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ABSTRACT. We present a description of the finitely generated free
algebras in the varieties of iterated semidirect products of semilat-
tices. Asymptotical bounds for the free spectra of these varieties
are given.

1. INTRODUCTION

Semidirect products and iterated semidirect products of semmilat-
ices are thorougly investigated in [1]. Among others, it is shown that
each variety of iterated meet semilattices is finitely generated and non-
finitely based. In this paper we extend the results of [1| on these vari-
eties. We present a new characterization for the word problem of these
varieties, and give an asymptotic estimate for their free spectra. We
do it via finding a normal form for the elements of the free algebras in
each variety.

Let A be an m-element finite algebra. Let V denote the variety
generated by A, and denote by Fy,(n) the free algebra in V generated
by n elements. The free spectrum of a variety V' is the sequence of
cardinalities |Fy(n)|, n = 0,1,2,.... We can think of the free spectrum
as the number of n-ary operations over A. The p, sequence of the
variety is the number of essentially n-ary term operations over A. It is
known that the size of the n-generated free algebra (|Fy(n)|) in V is at
most m™". If m > 2, then |Fy(n)| > n. For example, the free spectrum
of Boolean algebras is |Fy(n)| = 2%". The first important question
about free spectra is the following: Within the above bounds what are
the possible sequences? For example, if G is a finite group, then the
size of the n-generated relatively free group in the variety generated by
G is exponential in n if G is nilpotent, and doubly-exponential if G is
not nilpotent (5] and [8]).
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There are very few results on the free spectra of semigroup varieties.
For a basic reference on the general properties of p, sequences for semi-
groups see [3]. A full description of finite semigroups for which the p,
sequence is bounded by a polynomial is presented in [4]. Among others,
free spectra of surjective semigroups were considered in [3], bands in
[9] and combinatorial 0-simple semigroups in |7].

2. PRELIMINARIES

Let t = t(zy,...,7,) be an n-ary term. Then a term operation t* is
said to be essentially n-ary if it depends on all of its variables. That
is, if for all 1 <4 < n there exist ay,...,a;_1,a,b,a;41,...,a, € Asuch
that

t(al, vy i1, A, 441y - - ,an) 7£ t(al, N ,ai_l,b, Ait1y - - ,an).

The content of ¢ for some term t is the set of variables occurring in ¢.
We denote it by ¢(t). For n > 1, denote the number of essentially n-ary
term operations over A by p,(A). For the free spectrum of a variety
we have

) ol =3 (1))

k=0

Our main reference is going to be the book of J. Almeida ([1]), where
detailed discussion of semidirect products of semigroups can be found.
In this paper we only list the properties of iterated semidirect products
of semilattices which are necessary for us. A semilattice is a commuta-
tive idempotent semigroup. The variety of semilattices will be denoted
by SL. The variety generated by semidirect products of two semi-
lattices will be denoted by S£%, and SL£' will denote in general the
variety generated by the ¢-times iterated semidirect product of semi-
lattices. For every ¢ the variety SL' is locally finite and generated by
Fg ¢ (2t), the 2t generated free algebra of the variety. Since the variety
of semilattices SL is contained in each variety S£', a term containing
n variables necessary determines an essentially n-ary term operation.
Let SL(n) be the set of the n-ary terms in S£'. We denote by p, ()
the number of essentially n-ary term operations in the variety SL,
thus |[SLY(n)| = pn(t).

3. RECURRENCE FORMULA

In this Section we present a new characterization of the word problem
for the variety SL', then a recurrence formula is given for the number
of essentially n-ary terms.
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At first recall the identity basis of S£' from [1]. Let X = {zy, 2o, ...}
be a countable set of variables and X * (X*) be the free semigroup (free
monoid) over X.

Ut—1 - - - U TiT5 = Ut—1 - - - UIT T4,
2 _
Up—1 .. - ULT; = Up—1 ... ULy,

where c¢(w) denotes the content of w for some w € X* and z;,z; €
c(u) C -+ Ce(up—y),u; € XT). We say that

(2) (u =)wg, wy, ..., w. (=)

is a deduction of an identity u = v from a set X of identities if for each
j €40,...,r — 1} there exist factorizations

(3) w; = a;(pju;)b; and wjiy = a;(@;v;)b;

where each ¢;: XT — X7 is a substitution of the variables and one of
the identities u; = v; or v; = u; belongs to ¥. The deduction is left
absorbing if each a; of the occurring prefixes in (3) is the empty word.
We say the deduction (2) involves no substitutions, if all homomorphism
@, are the identity function. Lemma 10.3.4. and Theorem 10.3.6. in
[1] contains the following result.

