[`] ⊆ χ′(b◦BA). Hence, there are (not necessarily distinct) i0, . . . , id−1 ∈
[k] such that χ′(b ◦ BA) = {i0, . . . , id−1} × [`]. Clearly, im(b) ∈

(
C
B

)
and we

claim that χ(
(
im(b)
A

)
) ⊆ {i0, . . . , id−1}. Indeed, for A′ ∈

(
im(b)
A

)
there is an

a ∈ BA such that im(b◦a) = A′, namely a := b−1 ◦a′ for some isomorphism
a′ : A → A′. As

(
im(b)
A

)
⊆
(
C
A

)
we find j ∈ [`] such that aA′j = b ◦ a. Then

χ′(b ◦ a) = (χ(A′), j), and in particular χ(A′) ∈ {i0, . . . , id−1}.
Conversely, assume that the Ramsey degree of A in K is at most d. Let

B ∈ K and k ≥ 2 be given. By assumption there exists a C ∈ K such that
C → (B)A

k`,d
. We claim that C ↪→ (B)Ak,d·`. Let χ : CA → [k] be a colour-

ing and define χ′ :
(
C
A

)
→ [k]` by setting χ′(A′) := (χ(aA

′
0 ), . . . , χ(aA

′

`−1))

for A′ ∈
(
C
A

)
; here, for A′ ∈

(
C
A

)
we let aA′0 , . . . , aA

′

`−1 enumerate the embed-
dings in CA with image A′. Since C → (B)A

k`,d
there exists B′ ∈

(
C
B

)
and

(i00, . . . , i
0
`−1), . . . , (i

d−1
0 , . . . , id−1`−1 ) ∈ [k]` such that χ′(

(
B′

A

)
) ⊆ {(iν0, . . . , iν`−1) |

ν ∈ [d]}. Choose b ∈ CB with image B′. We claim that χ(b ◦ BA) ⊆
{iνj | ν ∈ [d], j ∈ [`]}. Let a ∈ BA. Then b ◦ a ∈ CA and im(b ◦ a) ∈(
B′

A

)
⊆
(
C
A

)
. Choose j ∈ [`] such that b ◦ a = a

im(b◦a)
j . Let ν ∈ [d] be such

that χ′(im(b ◦ a)) = (χ(a
im(b◦a)
0 ), . . . , χ(a

im(b◦a)
`−1 )) = (iν0, . . . , i

ν
`−1). Hence,

χ(b ◦ a) = χ(a
im(b◦a)
j ) = iνj .
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Corollary 3.11. Let K be a class of finite structures and A ∈ K. Then the
Ramsey degree of A in K is 1 if and only if the Ramsey degree for embeddings
of A in K is |Aut(A)|.

Proof. By Proposition 3.10 is suffices to show that the Ramsey degree for
embeddings of A in K is at least ` := |Aut(A)|. Let C ∈ K be arbitrary.
Using the notation from the previous proof, let χ : CA → [`] map a ∈ CA

to the j < ` such that a = a
im(a)
j . Then for B := A and every b ∈ CB we

have χ(b ◦ CB) = [`].

Our main result concerning the relationship of Ramsey degrees and Ram-
sey degrees for embeddings is the following.

Theorem 3.12. Let K be a relational Fraïssé class which is Ramsey. Then
the Ramsey degree for embeddings of K is infinite or a finite power of 2.

We refer to Examples 4.5 for some natural examples of relational Fraïssé
classes which are Ramsey and have infinite Ramsey degree for embeddings.
We prove Theorem 3.12 in Section 4.3.

3.3 Proof of Theorem 3.1

Theorem 3.1 is a consequence of the following two propositions which in
fact establish something stronger.

We say that a class of finite structures D is cofinal in another such class
K if for all A ∈ K there exists B ∈ D such that A ≤ B.

Proposition 3.13. Let d ∈ N and K be a Fraïssé class. Assume that the
class of structures with Ramsey degree for embeddings at most d in K is
cofinal in K. Then M(GK) has size at most d.

Proof. Write G := GK and F := Flim(K). Let A ∈ K, a0 ∈ FA and write
A0 := im(a0). Consider the map Φ : G→ FA, g 7→ g ◦ a0 . By homogeneity
of F , Φ is surjective. We have for all g, h ∈ G

g ◦ a0 = h ◦ a0 ⇐⇒ gG(A0) = hG(A0).

