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Abstra
t. We present a des
ription of the �nitely generated free

algebras in the varieties of iterated semidire
t produ
ts of semilat-

ti
es. Asymptoti
al bounds for the free spe
tra of these varieties

are given.

1. Introdu
tion

Semidire
t produ
ts and iterated semidire
t produ
ts of semmilat-

i
es are thorougly investigated in [1℄. Among others, it is shown that

ea
h variety of iterated meet semilatti
es is �nitely generated and non-

�nitely based. In this paper we extend the results of [1℄ on these vari-

eties. We present a new 
hara
terization for the word problem of these

varieties, and give an asymptoti
 estimate for their free spe
tra. We

do it via �nding a normal form for the elements of the free algebras in

ea
h variety.

Let A be an m-element �nite algebra. Let V denote the variety

generated by A, and denote by FV(n) the free algebra in V generated

by n elements. The free spe
trum of a variety V is the sequen
e of


ardinalities |FV(n)|, n = 0, 1, 2, . . .. We 
an think of the free spe
trum

as the number of n-ary operations over A. The pn sequen
e of the

variety is the number of essentially n-ary term operations over A. It is

known that the size of the n-generated free algebra (|FV(n)|) in V is at

most m
mn

. If m ≥ 2, then |FV(n)| ≥ n. For example, the free spe
trum

of Boolean algebras is |FV(n)| = 22n

. The �rst important question

about free spe
tra is the following: Within the above bounds what are

the possible sequen
es? For example, if G is a �nite group, then the

size of the n-generated relatively free group in the variety generated by

G is exponential in n if G is nilpotent, and doubly-exponential if G is

not nilpotent ([5℄ and [8℄).
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There are very few results on the free spe
tra of semigroup varieties.

For a basi
 referen
e on the general properties of pn sequen
es for semi-

groups see [3℄. A full des
ription of �nite semigroups for whi
h the pn

sequen
e is bounded by a polynomial is presented in [4℄. Among others,

free spe
tra of surje
tive semigroups were 
onsidered in [3℄, bands in

[9℄ and 
ombinatorial 0-simple semigroups in [7℄.

2. Preliminaries

Let t = t(x1, . . . , xn) be an n-ary term. Then a term operation tA is

said to be essentially n-ary if it depends on all of its variables. That

is, if for all 1 ≤ i ≤ n there exist a1, . . . , ai−1, a, b, ai+1, . . . , an ∈ A su
h

that

t(a1, . . . , ai−1, a, ai+1, . . . , an) 6= t(a1, . . . , ai−1, b, ai+1, . . . , an).

The 
ontent of t for some term t is the set of variables o

urring in t.

We denote it by c(t). For n ≥ 1, denote the number of essentially n-ary

term operations over A by pn(A). For the free spe
trum of a variety

we have

(1) |FV(n)| =
n
∑

k=0

(

n

k

)

pk(A)

Our main referen
e is going to be the book of J. Almeida ([1℄), where

detailed dis
ussion of semidire
t produ
ts of semigroups 
an be found.

In this paper we only list the properties of iterated semidire
t produ
ts

of semilatti
es whi
h are ne
essary for us. A semilatti
e is a 
ommuta-

tive idempotent semigroup. The variety of semilatti
es will be denoted

by SL. The variety generated by semidire
t produ
ts of two semi-

latti
es will be denoted by SL2
, and SLt

will denote in general the

variety generated by the t-times iterated semidire
t produ
t of semi-

latti
es. For every t the variety SLt
is lo
ally �nite and generated by

FSLt(2t), the 2t generated free algebra of the variety. Sin
e the variety

of semilatti
es SL is 
ontained in ea
h variety SLt
, a term 
ontaining

n variables ne
essary determines an essentially n-ary term operation.

Let SLt(n) be the set of the n-ary terms in SLt
. We denote by pn(t)

the number of essentially n-ary term operations in the variety SLt
,

thus |SLt(n)| = pn(t).