Theorem 3.1. For each t > 2 ¥, is the identity basis for SLC'.
Moreover, SL' = u = v for u,v € X* if and only if there exists a
deduction of w = v from X, 1 which is left absorbing and involves no
substitutions.

That is, if SL' |= u = v, then there exists a deduction u = wg, w1, . .., w, =
v such that each w; = wj;; of the deduction is one of the following
identities

(4) Up_1 .. U TYW = Uy_1 . . . ULYTW
(5) Upq - W T2W = Uy . . . U W,

where z,y € X, w € X*, u; € X* (j € {1,...,t —1}) and x,y €
c(uy) C -+ Cc(ug—q). We call a step of the form (4) or (5) an elemen-
tary step on level t. From now on, let u ~; v denote SL' = u = v for
two terms u,v € X* . Note that u ~; v and ¢(v) = ¢(u) C c¢(w) yields
wu ~y1 wv. Moreover, from u ~; v follows uw ~; vw for any terms
u,v,w € X*, t > 2. Now, let us introduce a notation which we will use
frequently throughout Sections 3 and 4.

Notation 3.2. Let u € X be a term. Let m, be the last occurring
variable. Let f, be the prefix of u before the first occurence of m, and
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let b, be the suffix of u after the first occurence of m,,, i.e. u = f,mb,,
where ¢(f,) = c¢(u) \ {m,}. Note that b, is the empty term if a
variable occurs only at the end of w, and f, is the empty term if «
contains only one variable.

Theorem 3.3. Let t > 2 and u and v be two essentially n-ary terms
over the set X, = {x1,...,x,}. According to Notation 3.2: u =
fumyby, v = fymyb,. Then u ~; v if and only if

(1) my = my,
(11) fu ~t fv;
(iii) by ~i—1 b,.

Proof. Assume first that conditions (i),(ii) and (iii) hold. We prove
that u ~; v. By (iii) there exist a deduction b, = wg, wy, ..., w, = by,
such that every w; ~;_1 w;;1 is an elementary step on level ¢ — 1.
Note that f,m,w; ~; fum,w;y1 is an elementary step on level ¢, since
c(fumy) = X, Then fymyb, ~; fumub, by the deduction f,m,b, =
fumywo, fumuwy, ..., fumyw, = fymy,b,. From (ii) we have f, ~; f,,
therefore f,m,b, ~; f,my,b,. These two deductions together prove
fumyby ~¢ fyomyub,. Finally, by (i) we have m, = m,, hence u =
fumubu ~t fvmvbv = 0.

For the other direction we prove that if u = f,m.b, ~¢ fuom,b, = v
by one elementary step on level ¢, then (i), (ii) and (iii) hold. Then
by induction on the length of the deduction it follows that if u =
fumuyby ~¢ fumy,b, = v then (i), (ii) and (iii) hold.

Assume first that we use an elementary step of form (4). Now,
U = U1 Up_g ... urxyw and v = Us_1Us_o ... Ugyyxw for some terms
w € X} and u; € X, such that z,y € c(uy) C c(uz) C -+ C
c(ui—2) C c(us—1). We distinguish two cases according to whether or
not c(u;—1) = X,.

Case 1. c¢(w—1) = X,. This implies that m, occurs in u;_;, and
therefore f,m, is a prefix of u;_;. Similarly f,m, is a prefix of v;_q,
hence (i) and (ii) hold. For some term s € X} we have w;,_; =
fumys = fymys. Then the deduction b, = (sui_o)ui—3...uizyw,
(stu—2)u—3 ... uyyrw = b, shows b, ~;_1 by, and so (iii) holds.