Hence, Φ induces a bijection e from G/G(A0) onto FA. Observe that

(3) g ◦ e(hG(A0)) = g ◦ (h ◦ a0) = (gh) ◦ a0 = e((gh)G(A0)).

Claim 1. Assume that A has Ramsey degree for embeddings at most d in
K. Let k ∈ N and f : G → [k] be constant on each gG(A0) ⊆ G for g ∈ G.
Then, for every finite H ⊆ G there exists g ∈ G such that |f(gH)| ≤ d.
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Proof of Claim 1: The function f induces a function f̃ from G/G(A0) to [k].
Note that f̃ ◦ e−1 : FA → [k]. There is a finite substructure B ⊆ F such
that

(4) {e(hG(A0)) | h ∈ H} ⊆ BA.

By Lemma 3.7 there is b ∈ FB such that |(f̃ ◦ e−1)(b ◦ BA)| ≤ d. By
homogeneity of F there is a g ∈ G such that g ◦ idB = b. We show that g is
as desired, namely f(gh) ∈ (f̃ ◦ e−1)(b ◦BA) for every h ∈ H:

f(gh) = f̃((gh)G(A0)) = f̃ ◦ e−1(e((gh)G(A0))) = f̃ ◦ e−1(g ◦ e(hG(A0)))

where the last equality follows from (3). By (4) we have g ◦ e(hG(A0)) ∈
g ◦BA = b ◦BA, and our claim follows. a

For n ∈ N, n ≥ 1, consider Rn with the Euclidian norm ‖ · ‖. For ε > 0

and x ∈ Rn let
Bε(x) := {y ∈ Rn | ‖x− y‖ < ε}.

As a topological group G carries its left uniformity, that is, the uniformity
with basic entourages {(g, h) | g−1h ∈ G(A)} for A ∈ Age(M), A ⊆M .

Claim 2. Let n be a positive integer, f : G→ Rn be left uniformly continu-
ous and bounded, H ⊆ G be finite and ε be a positive real. Then there are
g ∈ G and h0, . . . , hd−1 ∈ H such that

(5) f(gH) ⊆
⋃
ν<dBε(f(ghν)).

Proof of Claim 2: By left uniform continuity of f there is a finite sub-
structure A′ ⊆ F such that ‖f(g) − f(g′)‖ < ε/6 for all g, g′ ∈ G with
gG(A′) = g′G(A′). By our cofinality assumption, there exist A′′ ∈ K and
a′ ∈ (A′′)A

′ such that A′′ has Ramsey degree for embeddings at most d in
K. Since F is homogeneous, there is an embedding a′′ ∈ FA′′ such that
a′′ ◦ a′ = idA′ . Hence, the image A of a′′ has Ramsey degree for embeddings
at most d in K, and A′ ⊆ A ⊆ F . Thus G(A) ⊆ G(A′), so for all g, g′ ∈ G
with gG(A) = g′G(A)

(6) ‖f(g)− f(g′)‖ < ε/6.

We claim that there exists a function f̃ : G→ Rn such that

(a) im(f̃) is finite;

(b) f̃ is constant on gG(A) for every g ∈ G;
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(c) ‖f(g)− f̃(g)‖ < ε/2 for every g ∈ G.

By (a) and (b) we can apply Claim 1 and obtain some g ∈ G such that
|f̃(gH)| ≤ d. Choose h0, . . . , hd−1 ∈ H such that f̃(gH) = {f̃(ghν) | ν < d}.
To verify (5), let h ∈ H be given. We have to show that there exists ν < d

such that ‖f(gh) − f(ghν)‖ < ε. Indeed, this holds for ν < d such that
f̃(gh) = f̃(ghν), because by (c) we have both ‖f(gh)− f̃(ghν)‖ = ‖f(gh)−
f̃(gh)‖ < ε/2 and ‖f̃(ghν)− f(ghν)‖ < ε/2.

Thus, we are left to find f̃ with properties (a)-(c).
As f is bounded, its image is contained in a compact subset of Rn.

Choose finitely many points yν ∈ Rn, ν < k′, such that this compact set
is covered by

⋃
ν<k′ Bε/6(yν). Assume that precisely the first k ≤ k′ balls

Bε/6(yν) contain a point from the image of f . For ν < k choose ν̂ ∈ G such
that f(ν̂) ∈ Bε/6(yν). Then

⋃
ν<k Bε/3(f(ν̂)) covers the image of f . Hence,

for every g ∈ G we can choose νg < k such that

(7) ‖f(g)− f(ν̂g)‖ < ε/3.