3. Re
urren
e formula

In this Se
tion we present a new 
hara
terization of the word problem

for the variety SLt
, then a re
urren
e formula is given for the number

of essentially n-ary terms.
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At �rst re
all the identity basis of SLt
from [1℄. Let X = {x1, x2, . . . }

be a 
ountable set of variables and X+ (X∗) be the free semigroup (free

monoid) over X.

ut−1 . . . u1xixj = ut−1 . . . u1xjxi,

ut−1 . . . u1x
2
i = ut−1 . . . u1xi,

where c(w) denotes the 
ontent of w for some w ∈ X∗ and xi, xj ∈
c(u1) ⊆ · · · ⊆ c(ut−1), uj ∈ X+). We say that

(2) (u =)w0, w1, . . . , wr(= v)

is a dedu
tion of an identity u = v from a set Σ of identities if for ea
h

j ∈ {0, . . . , r − 1} there exist fa
torizations

(3) wj = aj(ϕjuj)bj and wj+1 = aj(ϕjvj)bj,

where ea
h ϕj : X+ → X+ is a substitution of the variables and one of

the identities uj = vj or vj = uj belongs to Σ. The dedu
tion is left

absorbing if ea
h aj of the o

urring pre�xes in (3) is the empty word.

We say the dedu
tion (2) involves no substitutions, if all homomorphism

ϕj are the identity fun
tion. Lemma 10.3.4. and Theorem 10.3.6. in

[1℄ 
ontains the following result.

Theorem 3.1. For ea
h t ≥ 2 Σt−1 is the identity basis for SLt
.

Moreover, SLt |= u = v for u, v ∈ X∗ if and only if there exists a

dedu
tion of u = v from Σt−1 whi
h is left absorbing and involves no

substitutions.

That is, if SLt |= u = v, then there exists a dedu
tion u = w0, w1, . . . , wr =
v su
h that ea
h wj = wj+1 of the dedu
tion is one of the following

identities

ut−1 . . . u1xyw = ut−1 . . . u1yxw(4)

ut−1 . . . u1x
2w = ut−1 . . . u1xw,(5)

where x, y ∈ X, w ∈ X∗, uj ∈ X+ (j ∈ {1, . . . , t − 1}) and x, y ∈
c(u1) ⊆ · · · ⊆ c(ut−1). We 
all a step of the form (4) or (5) an elemen-

tary step on level t. From now on, let u ∼t v denote SLt |= u = v for

two terms u, v ∈ X∗ . Note that u ∼t v and c(v) = c(u) ⊆ c(w) yields

wu ∼t+1 wv. Moreover, from u ∼t v follows uw ∼t vw for any terms

u, v, w ∈ X∗, t ≥ 2. Now, let us introdu
e a notation whi
h we will use

frequently throughout Se
tions 3 and 4.

Notation 3.2. Let u ∈ X+ be a term. Let mu be the last o

urring

variable. Let fu be the pre�x of u before the �rst o

uren
e of mu and
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let bu be the su�x of u after the �rst o

uren
e of mu, i.e. u = fumubu,

where c (fu) = c (u) \ {mu }. Note that bu is the empty term if a

variable o

urs only at the end of u, and fu is the empty term if u


ontains only one variable.

Theorem 3.3. Let t ≥ 2 and u and v be two essentially n-ary terms

over the set Xn = { x1, . . . , xn }. A

ording to Notation 3.2: u =
fumubu, v = fvmvbv. Then u ∼t v if and only if

(i) mu = mv,

(ii) fu ∼t fv,

(iii) bu ∼t−1 bv.

Proof. Assume �rst that 
onditions (i),(ii) and (iii) hold. We prove

that u ∼t v. By (iii) there exist a dedu
tion bu = w0, w1, . . . , wr = bv,

su
h that every wi ∼t−1 wi+1 is an elementary step on level t − 1.
Note that fumuwi ∼t fumuwi+1 is an elementary step on level t, sin
e

c(fumu) = Xn. Then fumubu ∼t fumubv by the dedu
tion fumubu =
fumuw0, fumuw1, . . . , fumuwr = fumubv. From (ii) we have fu ∼t fv,

therefore fumubv ∼t fvmubv. These two dedu
tions together prove

fumubu ∼t fvmubv. Finally, by (i) we have mu = mv, hen
e u =
fumubu ∼t fvmvbv = v.