Case 2. c(u1) # X, Thus c(ug_1uso ... uguizy) # X, either,
hence the last occurring variable in both u and v appears in w. Now,
U = U1 Us_2 ... UITYW, UV = Up_1Us_3 . .. U yxw, hence m, = m, and
b, = by, proving (ii) and (iii). Moreover, there exists a term s € X}* such
that f, = w_1u_o ... usugzys and f, = w_1us_o ... uguiyrs. Then
Up_1Up—9 « . . USUITYS ~y Us_1Us_5 . . . U1y S is an elementary step. Thus
fu ~¢ fp and (iii) holds.
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The case where we use an elementary step of form (5) can be handled
similarly. Induction on the length of the deduction showing u ~; v
finishes the proof, as each property (i), (ii) and (iii) is preserved by an
elementary step. 0

In other words, by Theorem 3.3 every n-ary term over SL' can be
represented as a triple. This triple consists of an (n — 1)-ary term over
SL', a variable and an at most n-ary (possibly empty) term of SL'!.
This is the key observation for proving a recurrence formula for p,(t).

Theorem 3.4. The following recurrence formula holds for the number
of essentially n-ary term operations:

) i) = 0 ()= 1),

k=0

Proof. In the variety SL' every term containing n variables determines
an essentially m-ary term operation. Let uw be an essentially n-ary
term over SL'. By Theorem 3.3 we can assign a triple f,, mq. by
to u bijectively, where f, is an (n — 1)-ary term over SL', m, is a
variable and b, is an at most n-ary (possible empty) term of SL'~!.
We count the number of such triples. We have n many choices for m,,
and p,_1 (t) many choices for f,. The number of the at most n-ary
terms over SL! is the size of the n-generated free algebra in SL'*.
ccording to formula (1) in Section 2 we have Y7 (7)px (t — 1) many
choices for b,. Thus the recurrence formula (6) is gained.

4. NORMAL FORM

In Section 4 a normal form for the elements of the free algebra in the
varieties SL' is presented. The length of this normal form is polynomial
in the number of variables. Additionally, one can easily calculate the
product of these normal forms and obtain the result in normal form.

Construction 4.1. By Theorem 3.3 every n-ary term over SL can be
represented as a triple. This triple consists of an (n — 1)-ary term over
SL', a variable and an at most n-ary (possible empty) term of SL'™*.
Let us assign this triple to the term. If we multiply these elements from
left to right we obtain the original word. Now, we iterate this process
for the first and the third parts, simoultaneously. After finitely many
steps we arrive at terms of S£' and unary terms of S£* for some s < t.
Connecting all the noted terms with the elements of the corresponding
triple, we get a rooted tree, as it is illustrated on Figure 1.
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SL'(n)

S[,t(n —1) Fsﬁt—l(n>

variable

Fgpi-1(n —1)
variable

Sk — 1)

variable

SLl(n—2) Fopia(k)

FIGURE 1

According to Theorem 3.3 this tree uniquely determines the original
term, and the scheme of the tree only depends on the equivalence class
of the original term. There are three kinds of leaves on the tree: unary
terms of SL* for some s, arbitrary terms of S£* and variables. In the
first two cases we assign to the leaf the shortest normal form of the
term written on the leaf itself. That is, in the case of a unary term z¥
of SL£° we assign 2! to the leaf, where | = min{k, s}. While in the case
of an arbitrary term w of S£* the term z;,z;, - - - ;_ is assigned, where
the variables occurring in w are in increasing order according to their
indices. We define the normal form of the term by writing the terms
assigned to the leaves next to each other from left to right.

Figure 2 illustrates an example. It shows how the normal form of
T3ToT 1 T3T5T3T1 in SC%is computed. The normal form is 222911 2371 T273.
The variety is indicated in the upper right corner of the terms.

Sc2

(z3z9m123232371)

(w2w3m)SE"

T1T2T3

Ly T

FIGURE 2
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Let us denote the normal form of a term w in the variety SL' by
@i (w). The following algorithm computes ¢, recursively.

Algorithm 4.2. Let w be an n-ary term.
(1) If t = 1, then let ¢y (w) = z4,24, ... 7, where the variables
occurring in w are in increasing order according to their indices.
(2) If n =1 and w = ¥, then let [ = min {¢, k} and ¢, (2}) = 2.
(3) Otherwise let ¢; (w) be the concatenation of the terms ¢; (f,,),
my, and @y (bw)v Le. @ (U}) = ¥ (fw) MyPr—1 (bw).

Note that steps (1), (2) and (3) are invoked as many times as the
number of vertices the tree has in Construction 4.1. Moreover each
step takes linear time (in the length of the term).

Now, we show that we assigned a unique normal form to every term,
and distinct terms have distinct normal forms.

Proposition 4.3. Let u, v be n-ary terms. Then u ~; v if and only if
the normal form of u and v in SL' are the same, that is, ¢; (u) = ¢; (v).

