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Abstract

In this dissertation I summarize my work in counting numerical invariants of structures in

model theory and general algebra. This involves the investigation of the generative spectra

of monounary algebras and the free spectra of certain semigroups arising in automata

theory. By counting the number of n-element monounary algebras in given varieties, we

obtained an enumerative combinatorial result on the number of rooted trees of given depth.

We determine, up to the equivalence of first-order interdefinability, all structures which

are first-order definable in the random partial order. It turns out that these structures

fall into precisely five equivalence classes. We achieve this result by showing that there

exist exactly five closed permutation groups which contain the automorphism group of the

random partial order, and thus expose all symmetries of this structure. The second major

result is the characterization of the reducts of the structures obtained by adding a constant

to the random Kn-free graph for any n ≥ 3, the so-called Henson graphs. Up to first-order

interdefinability, there are 13 reducts if n = 3, and 16 reducts if n ≥ 4. In all these topics

I have published, accepted or submitted papers in various mathematical journals.
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1. Introduction

In this dissertation, we investigate some numerical invariants of structures. A structure is

either a general algbebraic or a model theoretic notion. The language of algebraic structures

consists of functional symbols, i.e., operations, while the language of structures we study in

model theory consists of relations. There is only one exception from this rule, namely that

we let constant symbols be added to the language of relational structures. In this area I have

the following 9 published, accepted or submitted papers [34, 31, 30, 19, 14, 21, 16, 15, 32].

The papers [19, 14, 21] are already published, [16] is accepted for publication, [34, 31, 30, 32]

are submitted, and these 8 papers are not contained in any PhD dissertation different from

the present thesis.

There are several types of numerical parameters of structures. One of the basic concepts

in algebra is the number of n-element models of a set of axioms or properties. Usually, these

questions are interesting up to isomorphism, and one can define the labelled and unlabelled

versions, as well. For example, determine the number of - labelled or unlabelled - graphs,

trees or rooted trees on n vertices, the number of n-element posets, etc. Cayley has proven

that the number of labelled trees on an n-element set is exatly nn−2. In [29] Otter has given

an asymptotic formula for the number of unlabelled trees and unlabelled rooted trees. In

[32] we have given estimations for the number tk(n) of n-element rooted trees of given

depth k, and determined the asymptotics of the logarithm of this function in terms of n.

By using the method of generating functions we have obtained a complicated recursion,

and we have shown that t2(n) ∼ 1
4n
√
3
e
√

2n
3 , and for k ≥ 3 we have log tk(n) ∼ π2

6
n

log log··· logn ,

where the logarithm in the denominator is iterated k − 2 times.

Rooted trees are closely related to monounary algebras. A monounary algebra is an

algebra with a single unary operation. The theory of monounary algebras is well-developed,

for a recent monograph see [18]. Let (A, f) be a monounary algebra. The function f

defines a directed graph on A. Let GA = (A,E), the vertex set is A and the edges

are E = (a, f(a))|a ∈ A. In GA every vertex has outdegree 1, and every graph G with

outdegree 1 defines a monounary algebra on its vertex set, where f(a) is the single vertex
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such that (a, f(a)) is an edge in G. Hence, there is a bijection between monounary algebras

and directed graphs, where each vertex has outdegree 1. A monounary algebra (A, f) is

connected if GA is connected. By making use of Otter’s method, we have shown that there

exists some α > 1 such that logαCn ∼ logαMn ∼ n, where Cn is the number of n-element

conneted monounary algebras, and Mn is the number of n-element monounary algebras

[14].

The theory of formal languages goes back to natural languages. The foundation of the

mathematical theory is based on Kleene’s theorem: it proves that the class of recogniz-

able languages (e.g. recognized by finite automata) coincides with the class of rational

languages, which are given by rational expressions. Rational expressions are the general-

ization of polynomials involving three operations: union, product and star operation. A

real break-through in the history of language theory is a work of Schützenberger: he es-

tablished an equivalence between finite automata and finite semigroups. He showed that a

finite monoid, called the syntactic monoid, can be assigned to each recognizable language;

this is the smallest monoid recognizing the language. According to Eilenberg’s theorem

varieties of finite monoids are in a one-to-one correspondence with classes of recognizable

languages closed under product and boolean operations. For example, star-free languages

correspond to aperiodic monoids. For more details, see [33].

A large class of star-free languages is the family of piecewise testable languages, which

has been deeply studied in formal language theory. We analyzed the word problem for the

syntactic monoids of the varieties of k-piecewise testable languages [21]. We have given a

normal form of the words for k = 2 and 3, and an asymptotic formula for the logarithm of

the number of words for arbitrary k. In other words, we give an estimation for the n-ary

terms over the syntactic monoids of k-piecewise testable languages. This function shows

an unusual behaviour, as the result is essentially different for odd and even k.

The random partial order P := (P ;≤) is the unique countable partial order which is

universal in the sense that it contains all countable partial orders as induced suborders

and which is homogeneous, i.e., any isomorphism between two finite induced suborders of

P extends to an automorphism of P. Equivalently, P is the Fräıssé limit of the class of

finite partial orders – confer the textbook [13].

As the “generic order” represents all countable partial orders, the random partial order

is of both theoretical and practical interest. The latter becomes in particular evident with

the recent applications of homogeneous structures in theoretical computer science; see for

example [5, 6, 3, 24]. It is therefore tempting to classify all structures which are first-order

definable in P, i.e., all relational structures on domain P all of whose relations can be

defined from the relation ≤ by a first-order formula. Such structures have been called
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reducts of P in the literature [37, 38]. It is one of the goals of the present dissertation

to obtain such a classification up to first-order interdefinability, that is, we consider two

reducts Γ,Γ′ equivalent iff they are reducts of one another. As one of the main results of

this thesis, it is shown that up to this equivalence, there are precisely five reducts of P [30].