For the other dire
tion we prove that if u = fumubu ∼t fvmvbv = v

by one elementary step on level t, then (i), (ii) and (iii) hold. Then

by indu
tion on the length of the dedu
tion it follows that if u =
fumubu ∼t fvmvbv = v then (i), (ii) and (iii) hold.

Assume �rst that we use an elementary step of form (4). Now,

u = ut−1ut−2 . . . u1xyw and v = ut−1ut−2 . . . u2u1yxw for some terms

w ∈ X∗
n and uj ∈ X+

n su
h that x, y ∈ c(u1) ⊆ c(u2) ⊆ · · · ⊆
c(ut−2) ⊆ c(ut−1). We distinguish two 
ases a

ording to whether or

not c(ut−1) = Xn.

Case 1. c (ut−1) = Xn. This implies that mu o

urs in ut−1, and

therefore fumu is a pre�x of ut−1. Similarly fvmv is a pre�x of vt−1,

hen
e (i) and (ii) hold. For some term s ∈ X∗
n we have ut−1 =

fumus = fvmvs. Then the dedu
tion bu = (sut−2)ut−3 . . . u1xyw,

(sut−2)ut−3 . . . u1yxw = bv shows bu ∼t−1 bv, and so (iii) holds.

Case 2. c (ut−1) 6= Xn. Thus c(ut−1ut−2 . . . u2u1xy) 6= Xn, either,

hen
e the last o

urring variable in both u and v appears in w. Now,

u = ut−1ut−2 . . . u1xyw, v = ut−1ut−2 . . . u1yxw, hen
e mu = mv and

bu = bv, proving (ii) and (iii). Moreover, there exists a term s ∈ X∗
n su
h

that fu = ut−1ut−2 . . . u2u1xys and fv = ut−1ut−2 . . . u2u1yxs. Then

ut−1ut−2 . . . u2u1xys ∼t ut−1ut−2 . . . u2u1yxs is an elementary step. Thus

fu ∼t fv and (iii) holds.
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The 
ase where we use an elementary step of form (5) 
an be handled

similarly. Indu
tion on the length of the dedu
tion showing u ∼t v

�nishes the proof, as ea
h property (i), (ii) and (iii) is preserved by an

elementary step. �

In other words, by Theorem 3.3 every n-ary term over SLt

an be

represented as a triple. This triple 
onsists of an (n− 1)-ary term over

SLt
, a variable and an at most n-ary (possibly empty) term of SLt−1

.

This is the key observation for proving a re
urren
e formula for pn(t).

Theorem 3.4. The following re
urren
e formula holds for the number

of essentially n-ary term operations:

(6) pn (t) = npn−1 (t)
n
∑

k=0

(

n

k

)

pk (t − 1) .

Proof. In the variety SLt
every term 
ontaining n variables determines

an essentially n-ary term operation. Let u be an essentially n-ary

term over SLt
. By Theorem 3.3 we 
an assign a triple fu, mu, bu

to u bije
tively, where fu is an (n − 1)-ary term over SLt
, mu is a

variable and bu is an at most n-ary (possible empty) term of SLt−1
.

We 
ount the number of su
h triples. We have n many 
hoi
es for mu

and pn−1 (t) many 
hoi
es for fu. The number of the at most n-ary

terms over SLt−1
is the size of the n-generated free algebra in SLt−1

.



ording to formula (1) in Se
tion 2 we have
∑n

k=0

(

n
k

)

pk (t − 1) many


hoi
es for bu. Thus the re
urren
e formula (6) is gained. �

4. Normal form

In Se
tion 4 a normal form for the elements of the free algebra in the

varieties SLt
is presented. The length of this normal form is polynomial

in the number of variables. Additionally, one 
an easily 
al
ulate the

produ
t of these normal forms and obtain the result in normal form.

Constru
tion 4.1. By Theorem 3.3 every n-ary term over SLt

an be

represented as a triple. This triple 
onsists of an (n− 1)-ary term over

SLt
, a variable and an at most n-ary (possible empty) term of SLt−1

.