Let c : G → G be a selector for the partition {gG(A) | g ∈ G} of G, that
is, for all g, g′ ∈ G we have c(g) ∈ gG(A), and c(g) = c(g′) if and only if
gG(A) = g′G(A). Define

f̃(g) := f(ν̂c(g)).

Then f̃ satisfies (a) and (b). For all g ∈ G we have c(g) ∈ gG(A), so gG(A) =

c(g)G(A) and thus ‖f(g)− f(c(g))‖ < ε/6 by (6). As ‖f(c(g))− f(ν̂c(g))‖ <
ε/3 by (7), we conclude that f̃ satisfies (c). a

We aim to show that everyG-flow has an orbit of size at most d (Lemma 3.2).
So let X be a G-flow. We are looking for some x0 ∈ X such that

(8) |G · x0| ≤ d.

Recall that the compact Hausdorff space X carries a unique uniformity
compatible with its topology. Suppose f is a uniformly continuous function
from X into Rn for some n ≥ 1. For each x ∈ X define the function
fx : G→ Rn by

fx(g) := f(g−1 · x).

Then fx is left uniformly continuous. This follows from the well-known fact
that for every x ∈ X the map g 7→ g−1 · x is left uniformly continuous
(see e.g. [20, L2.1.5]).
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With a triple (H, f, ε) for a finite subset H ⊆ G, and a bounded, uni-
formly continuous function f : X → Rn, and a real ε > 0 we associate the
set

Y (H, f, ε) :=
{
x ∈ X | ∃h0, . . . , hd−1 ∈ H : fx(H) ⊆

⋃
ν<dBε(fx(hν))

}
.

Since H is finite, Y (H, f, ε) is a finite union of closed sets of the form
{x ∈ X | fx(H) ⊆ C} for C ⊆ Rn closed, and consequently, Y (H, f, ε) is
closed.

Claim 3. The family of closed sets Y (H, f, ε) with H, f, ε as above has the
finite intersection property.

Proof of Claim 3: For j < ` let Hj ⊆ G be finite, εj > 0 and f j : X → Rnj

for nj ≥ 1. Set H :=
⋃
j<`Hj, ε := minj<` εj, n :=

∑
j<` nj and define

f : X → Rn by f(x) := f 0(x) ∗ · · · ∗ f `−1(x) where ∗ denotes concatenation.
Then f is uniformly continuous and bounded.

Let x ∈ X be arbitrary. Since fx : G→ Rn is left uniformly continuous,
Claim 2 applies, and there exist g ∈ G and h0, . . . , hd−1 ∈ H such that
fx(gH) ⊆

⋃
ν<dBε(fx(ghν)). In other words,

(9) ∀h ∈ H ∃ν < d : f(h−1g−1x) ∈ Bε(f(h−1ν g−1x)).

Any y ∈ Rn can be written as y[0] ∗ · · · ∗ y[`− 1], where y[j] ∈ Rnj for all
j < `. In this notation, fx(g)[j] = f jx(g) for all g ∈ G, x ∈ X, j < `. Clearly,
fx(g) ∈ Bε(y) implies fx(g)[j] ∈ Bε(y[j]) for all y ∈ Rn, j < `. Writing
x0 := g−1x, (9) yields:

∀j < ` ∀h ∈ Hj ∃ν < d : f(h−1g−1x)[j] = f jx0(h) ∈ Bε(f
j
x0

(hν)).

Since ε ≤ εj we obtain

∀j < ` : f jx0(Hj) ⊆
⋃
ν<dBεj(f

j
x0

(hν)).

Thus, x0 ∈
⋂
j<` Y (Hj, f

j, εj) 6= ∅. a

By Claim 3 and since X is compact, there exists an x0 in the intersection
of all the sets Y (H, f, ε), (H, f, ε) a triple as above. We claim that x0 satisfies
(8). Assume otherwise that there are g0, . . . , gd ∈ G such that g0x0, . . . , gdx0
are pairwise distinct. Choose f : X → [0, 1] ⊆ R1 uniformly continuous such
that f(gνx0) = ν/d for all ν ≤ d. Then x0 /∈ Y ({g−1ν | ν ≤ d}, f, ε) for a
small enough ε > 0, a contradiction.
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Proposition 3.14. Let d ∈ N, F be countable and locally finite, G :=

Aut(F ) and A ∈ Age(F ) such that F is A-homogeneous. If M(G) has size
at most d, then F ↪→ (B)Ak,d for all B ∈ Age(F ) and k ≥ 2.