Proof. We prove the proposition by induction on ¢t and n. If t = 1 or
n = 1 then the proposition holds. Assume that n > 2 and t > 2.

Let u ~; v. By Theorem 3.3 we have f, ~; f,, m, = m, and b, ~;_1
b,. By the induction hypothesis f, ~; f, implies ¢; (f,) = ¢ (fy), and
wi—1 (by) = i1 (by) follows from b, ~;_1 b,. From step (3) of Algo-
rit}(lrr)l 4.2 we have ¢; (u) = @ (fu) Mupi—1 (bu) = @1 (fo) Mupi—1 (by) =
P (V).

Now, assume that ¢; (u) = ¢; (v). From step (3) of Algorithm 4.2
we have m, = m,, thus ¢, (f.) = o (f,) and @1 (b,) = @11 (by).
By the induction hypothesis we have f, ~; f, and b, ~;_1 b,. From
Theorem 3.3 u ~; v follows. O

Proposition 4.4. Let u be an n-ary term in the free algebra of SL'.
Then ¢y (u) is a shortest element in the equivalence class of .

Proof. We prove the proposition by induction on n and t. The state-
ment holds if n = 1 or t = 1. Assume that n > 2 and ¢ > 2, and let
v be in the equivalence class of u. By Theorem 3.3 we have f, ~; f,
m, = m, and b, ~;_1 b,. By the induction hypothesis ¢; (f,) is in
the equivalence class of f, and ¢, (f,) is shorter than f,. Similarly,
i1 (by) 1s in the equivalence class of b, and ¢; 1 (b,) is shorter than
b,. By Theorem 3.3, ¢; (u) = @4 (fu) mupi—1 (by) is in the equivalence
class of u = f,m,b, and is shorter than v = f,m,b,. O

Finally, we give an upper bound on the length of the normal form
and on the time demand of Algorithm 4.2 for computing the normal
form of the product of two normal forms.
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Proposition 4.5. The normal form of an n-ary term in SL' has length
at most ("jt) — 1. Given two n-ary normal forms in SL' the normal

form of their product can be calculated in O (n*~') time.

Proof. Let M(n,t) denote the maximal length of the normal form of an
n-ary term in the variety SL'. From Proposition 4.4 and Algorithm 4.2
we obtain M (n,t) = M(n —1,t) + 1+ M(n,t — 1) with initial values
M(1,t) =t and M(n,1) = n. This recurrence formula has the solution
M(n,t) = ("]") = 1=0(n").

Let L(n,t) denote the number of leaves on the tree of the nor-
mal form in Construction 4.1. Again, a recurrence formula can be
obtained: L(n,t) = L(n — 1,t) + L(n,t — 1) + 1 with initial val-
ues L(n,1) = L(1,t) = 1. This recurrence formula has the solution
L(n,t) = 2("?_’5;2) — 1 = O(n'"'). Every non-leaf vertex of the tree
is a parent of a leaf, thus the tree in Construction 4.1 has exactly
2L(n,t) = 4("7"7?) — 2 = O(n*"?) vertices. The number of non-leaf
vertices is equal to the number of steps invoked during Algorithm 4.2.
Let u and v be two n-ary normal forms in S£', then their lengths are at
most O (n'). Steps (1), (2) and (3) are invoked O(n'~!) times, and each
time computing the arguments for the next recursive step takes linear
time in the length of the term, i.e. O (n') time. Thus Algorithm 4.2
takes O (n*~!) time to run on wwv. O

5. EXPLICIT FORMULA

The aim of this section is to find explicit formulae for the p,, sequences
and the free spectra of the varieties S£'. The size of the free monoids
in the smallest varieties can be determined with high accuracy.