Let us assign this triple to the term. If we multiply these elements from

left to right we obtain the original word. Now, we iterate this pro
ess

for the �rst and the third parts, simoultaneously. After �nitely many

steps we arrive at terms of SL1
and unary terms of SLs

for some s ≤ t.

Conne
ting all the noted terms with the elements of the 
orresponding

triple, we get a rooted tree, as it is illustrated on Figure 1.
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Figure 1

A

ording to Theorem 3.3 this tree uniquely determines the original

term, and the s
heme of the tree only depends on the equivalen
e 
lass

of the original term. There are three kinds of leaves on the tree: unary

terms of SLs
for some s, arbitrary terms of SL1

and variables. In the

�rst two 
ases we assign to the leaf the shortest normal form of the

term written on the leaf itself. That is, in the 
ase of a unary term xk
i

of SLs
we assign xl

i to the leaf, where l = min{k, s}. While in the 
ase

of an arbitrary term w of SL1
the term xi1xi2 · · ·xir is assigned, where

the variables o

urring in w are in in
reasing order a

ording to their

indi
es. We de�ne the normal form of the term by writing the terms

assigned to the leaves next to ea
h other from left to right.

Figure 2 illustrates an example. It shows how the normal form of

x3
1x2x1x3x

2
2x3x1 in SL2

is 
omputed. The normal form is x2
1x2x1x3x1x2x3.

The variety is indi
ated in the upper right 
orner of the terms.

Figure 2
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Let us denote the normal form of a term w in the variety SLt
by

ϕt (w). The following algorithm 
omputes ϕt re
ursively.

Algorithm 4.2. Let w be an n-ary term.

(1) If t = 1, then let ϕ1 (w) = xi1xi2 . . . xik , where the variables

o

urring in w are in in
reasing order a

ording to their indi
es.

(2) If n = 1 and w = xk
i , then let l = min {t, k} and ϕt

(

xk
i

)

= xl
i.

(3) Otherwise let ϕt (w) be the 
on
atenation of the terms ϕt (fw),
mw and ϕt−1 (bw), i.e. ϕt (w) = ϕt (fw) mwϕt−1 (bw).

Note that steps (1), (2) and (3) are invoked as many times as the

number of verti
es the tree has in Constru
tion 4.1. Moreover ea
h

step takes linear time (in the length of the term).

Now, we show that we assigned a unique normal form to every term,

and distin
t terms have distin
t normal forms.

Proposition 4.3. Let u, v be n-ary terms. Then u ∼t v if and only if

the normal form of u and v in SLt
are the same, that is, ϕt (u) = ϕt (v).

Proof. We prove the proposition by indu
tion on t and n. If t = 1 or

n = 1 then the proposition holds. Assume that n ≥ 2 and t ≥ 2.
Let u ∼t v. By Theorem 3.3 we have fu ∼t fv, mu = mv and bu ∼t−1

bv. By the indu
tion hypothesis fu ∼t fv implies ϕt (fu) = ϕt (fv), and
ϕt−1 (bu) = ϕt−1 (bv) follows from bu ∼t−1 bv. From step (3) of Algo-

rithm 4.2 we have ϕt (u) = ϕt (fu) muϕt−1 (bu) = ϕt (fv) mvϕt−1 (bv) =
ϕt (v).
Now, assume that ϕt (u) = ϕt (v). From step (3) of Algorithm 4.2

we have mu = mv, thus ϕt (fu) = ϕt (fv) and ϕt−1 (bu) = ϕt−1 (bv).
By the indu
tion hypothesis we have fu ∼t fv and bu ∼t−1 bv. From

Theorem 3.3 u ∼t v follows. �

Proposition 4.4. Let u be an n-ary term in the free algebra of SLt
.

Then ϕt (u) is a shortest element in the equivalen
e 
lass of u.