Proof. Assume that |M(G)| ≤ d, and let B ∈ Age(F ), k ≥ 2 and χ0 :

FA → [k] be a colouring. Note that [k]F
A is compact Hausdorff in the

product topology with [k] being discrete. The group G acts continuously
on [k]F

A by shift (g, χ) 7→ g · χ, where g · χ colours a ∈ FA by χ(g−1 ◦ a).
Consider the orbit closure G · χ0 of χ0. By Lemma 3.2, the induced action
of G on G · χ0 has an orbit of size at most d, that is, there exist χ1 ∈ G · χ0

and ψ0, . . . , ψd−1 ∈ G · χ0 such that G · χ1 = {ψi | i < d}.
Let b ∈ FB. Observe that b◦BA is a finite subset of FA. Since χ1 ∈ G · χ0,

there exists a g ∈ G such that g · χ0 and χ1 agree on b ◦ BA. Note that
g−1 ◦ b ∈ FB, so we are left to show that |χ0(g

−1 ◦ b ◦ BA)| ≤ d. We fix
some a0 ∈ FA, and claim that for all a ∈ g−1 ◦ b ◦ BA there exists a ν < d

such that χ0(a) = ψν(a0). To see this, let a ∈ g−1 ◦ b ◦BA ⊆ FA and choose
h ∈ G such that h ◦ a0 = a. Such an h exists since F is A-homogeneous.
Then

χ0(a) = (g · χ0)(g ◦ a) = χ1(g ◦ a) = χ1((gh) ◦ a0) = ((gh)−1 · χ1)(a0),

where the second equality follows from g ◦ a ∈ b ◦ BA and the choice of g.
As (gh)−1 · χ1 ∈ G · χ1, and by choice of χ1, there exists ν < d such that
(gh)−1 · χ1 = ψν . Thus χ0(a) = ψν(a0) as claimed.

Proof of Theorem 3.1. (1) ⇒ (2). Write F = Flim(K) and let A ∈ K =

Age(F ). Then F and A satisfy the assumptions of Proposition 3.14, so
F ↪→ (B)Ak,d for all B ∈ K and k ≥ 2. Now apply Lemma 3.7.

(2) ⇒ (1). By Proposition 3.13.

3.4 Corollaries

Corollary 3.15. Let d ∈ N and K be a Fraïssé class. The following are
equivalent.

1. The class of structures with Ramsey degree for embeddings at most d
in K is cofinal in K.

2. K has Ramsey degree for embeddings at most d.

Proof. Assume (1). By Proposition 3.13 we have |M(GK)| ≤ d. As F :=

Flim(K) is Fraïssé, Proposition 3.14 implies F ↪→ (B)Ak,d for all A,B ∈ K.
Then Lemma 3.7 implies (2).
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It is noted in [14, §1(D)] that a separable metrizable group G is extremely
amenable, i.e. M(G) has size 1, if and only if every metrizable G-flow has
a fixed point. In this context it might be of interest to note:

Corollary 3.16. Let d ∈ N and K be a Fraïssé class. The following are
equivalent.

1. M(GK) has size at most d.

2. Every continuous action of GK on the Cantor space has an orbit of
size at most d.

Proof. (1) implies (2) by Lemma 3.2. Conversely, assume (2). Let A ∈ K be
arbitrary and write F := Flim(K). Then F and A satisfy the assumptions
of Proposition 3.14. In the proof of this proposition we only require the
following for GK: for all k ≥ 2 and all χ0 ∈ [k]F

A , the shift action of GK
restricted to GK · χ0 has a small orbit. But [k]F

A is homeomorphic to the
Cantor space and the restricted shift is a continuous action on this space.
Thus (2) suffices to carry out this proof and we conclude that F ↪→ (B)Ak,d
for all B ∈ K = Age(F ). By Lemma 3.7 every A ∈ K has Ramsey degree
for embeddings at most d in K. Then Proposition 3.13 implies (1).

4 Measure concentration

We say that a probability measure is concentrated on any set of measure 1.
In this section we prove the following.

Theorem 4.1. Let K be a relational Fraïssé class which is Ramsey. If GK
is amenable, then it is uniquely ergodic and the (unique) GK-invariant Borel
probability measure onM(GK) is concentrated on a (unique) dense Gδ orbit.

In Section 4.1 we construct a forgetful order expansion using the Ramsey
property, in Section 4.2 we prove Theorem 4.1, and the final Section 4.3
contains some observations concerning the ω-categorical case and a proof of
(a stronger version of) Theorem 3.12.