Proposition 5.1. For the number of n-ary terms in SL* and SL* we
have

(7) po(l)=1 and p,(2)=n!- 2("3")

Proof. As any element of the free semilattice is determined by the set
of its variables, we have p,(1) = 1, and clearly p;(2) = 2 holds. By
iterated use of (6) we get
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Corollary 5.2. |Fsi(n)| = 2" — 1 and |Fsp2(n)| = n!-203) £ O(n! -
2(3))_

Proof. By formulae (1) and (7) we get

|E%mm\:§;(jy%u>:§f(j>:

For t = 2 the same arguments yield

o) =3 ()20 =

i=1

ZWLQPy%+MW—1ﬂ2@f+<Z)Oz 2)1-2(" -+§:< )ﬂz’“

i+1)

n—3
:nL%?W+n'ﬂ)+§-2"l+§:nn—n n—i+1)2(%
=1

::n!.2@35.+()<n!.2@))_+()<2nn!.2053) _
_nuj”5+00ﬂgﬁu

O

Although for p,(2) we have a nice closed formula, it is hopeless to
get one for |Fisq2(n)|. The case of SL* is even more complicated.
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Proposition 5.3. There exist a constant o > 1 and a monotone in-
creasing sequence of real numbers o, — a such that

n
n+2
=1

Proof. According to the recurrence formula (6) and formula (7) one can
obtain px(3) = pr_1(3)k Z ( )il - 2(%). To simplify the calculation ey
be defined by the followrng
(8) Ek: (k>z‘ 20%) = p(2)(1 + ).
im0 \'
The recurrence formula can be expanded as follows:

Pn(3) = P13, (2)(1 + &,) =
= Pu2(3)n(n = 1)pa(Q)pn 121+ €)1 +6p1) =+ =

(le Hgl) (Hu o’ 1+sl)>p1(3)=
_ gn! (ﬁﬂ) 2("3) ﬁ(l +e).

i=1 =2

k—1

From (8) ¢ = Z (z+1 —HDEE=)/2 Nt o=k < 917k (for k> 2).
i=0

Using the 1nequahty 1+ 2z < e® we obtain

H(l + &) < Hesi < HeQH <e.
i=2 i=2 i=2
Thus o, = 2 [](1 4 &;) < 2e, and the statement holds. O
=2

Note that o = 1.70506. . .

Corollary 5.4. There exists a sequence of real numbers 3, — « such

that |Fsps(n)| = Ban!(]] i!)2(n;2). In particular,

i=1

n -+ 2 1
log, | F.(3)| = ( 5 ) + 3Tog? -n*logn + O(n?).
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k k+2)
3

Proof. By Proposition 5.3 we have pi(3) = agk!(]] i!)2( . The first
i=1
part of the statement holds, since % — 1. Indeed,

Bl =3 (1)n0) = Z (1)t (H j!> o) _

i=1

=pa(3) (1 + 02 /2)) = p,(3)(1 + o(1)).

For the second part note that the numbers of the form [] ! are called

=1
superfactorials. From Stirling’s formula one can derive the following
well-known estimates for the logarithms of factorials and superfactori-
als.

log, B,n! = O(nlogn),

- 1
N = L2 2
9) log, (H z.) 2Tog2 n”logn + O(n?).

i=1

By substituting these to the formula |Fg,3(n)| = G,n!(]] i!)Q(n?), we
i=1

get

n-+2 1
log | Fgs(n)| = ( : ) + oy o+ O

U

Theorem 5.5. For the p, sequence of the variety SL' the following
asymptotic formula holds fort > 3:

n+t—1 1 1
log, pu(f) — ( )

e t—ll 9] t—1
b ) Togz oy loent Ol
Proof. Define

n i1 i3

a,(t) = H H . H B! 2(7#:71) and  by(t) = o'~ logn

i1=11=1 i—o=1

Now we prove that

(10) an(t) < pu(t) < an(t)b,(t) for t>3,n>2,

then give an estimate for log a,(?).
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For the lower bound at first we check the case n = 2. Clearly,
as(t) = 2772 and po(2) = ax(2) = 16, thus az(t) < po(t) is true for
t = 2. By induction on ¢ and the recurrence formula (6)

pa(t) = 2t(pa(t — 1) +2(t — 1) + 1) > 2pa(t — 1) > 2as(t — 1) = as(t),

thus ay(t) < po(t) holds for every ¢ > 2.

We prove the inequality a,(t) < p,(t) by induction on ¢t. For t = 3
it follows from Proposition 5.3, as «,, > 1. Suppose that it is proved
for some t > 3.

The recurrence formula (6) for p,(¢) implies that

n

e+ 1) = s+ 00 S (7 )ie) 2 s+ D) 2 -2

> Pr(t)pna(t) - - pa()pr(t + 1)
By the induction hypothesis ay(t) < p(t) for 2 < k <mnand p;(t+1) =
t+1>2, and using ] a;(t) = Ja,(t +1)
i=2
pu(t+1) > an(t)an—1(t) -+ as(t) -2 = a,(t +1).