Proof. We prove the proposition by indu
tion on n and t. The state-

ment holds if n = 1 or t = 1. Assume that n ≥ 2 and t ≥ 2, and let

v be in the equivalen
e 
lass of u. By Theorem 3.3 we have fu ∼t fv,

mu = mv and bu ∼t−1 bv. By the indu
tion hypothesis ϕt (fu) is in

the equivalen
e 
lass of fu and ϕt (fu) is shorter than fv. Similarly,

ϕt−1 (bu) is in the equivalen
e 
lass of bu and ϕt−1 (bu) is shorter than
bv. By Theorem 3.3, ϕt (u) = ϕt (fu) muϕt−1 (bu) is in the equivalen
e


lass of u = fumubu and is shorter than v = fvmvbv. �

Finally, we give an upper bound on the length of the normal form

and on the time demand of Algorithm 4.2 for 
omputing the normal

form of the produ
t of two normal forms.
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Proposition 4.5. The normal form of an n-ary term in SLt
has length

at most
(

n+t
t

)

− 1. Given two n-ary normal forms in SLt
the normal

form of their produ
t 
an be 
al
ulated in O (n2t−1) time.

Proof. Let M(n, t) denote the maximal length of the normal form of an

n-ary term in the variety SLt
. From Proposition 4.4 and Algorithm 4.2

we obtain M(n, t) = M(n − 1, t) + 1 + M(n, t − 1) with initial values

M(1, t) = t and M(n, 1) = n. This re
urren
e formula has the solution

M(n, t) =
(

n+t
t

)

− 1 = O(nt).
Let L(n, t) denote the number of leaves on the tree of the nor-

mal form in Constru
tion 4.1. Again, a re
urren
e formula 
an be

obtained: L(n, t) = L(n − 1, t) + L(n, t − 1) + 1 with initial val-

ues L(n, 1) = L(1, t) = 1. This re
urren
e formula has the solution

L(n, t) = 2
(

n+t−2
t−1

)

− 1 = O(nt−1). Every non-leaf vertex of the tree

is a parent of a leaf, thus the tree in Constru
tion 4.1 has exa
tly

2L(n, t) = 4
(

n+t−2
t−1

)

− 2 = O(nt−1) verti
es. The number of non-leaf

verti
es is equal to the number of steps invoked during Algorithm 4.2.

Let u and v be two n-ary normal forms in SLt
, then their lengths are at

most O (nt). Steps (1), (2) and (3) are invoked O(nt−1) times, and ea
h

time 
omputing the arguments for the next re
ursive step takes linear

time in the length of the term, i.e. O (nt) time. Thus Algorithm 4.2

takes O (n2t−1) time to run on uv. �

5. Expli
it formula

The aim of this se
tion is to �nd expli
it formulae for the pn sequen
es

and the free spe
tra of the varieties SLt
. The size of the free monoids

in the smallest varieties 
an be determined with high a

ura
y.

Proposition 5.1. For the number of n-ary terms in SL1
and SL2

we

have

(7) pn(1) = 1 and pn(2) = n! · 2(n+1

2 )

Proof. As any element of the free semilatti
e is determined by the set

of its variables, we have pn(1) = 1, and 
learly p1(2) = 2 holds. By

iterated use of (6) we get
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pn(2) = n

(

n
∑

k=0

(

n

k

)

pk(1)

)

pn−1(2) =

= n

(

n
∑

k=0

(

n

k

)

pk(1)

)

(n − 1)

(

n−1
∑

k=0

(

n − 1

k

)

pk(1)

)

pn−2(2) =

= n

(

n
∑

k=0

(

n

k

)

pk(1)

)

(n−1)

(

n−1
∑

k=0

(

n − 1

k

)

pk(1)

)

· · · 1·

(

1
∑

k=0

(

1

k

)

)

p0(2) =

= n!
n
∏

i=1

(

i
∑

k=0

(

i

k

)

pk(1)

)

= n!
n
∏

i=1

(

i
∑

k=0

(

i

k

)

)

= n!
n
∏

i=1

2i = n!·2(n+1

2 )

�

Corollary 5.2. |FSL1(n)| = 2n − 1 and |FSL2(n)| = n! · 2(n+1

2 ) + O(n! ·

2(n

2)).