4.1 Forgetful order expansions

An ordered class K∗ of finite structures in the language L ∪ {<} is called
forgetful if for all A,B ∈ K and K∗-admissible orderings <A, <B on A,B

respectively, we have (A,<A) ∼= (B,<B) whenever A ∼= B; here K denotes
the L-reduct of K∗.
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For example, the orderings of B∞ and V∞,F mentioned in Example 2.10
have forgetful ages (see [14, §6] for details). The following is easy to see
(cf. [14, P5.6]).

Lemma 4.2. Let K∗ be a forgetful ordered class of finite structures in the
language L ∪ {<} and K its L-reduct. Then K∗ has the ordering property,
and K∗ is Ramsey if and only if so is K.

Before showing that the Ramsey property ensures the existence of rea-
sonable forgetful expansions, we present a well-known technical lemma. In-
formally, this technical lemma guarantees a monochromatic copy of a given
B when copies of several different Ai are coloured simultaneously.

Lemma 4.3. Let K be a Ramsey class. Let n ∈ N, k0, . . . , kn−1 ∈ N,
A0, . . . , An−1, B ∈ K. Then there exists a C ∈ K with the following property:
for any family of colourings χi :

(
C
Ai

)
→ [ki], i ∈ [n], there exists a B′ ∈

(
C
B

)
such that χi �B′ is constant for all i ∈ [n].

Proof. Let C0 := B, and for every 0 < i ≤ n choose Ci ∈ K such that
Ci → (Ci−1)

Ai−1

ki−1,1
. Let C := Cn. Then by using the definition of the Ci and

a straightforward induction on j ∈ [n] we obtain that there is a C ′n−1−j ∈(
C

Cn−1−j

)
such that χi �C′n−1−j

is constant for all i ∈ [n] \ [n− 1− j]. Setting
j = n− 1 yields B′ as in the statement.

Lemma 4.4. Let K be a Fraïssé class in the language L. If K is Ram-
sey, then there exists a reasonable, forgetful ordered Fraïssé class K∗ in the
language L ∪ {<} with L-reduct K.

Proof. Let F := Flim(K) and consider the space LO of linear orders on F
(cf. Example 2.4). Let (A,B) range over pairs with A ∈ K and B ⊆ F .
Call R ∈ LO order forgetful for (A,B) if (A′, R � A′) ∼= (A′′, R � A′′) for all
A′, A′′ ∈

(
B
A

)
.

Claim. If n ≥ 1 and (A0, B0), . . . , (An−1, Bn−1) are pairs as above with all
Bi ⊆ F finite, then there exists R ∈ LO that is order forgetful for every
(Ai, Bi), i ∈ [n].

Proof of Claim: Choose B ⊆ F finite such that
⋃
i∈[n]Bi ⊆ B. It suffices

to find an order which is order forgetful for every (Ai, B), i ∈ [n]. Fix an
arbitrary order R ∈ LO. For i ∈ [n] let χi colour each A′i ∈

(
F
Ai

)
by the

isomorphism type of (A′i, R � A′i), and let ki ∈ N be the number of colours of
χi. By Lemma 4.3 and homogeneity of F there exist B′ ⊆ F and g ∈ Aut(F )

such that B′ is monochromatic and g(B′) = B. By definition of the χi this



Unordered Ramsey structures 21

means that R is order forgetful for (Ai, B
′) for all i ∈ [n]. Hence, g(R) is

order forgetful for all (Ai, B), i ∈ [n]. a

For every A ∈ K and B ⊆ F finite, the set of orders that are order
forgetful for (A,B) is closed in LO. By the claim and compactness, there
exists R ∈ LO which is order forgetful for all pairs (A,B) such that A ∈ K
and B ⊆ F is finite. Then R is order forgetful for (A,F ) for every A ∈
K. Equivalently, K∗ := Age(F,R) is forgetful. To see that K∗ is Fraïssé,
observe that K∗ is hereditary and has joint embedding. As K∗ is Ramsey
by Lemma 4.2, it has amalgamation by Lemma 3.8 (and Remark 3.9; note
that K∗ is rigid because it is ordered). According to Lemma 2.7, K∗ is
reasonable.