Now we continue with the upper bound of (10). Similarly to the
proof of Proposition 5.3 in order to estimate the quotient of the size of

k=1
the free algebra and p,(t) define n, = % = ; (]:)5;—((?) We prove
that
LA
(11) = |0+ <e.
,g Pr(t) ,g
From the recurrence formula (6)
T S ST
Di 7 i % 7 i % 79t
> (it =1) ()
j=0 7=0
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k=1

SO M = ;} (’:)gk—((tt)) < 217%. Using the inequality 1 + 2 < e we obtain
H(l +m) < He’“ < Hezl_i <e.
i=2 i=2 i=2

By proceeding by induction on ¢ we show that p,(t) < a,(t)b,(t) if
t >3, n>2except t =4 and n = 2. For t = 3 the inequality p,(t) <
a,(t)b,(t) obviously holds (see Proposition 5.3). By the recurrence
formula (6) and the inequality (11)

(12) po(t+ 1) =nl(t + Dpu(t)pp_1(t) - - - pa(t) - ﬁ = <
< nl(t + D)pa(t)pn-1(t) -~ - p2(t)e.

According to the induction hypothesis we have p;(t) < a;(t)b;(t) for
any 2 < j < n except the case t = 4, j = 2. In this exceptional
case, pa(4) = 1064 and ay(4)by(4) = 1024, hence py(4) < 2as(4)ba(4).
Applying these estimations we get

(13)
n(t+1)pn(E)pn-1(t) - - - p2(t)e < nl(t+1)a,(t) - - - aa(t)bn(t) - - - ba(t)-2e =
= a,(t+ Dnl(t+ e [ [ b:(t).
Hence,
(14) pu(t +1) < a,(t + D)nl(t + 1)612[6,»(15).

Now, an estimate for the logarithm of the right-hand side of (14) is
going to be given. The function 2'~2log z is increasing, thus for the

logarithm of [] b;(¢) we get
i=2

n

(15)  log (H bi(t)> = Z i"?logi < n'"?logn + /$t_2 log z,

=2 =2 2
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where

n n

1
(16) /xt_2 logx < /$t_21ogx+t 1a:t_2 =

2 2
n

1 1
= |—2atlogx| < ——n'"tlogn.
t—1 , t—1
From (15) and (16) we obtain
(17)

- 1 1 1 1
logH bi(t) < (— + —) n'"tlogn = (— + —) log b, (t + 1).
Pl n t—1 n t—1

The following inequality also holds

(18) log(n!(t+1)e) < nlogn+log(t+1)+1=
1 log(t + 1
_ ( | log(t+1)

nt=2  nt~llogn nt~llogn

>logbn(t+ 1).

Taking the logarithm of both sides of (14) and substituting (17) and
(18) we obtain that p,(t + 1) < a,(t + 1)b,(t + 1) if
1 1 1 log(t 41 1
, log(t+1)

=+ +
n t—1 nt=2  nt~llogn nt~ltlogn

This inequality holds, except the cases (n;t) = (2;3),(2;4), (2;5), (3;3), (4:3)
(we suppose that n > 2 and ¢ > 3). Calculation says that p,(t) <
a,(t)b,(t) holds for the remaining four cases, as well.

Hence, for a fixed t log, p,(t) = logy a,(t) + O(n'~2logn), where

no i i3
log, an(t) = (n-l—;f N 1) + log, H H T H i

Now we show that

<1

(19)
n o i 1t—3 1 1
. - t—1 t—1
log, .HI.HI”',HIZ”! T log2 (-1 " logn + Ou(n™™),
i1=11i2= o=

which proves the statement.
(19) can be proved by induction on . For ¢ = 3 this is the estimate
for the superfactorials (see (9)). In the induction step it is shown that

n

1 g . g 1
(20) Z ((t— i i logi + O, (i 1)) = E-ntlogn+0t+1(nt).
=1 :
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From the monotonicity of the function z'~!'logz and estimating the
integral on the standard way we get

n n

1 1
Z (t — 1)' L1 logi = /—(t — 1)' Cptl log = + Ot+1(nt_1 logn) _

i=1 2

1
= n'logn 4+ Op1(n''logn).

As 3" 04(i'71) = O41(nt), we obtain (20), hence the statement holds.
i=1
U
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