Proof. By formulae (1) and (7) we get

|FSL1(n)| =
n
∑

i=1

(

n

i

)

pn(1) =
n
∑

i=1

(

n

i

)

= 2n − 1.

For t = 2 the same arguments yield

|FSL2(n)| =
n
∑

i=1

(

n

i

)

i! · 2(i+1

2 ) =

= n! ·2(n+1

2 )+n(n−1)! ·2(n

2)+

(

n

2

)

(n−2)! ·2(n−1

2 )+
n−3
∑

i=1

(

n

i

)

i! ·2(i+1

2 ) =

= n! · 2(n+1

2 ) +n! · 2(n

2) +
n!

2
· 2(n−1

2 ) +
n−3
∑

i=1

n(n− 1) · · · (n− i+1)2(
i+1

2 ) =

= n! · 2(n+1

2 ) + O
(

n! · 2(n

2)
)

+ O
(

2nn! · 2(n−2

2 )
)

=

= n! · 2(n+1

2 ) + O
(

n! · 2(n

2)
)

�

Although for pn(2) we have a ni
e 
losed formula, it is hopeless to

get one for |FSL2(n)|. The 
ase of SL3
is even more 
ompli
ated.
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Proposition 5.3. There exist a 
onstant α > 1 and a monotone in-


reasing sequen
e of real numbers αn → α su
h that

pn(3) = αnn!(
n
∏

i=1

i!)2(n+2

3 )

.

Proof. A

ording to the re
urren
e formula (6) and formula (7) one 
an

obtain pk(3) = pk−1(3)k
k
∑

i=0

(

k
i

)

i! · 2(i+1

2 ). To simplify the 
al
ulation εk

be de�ned by the following:

(8)

k
∑

i=0

(

k

i

)

i! · 2(i+1

2 ) = pk(2)(1 + εk).

The re
urren
e formula 
an be expanded as follows:

pn(3) = pn−1(3)npn(2)(1 + εn) =

= pn−2(3)n(n − 1)pn(2)pn−1(2)(1 + εn)(1 + εn−1) = · · · =

= n!

(

n
∏

i=2

pi(2)(1 + εi)

)

p1(3) = n!

(

n
∏

i=2

i! · 2(i+1

2 )(1 + εi)

)

p1(3) =

=
3

2
n!

(

n
∏

i=1

i!

)

2(n+2

3 )
n
∏

i=2

(1 + εi).

From (8) εk =
k−1
∑

i=0

1
(i+1)!

2−(i+1)(2k−i)/2 <
k−1
∑

i=0

2−k−i < 21−k (for k ≥ 2).

Using the inequality 1 + x < ex we obtain

n
∏

i=2

(1 + εi) <

n
∏

i=2

eεi <

n
∏

i=2

e21−i

< e.

Thus αn = 3
2

n
∏

i=2

(1 + εi) < 3
2
e, and the statement holds. �

Note that α = 1.70506 . . .

Corollary 5.4. There exists a sequen
e of real numbers βn → α su
h

that |FSL3(n)| = βnn!(
n
∏

i=1

i!)2(n+2

3 ). In parti
ular,

log2 |Fn(3)| =

(

n + 2

3

)

+
1

2 log 2
· n2 log n + O(n2).
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Proof. By Proposition 5.3 we have pk(3) = αkk!(
k
∏

i=1

i!)2(k+2

3 ). The �rst

part of the statement holds, sin
e
|F

SL3 (n)|

pn(3)
→ 1. Indeed,

|FSL3(n)| =
n
∑

i=1

(

n

i

)

pi(3) =
n
∑

i=1

(

n

i

)

αii!

(

i
∏

j=1

j!

)

2(i+2

3 ) =

= pn(3)
(

1 + O(2−n(n+1)/2)
)

= pn(3)(1 + o(1)).

For the se
ond part note that the numbers of the form

n
∏

i=1

i! are 
alled

superfa
torials. From Stirling's formula one 
an derive the following

well-known estimates for the logarithms of fa
torials and superfa
tori-

als.

log2 βnn! = O(n log n),

(9) log2

(

n
∏

i=1

i!