Examples 4.5. The structures F1 := (Q,Betw), F2 := (Q,Cycl), F3 :=

(Q, Sep) and F4 := (Q,=) are Ramsey (see [12] for definitions). If < is
the rational order, then K∗i := Age((Fi, <)) is forgetful with reduct Ki :=

Age(Fi). By Lemmas 2.7, 4.2 and Theorem 2.8, M(GKi
) is GKi

· <. Then
M(GK1) is the 2-element discrete space. Hence, by Theorem 3.1, K1 has
Ramsey degree for embeddings 2. Theorem 2.8 also allows us to explicitly
describe M(GKi

) for i = 2, 3, 4, and these have the size of the continuum.
Hence, K2,K3 and K4 have infinite Ramsey degree for embeddings.

Examples 4.6. Let K be a Fraïssé class of digraphs such that there is a
directed cycle in K. Then there does not exist a forgetful ordered Fraïssé
class with L-reduct K: by forgetfulness, every directed edge in any A ∈ K
would be ordered in the same way and then a directed cycle contradicts
transitivity of the order. For example, this applies to the age of the universal
homogeneous digraph, the random tournament and the local order (see [15]).

4.2 Proof of Theorem 4.1

Let F := Flim(K) and L denote the relational language of K. Since K
is assumed to be Ramsey, Lemma 4.4 applies and there is a reasonable
forgetful ordered Fraïssé class K∗ in the language L ∪ {<} with L-reduct
K. By Lemma 4.2 and Theorem 2.8, Flim(K∗) = (F,<∗) for some order <∗,
and XK∗ = GK· <∗ is the universal minimal flow of GK.

Assume that GK is amenable. In order to verify that GK is uniquely
ergodic, it suffices by Proposition 2.9 to show that for every consistent ran-
dom ordering (RA)A∈K we have that each random variable RA is uniformly
distributed. By forgetfulness, for any two K∗-admissible orderings <,<′ on
A there is an α ∈ Aut(A) such that α(<) =<′, and then Pr[RA =<′] =
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Pr[α−1◦RA =<] = Pr[RA =<] where the latter equality follows from (RA)A

being consistent.
Let µ denote the unique GK-invariant Borel probability measure on XK∗ .

Recall the notation U(<) from Proposition 2.9. By this result, U(<) and
U(<′) have the same µ-measure whenever < and <′ are K∗-admissible or-
derings of the same finite subset of F .

An order R ∈ XK∗ is outside GK· <∗ if and only if (F,R) 6∼= (F,<∗),
if and only if (F,R) is not homogeneous (cf. Section 2.2), if and only if
there exist a finite A ⊆ F , some (B,<B) ∈ K∗ and a ∈ (B,<B)(A,<

∗�A)

such that R is bad for (B,<B, a), meaning that there is no b ∈ (F,R)(B,<
B)

with b ◦ a = idA. As the language of F is relational, we may assume that
B = im(a) ∪ {p} with p ∈ F \ im(a).

Observe that the set of orders R ∈ XK∗ which are bad for (B,<B, a) is
closed. Hence, XK∗ \ GK· <∗ is Fσ, so GK· <∗ is a dense Gδ orbit in XK∗

(see also [1, 14.3]). Since XK∗ is a Baire space, GK· <∗ is clearly unique
with this property. We prove that µ(GK· <∗) = 1. It suffices to show that
for each (B,<B, a) with B = im(a)∪̇{p} as above, the set B := {R ∈ XK∗ |
R is bad for (B,<B, a)} has µ-measure 0.

We construct a sequence (Un)n∈N such that for all n ∈ N

(a) Un is a cover of B, i.e. B ⊆
⋃
Un;

(b) every U ∈ Un equals some U(<′) such that <′⊇<∗� A is a K∗-
admissible order with |dom(<′)| = |A|+ n;

(c) µ(
⋃
Un+1) ≤ |A|+n

|A|+n+1
· µ(
⋃
Un).

Here, dom(<′) is the set linearly orderd by <′; note that (b) implies that
dom(<′) ⊇ A.

This finishes the proof: by (a) and (c) we have for all n ∈ N

µ(B) ≤ µ(
⋃
Un) ≤

∏
m<n

|A|+m
|A|+m+1

· µ(
⋃
U0) = µ(

⋃
U0) · |A||A|+n →n 0.

Set U0 := {U(<∗� A)} and assume that Un is already defined. It suffices
to find for every U(<′) ∈ Un some p′ /∈ dom(<′) and a family (<i)i∈I such
that

(a’)
⋃
i∈I U(<i) ∩ B = U(<′) ∩ B;

(b’) for every i ∈ I, <i⊇<′ is a K∗-admissible order with dom(<i) =

dom(<′) ∪ {p′};

(c’) µ(
⋃
i∈I U(<i)) ≤ |A|+n

|A|+n+1
· µ(U(<′)).
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Write A′ := dom(<′), and choose R ∈ B ∩ U(<′). Since R ∈ GK· <∗
there is a g ∈ GK such that

(10) g(<∗) � A′ = R � A′ =<′ .

In particular, g(<∗) � A =<′� A =<∗� A and (A,<∗� A) is a substructure
of (F, g(<∗)). Since (F, g(<∗)) is isomorphic to (F,<∗), it is homogeneous,
so there exists an embedding b ∈ (F, g(<∗))(B,<

B) with b ◦ a = idA. We set
p′ := b(p) and claim that p′ /∈ A′. Otherwise, im(b) ⊆ A′, so b ∈ (F,R)(B,<

B)

by (10), and this contradicts R being bad for (B,<∗, a).
Let <0, . . . , <s−1 list the K∗-admissible orders on A′∪{p′} extending <′,

and note that s ≤ |A′| + 1. Let I ⊆ [s] consist of those i < s such that
U(<i) ∩ B 6= ∅. Then (a’) and (b’) follow, and we are left to verify (c’).
The sets U(<i), i < s, partition U(<′) and, as already noted, have pairwise
equal µ-probability, so µ(U(<i)) = µ(U(<′))/s. Thus

(11) µ(
⋃
i∈I U(<i)) = |I|/s · µ(U(<′)).

There exists i0 < s such that <i0= g(<∗) � (A′∪{p′}). Since b ∈ (F, g(<∗

))(B,<
B) has im(b) ⊆ A′ ∪ {p′}, we have that b ∈ (F, S)(B,<

B) for every
S ∈ U(<i0). Hence, no such S is bad for (B,<B, a), that is, U(<i0)∩B = ∅,
so i0 /∈ I. Thus |I| < s. Since |A′| = |A| + n, we have s ≤ |A| + n + 1, so
|I|/s ≤ (s− 1)/s ≤ (|A|+ n)/(|A|+ n+ 1). Hence, (c’) follows from (11).

4.3 The ω-categorical case

Of particular interest are Fraïssé classes K which have an ω-categorical
Fraïssé limit F := Flim(K). By the theorem of Ryll-Nardzewski (see e.g.
[21, T4.3.1]) this happens e.g. if the language L of K is finite and relational
(cf. [21, T4.4.7]), and is equivalent to GK being oligomorphic: for every
n ∈ N, GK has only finitely many n-orbits. An n-orbit of GK is an orbit of
the diagonal action of GK on F n given by g · ā = g · (a0, . . . , an−1) := g(ā) =

(g(a0), . . . , g(an−1)).

Lemma 4.7. Let K∗ be a reasonable ordered Fraïssé class in the language
L∪{<} with L-reduct K. Then GK∗ is oligomorphic if and only if so is GK.

Proof. Let F = Flim(K). By Theorem 2.8 we have that Flim(K∗) = (F,<∗)

for some order <∗ on F . As GK∗ is a subgroup of GK, it suffices to show that
every orbit T ⊆ F n of GK that consists of tuples with all different entries
is the union of finitely many n-orbits of GK∗ . Let s̄ = (s1, . . . , sn) and
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t̄ = (t1, . . . , tn) be tuples in T such that the unique extension of the partial
isomorphism s1 7→ t1, . . . , sn 7→ tn to the substructures in F generated by s̄
and t̄ is a partial isomorphism of F ∗. Then by homogeneity of F ∗ we have
that s̄ and t̄ are in the same n-orbit of GK∗ . As there are finitely many ways
to define a (K∗-admissible) order on the structure generated by a tuple in
T , the claim follows.

Lemma 4.8. Let K∗ be a reasonable ordered Fraïssé class in the language
L∪{<} with L-reduct K. Assume that GK∗ is oligomorphic. If GK∗ is normal
in GK, then it has finite index in GK.

Proof. By reasonability Flim(K∗) = (Flim(K), <∗) for some order <∗. Con-
sider the logic action of GK on LO (Example 2.4). Then GK∗ is the stabiliser
of <∗. Hence, |GK : GK∗| = |GK· <∗ | and it suffices to show that GK· <∗ is
finite. If GK∗ is normal, then it fixes every R ∈ GK· <∗. Thus every such R
is a union of 2-orbits. As GK∗ is oligomorphic, there are only finitely many
such R.