)

=
1

2 log 2
· n2 log n + O(n2).

By substituting these to the formula |FSL3(n)| = βnn!(
n
∏

i=1

i!)2(n+2

3 ), we

get

log2 |FSL3(n)| =

(

n + 2

3

)

+
1

2 log 2
· n2 log n + O(n2).

�

Theorem 5.5. For the pn sequen
e of the variety SLt
the following

asymptoti
 formula holds for t ≥ 3:

log2 pn(t) =

(

n + t − 1

t

)

+
1

log 2
·

1

(t − 1)!
· nt−1 log n + Ot(n

t−1)

Proof. De�ne

an(t) =





n
∏

i1=1

i1
∏

i2=1

· · ·

it−3
∏

it−2=1

it−2!



 2(n+t−1

t
) and bn(t) = ent−2 log n

Now we prove that

(10) an(t) ≤ pn(t) ≤ an(t)bn(t) for t ≥ 3, n ≥ 2,

then give an estimate for log an(t).
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For the lower bound at �rst we 
he
k the 
ase n = 2. Clearly,

a2(t) = 2t+2 and p2(2) = a2(2) = 16, thus a2(t) ≤ p2(t) is true for

t = 2. By indu
tion on t and the re
urren
e formula (6)

p2(t) = 2t(p2(t − 1) + 2(t − 1) + 1) ≥ 2p2(t − 1) ≥ 2a2(t − 1) = a2(t),

thus a2(t) ≤ p2(t) holds for every t ≥ 2.
We prove the inequality an(t) ≤ pn(t) by indu
tion on t. For t = 3

it follows from Proposition 5.3, as αn > 1. Suppose that it is proved

for some t ≥ 3.
The re
urren
e formula (6) for pn(t) implies that

pn(t + 1) = pn−1(t + 1)n
n
∑

i=0

(

n

i

)

pi(t) ≥ pn−1(t + 1)pn(t) ≥ · · · ≥

≥ pn(t)pn−1(t) · · · p2(t)p1(t + 1).

By the indu
tion hypothesis ak(t) ≤ pk(t) for 2 ≤ k ≤ n and p1(t+1) =

t + 1 ≥ 2, and using

n
∏

i=2

ai(t) = 1
2
an(t + 1)

pn(t + 1) ≥ an(t)an−1(t) · · · a2(t) · 2 = an(t + 1).

Now we 
ontinue with the upper bound of (10). Similarly to the

proof of Proposition 5.3 in order to estimate the quotient of the size of

the free algebra and pn(t) de�ne ηk = |Ft(k)|
pk(t)

=
k−1
∑

i=0

(

k
i

)

pi(t)
pk(t)

. We prove

that

(11)

n
∏

k=2

k
∑

i=0

(

k
i

)

pi(t)

pk(t)
=

n
∏

k=2

(1 + ηk) < e.

From the re
urren
e formula (6)

pi−1(t)

pi(t)
=

1

i
·

1
i
∑

j=0

(

k
j

)

pj(t − 1)

≤
1

i
·

1
i
∑

j=0

(

k
j

)

=
1

i2i
.

Then

(

k

i

)

pi(t)

pk(t)
=

(

k

i

) k
∏

j=i+1

pj−1(t)

pj(t)
≤

1

(k − i)!
· 2(i+1

2 )−(k+1

2 ) ≤ 2i−2k+1,
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so ηk =
k−1
∑

i=0

(

k
i

)

pi(t)
pk(t)

< 21−k. Using the inequality 1 + x < ex we obtain

n
∏

i=2

(1 + ηi) <

n
∏

i=2

eηi <

n
∏

i=2

e21−i

< e.

By pro
eeding by indu
tion on t we show that pn(t) ≤ an(t)bn(t) if

t ≥ 3, n ≥ 2 ex
ept t = 4 and n = 2. For t = 3 the inequality pn(t) ≤
an(t)bn(t) obviously holds (see Proposition 5.3). By the re
urren
e

formula (6) and the inequality (11)

(12) pn(t + 1) = n!(t + 1)pn(t)pn−1(t) · · · p2(t) ·
n
∏

k=2

k
∑

i=0

(

k
i

)

pi(t)

pk(t)
<

< n!(t + 1)pn(t)pn−1(t) · · · p2(t)e.