We use the following mode of speech from [1]: let K be a Fraïssé class in
the language L; a companion of K is a reasonable ordered Fraïssé class K∗

in the language L ∪ {<} which is Ramsey, has the ordering property and
has L-reduct K. Note:

Proposition 4.9. If a Fraïssé class is Ramsey, then it has a companion.

Proof. By Lemmas 4.4 and 4.2.

Proposition 4.10. Let K be a relational Fraïssé class that has a companion.
If M(GK) is finite, then |M(GK)| is a power of 2.

Proof. Let L denote the relational language of K and let K∗ be a companion
of K. By Theorem 2.8 we have that F ∗ := Flim(K∗) = (F,<∗) for F :=

Flim(K), and that M(GK) is GK· <∗. Assume that M(GK) is finite. Then
GK· <∗ is finite, and since GK∗ is the stabiliser of <∗ in the logic action of
GK on LO, GK∗ has finite index in GK. By Theorem 2.6, GK∗ is extremely
amenable. By Lemma 3.3, GK∗ is normal in GK and |M(GK)| = |GK : GK∗|.

Consider the diagonal actions of GK and GK∗ on F 2. We claim that for
every g ∈ GK and every 2-orbit S of GK∗ the set g ·S ⊆ F 2 is also a 2-orbit
of GK∗ . Indeed, normality implies that two pairs in the same 2-orbit of GK∗
are mapped by g to two pairs which are also in the same 2-orbit of GK∗ , so
there exists a 2-orbit T with g · S ⊆ T . Reasoning analogously for g−1 and
T we obtain g−1 · T ⊆ S, so g · S = T .
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Call a 2-orbit S of GK∗ black if a <∗ b for all (a, b) ∈ S, and white if
b <∗ a for all (a, b) ∈ S; orbits which are neither black nor white contain
only pairs (a, b) with a = b. Let S be black or white. For every g ∈ GK, also
g(S) is black or white, and if g(S) has the same colour as S, then g(S) = S.
Indeed, as g ∈ GK, g � {a, b} preserves all relations from L, and as g(S)

has the same colour as S, it also preserves <∗. Hence, for every (a, b) ∈ S,
g � {a, b} is a partial isomorphism of F ∗, so it extends to some h ∈ GK∗

by homogeneity. Thus g · (a, b) = h · (a, b), so g · (a, b) ∈ S and g(S) = S

follows.
We claim that g2 ∈ GK∗ for every g ∈ GK. Seeking for contradiction,

assume that there is an (a, b) ∈ F 2 such that a <∗ b is not equivalent to
g2(a) <∗ g2(b). Then there is a black or white 2-orbit S of GK∗ such that
g2(S) has a different colour. The colour of g(S) equals that of S or g2(S),
and consequently, S = g(S) or g(S) = g2(S). The first case S = g(S) is
impossible, because it implies S = g2(S). The second case g(S) = g2(S)

is also impossible, because it implies the first via g(S) = g−1(g2(S)) =

g−1(g(S)) = S.
It follows that GK/GK∗ is an elementary abelian 2-group, i.e., it is the

direct product of copies of the 2-element group.

Theorem 4.11. Let K be a relational Fraïssé class with companion K∗.
Assume that GK is oligomorphic. Then the following are equivalent.

1. |GK : GK∗| is finite.

2. |GK : GK∗| is a finite power of 2.

3. M(GK) is finite.

4. |M(GK)| is a finite power of 2.

5. GK∗ is normal in GK.

Proof. By Theorem 2.8 we have that F ∗ := Flim(K∗) = (F,<∗) for F :=

Flim(K), and thatM(GK) isGK· <∗. ThenGK∗ is oligomorphic by Lemma 4.7,
and extremely amenable by Theorem 2.6. In a Hausdorff space a finite set
equals its closure. As the elements of GK· <∗ are in a one-to- one correspon-
dence with GK/GK∗ , we obtain (1) ⇔ (3) and (2) ⇔ (4). Proposition 4.10
implies (3)⇔ (4), thus the first four items are equivalent. (5)⇒ (1) follows
from Lemma 4.8, and Lemma 3.3 implies (1)⇒ (5).
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Corollary 4.12. Let K be a relational Fraïssé class that has a companion.
Then the Ramsey degree for embeddings of K is either infinite or a finite
power of 2.

Proof. By Proposition 4.10 and Theorem 3.1.

Proof of Theorem 3.12. By Proposition 4.9 and Corollary 4.12.
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