A

ording to the indu
tion hypothesis we have pj(t) ≤ aj(t)bj(t) for

any 2 ≤ j ≤ n ex
ept the 
ase t = 4, j = 2. In this ex
eptional


ase, p2(4) = 1064 and a2(4)b2(4) = 1024, hen
e p2(4) ≤ 2a2(4)b2(4).
Applying these estimations we get

(13)

n!(t+1)pn(t)pn−1(t) · · · p2(t)e < n!(t+1)an(t) · · · a2(t)bn(t) · · · b2(t)·2e =

= an(t + 1)n!(t + 1)e
n
∏

i=2

bi(t).

Hen
e,

(14) pn(t + 1) < an(t + 1)n!(t + 1)e
n
∏

i=2

bi(t).

Now, an estimate for the logarithm of the right-hand side of (14) is

going to be given. The fun
tion xt−2 log x is in
reasing, thus for the

logarithm of

n
∏

i=2

bi(t) we get

(15) log

(

n
∏

i=2

bi(t)

)

=
n
∑

i=2

it−2 log i ≤ nt−2 log n +

n
∫

2

xt−2 log x,
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where

(16)

n
∫

2

xt−2 log x ≤

n
∫

2

xt−2 log x +
1

t − 1
xt−2 =

=

[

1

t − 1
xt−1 log x

]n

2

≤
1

t − 1
nt−1 log n.

From (15) and (16) we obtain

(17)

log
n
∏

i=2

bi(t) ≤

(

1

n
+

1

t − 1

)

nt−1 log n =

(

1

n
+

1

t − 1

)

log bn(t + 1).

The following inequality also holds

(18) log(n!(t + 1)e) ≤ n log n + log(t + 1) + 1 =

=

(

1

nt−2
+

log(t + 1)

nt−1 log n
+

1

nt−1 log n

)

log bn(t + 1).

Taking the logarithm of both sides of (14) and substituting (17) and

(18) we obtain that pn(t + 1) ≤ an(t + 1)bn(t + 1) if

1

n
+

1

t − 1
+

1

nt−2
+

log(t + 1)

nt−1 log n
+

1

nt−1 log n
≤ 1.

This inequality holds, ex
ept the 
ases (n; t) = (2; 3), (2; 4), (2; 5), (3; 3), (4; 3)
(we suppose that n ≥ 2 and t ≥ 3). Cal
ulation says that pn(t) ≤
an(t)bn(t) holds for the remaining four 
ases, as well.

Hen
e, for a �xed t log2 pn(t) = log2 an(t) + O(nt−2 log n), where

log2 an(t) =

(

n + t − 1

t

)

+ log2





n
∏

i1=1

i1
∏

i2=1

· · ·

it−3
∏

it−2=1

it−2!



 .

Now we show that

(19)

log2





n
∏

i1=1

i1
∏

i2=1

· · ·

it−3
∏

it−2=1

it−2!



 =
1

log 2
·

1

(t − 1)!
· nt−1 log n + Ot(n

t−1),

whi
h proves the statement.

(19) 
an be proved by indu
tion on t. For t = 3 this is the estimate

for the superfa
torials (see (9)). In the indu
tion step it is shown that

(20)

n
∑

i=1

(

1

(t − 1)!
· it−1 log i + Ot(i

t−1)

)

=
1

t!
· nt log n + Ot+1(n

t).
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From the monotoni
ity of the fun
tion x
t−1 log x and estimating the

integral on the standard way we get

n
∑

i=1

1

(t − 1)!
· it−1 log i =

n
∫

2

1

(t − 1)!
· xt−1 log x + Ot+1(n

t−1 log n) =

=
1

t!
· nt log n + Ot+1(n

t−1 log n).

As

n
∑

i=1

Ot(i
t−1) = Ot+1(n

t), we obtain (20), hen
e the statement holds.

�
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