This result lines up with a number of previous classifications of reducts of similar generic

structures up to first-order interdefinability. The first non-trivial classification of this kind

was obtained by Cameron [8] for the order of the rationals, i.e., the Fräıssé limit of the

class of finite linear orders; he showed that this order has five reducts up to first-order

interdefinability. Thomas [37] proved that the random graph has five reducts up to first-

order interdefinability as well, and later generalized this result by showing that for all

k ≥ 2, the random hypergraph with k-hyperedges has 2k + 1 reducts up to first-order

interdefinability [38]. Junker and Ziegler [20] showed that the structure (Q;<, 0), i.e., the

order of the rationals with an additional constant symbol, has 116 reducts up to first-order

interdefinability. Moreover, they characterized the reducts of all the structures obtained

from the dense linear order by adding finitely many constants. The classifiation of the

reducts of the random tournament was obtained by Bennett (5 reducts, see [1]). A negative

“result” is the random graph with a fixed constant, on which the author of the present

dissertation, together with two collaborators, gave up after having found 300 reducts.

Obviously, the successful classifications have in common that the number of reducts is

finite.

Conjecture 1 (Thomas). Every homogeneous relational structure over a finite language

has finitely many reducts up to first-order interdefinability.

In [37], Thomas has also shown that the Henson graphs (Hn, E), i.e., the random Kn-free

graphs has no proper reducts. That is, any reduct of (Hn, E) is first-order interdefinable

with (Hn, E) itself or the “empty” structure (Hn,=). The second major result of the

present dissertation is the classification of the reducts of the structures obtained from the

Henson graphs by adding a constant. It is shown that up to first-order interdefinability

(H3, E, 0) has 13 reducts, and (Hn, E, 0) has 16 reducts for n ≥ 4 [34].

The mentioned classifications have all been obtained by means of the automorphism

groups of the reducts, and we will proceed likewise in the present dissertation. It is clear

that if ∆ is a reduct of a structure Γ, then the automorphism group Aut(∆) of ∆ is a

permutation group containing Aut(Γ), and also is a closed set with respect to the conver-

gence topology on the space of all permutations on the domain of Γ. If Γ is ω-categorical,

i.e., if Γ is up to isomorphism the only countable model of its first-order theory, then it

follows from the theorem of Ryll-Nardzewski, Engeler and Svenonius (confer [13]) that the
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converse is true as well: the closed permutation groups acting on the domain of Γ and

containing Aut(Γ) are precisely the automorphism groups of reducts of Γ; moreover, two

reducts have equal automorphism groups if and only if they are first-order interdefinable.

Since homogeneous structures in a finite language are ω-categorical, it is enough for us to

determine all closed permutation groups that contain Aut(Γ) for Γ = P and Γ = (Hn, E, 0)

in order to obtain our classifications.

The fact that the reducts of an ω-categorical structure Γ correspond to the closed per-

mutation groups containing Aut(Γ) not only yields a method for classifying these reducts,

but also a meaningful interpretation of such classifications: for just like Aut(Γ) is the group

of all symmetries of Γ, the closed permutation groups containing Aut(Γ) stand for all sym-

metries of Γ if we are willing to give up some of the structure of Γ. As for an example, it is

obvious that turning the random partial order upside down, one obtains again a random

partial order; this symmetry is reflected by one of the closed groups containing Aut(P),

namely the group of all automorphisms and antiautomorphisms of P. It will follow from

our classification that P has only one more symmetry of this kind – this second symmetry

is much less obvious, and so we argue that the classification of the reducts of P, or indeed

of any ω-categorical structure, is much more than a mere sportive challenge – it is an

essential part of understanding the structure itself.

Our approach to investigating the closed groups containing Aut(P) and Aut(Hn, E) is

based on a Ramsey-theoretic analysis of functions, and in particular permutations, on the

domain of P = (P ;≤) or (Hn, E); this allows us to find patterns of regular behaviour

with respect to the structure P or (Hn, E) in any arbitrary function acting on the domain.

The method as we use it has been developed in [7, 6, 4, 5] and is a general powerful

technique for dealing with functions on ordered homogeneous Ramsey structures in a finite

language. But while this machinery has previously been used, for example, to re-derive

and extend Thomas’ classification of the reducts of the random graph, it is only in the

present dissertation that it is applied to obtain a new full classification of reducts of a

homogeneous structure up to first-order interdefinability.

Before stating our result, we remark that finer classifications of reducts of homogeneous

structures, for example up to existential, existential positive, or primitive positive inter-

definability, have also been considered in the literature, in particular in applications – see

[2, 7, 4, 5].

2. Homogeneous structures

2.1. Fräıssé theory. The following probabilistic construction is due to Erdős and Rényi

[11]. Let X be a countably infinite set. We chose a graph on the vertex set X by selecting
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edges from the unordered pairs of X independently and with probability 1/2. In [11] it

is shown that there exists a countable graph R - called the random graph or Rado graph

- such that P (X ∼= R) = 1. Similarly, one can define the random digraph, the random

tournament and random hypergraphs, as well. Although it is not apparent, the countable

endpoint-free dense linear order (Q,≤) has a random construction, too. All these structures

have a common property, namely that they are homogeneous.

Definition 2. A countable structure Γ is homogeneous if every partial isomorphism f :

A → B between finite induced substructures of Γ extends to an automorphism of Γ. I.e.,

there exists an α ∈ Aut(Γ) such that f = α|A.

Fräıssé has found a very plausible approach to dealing with homogeneous structures.

According to his definition, the age of a structure Γ is the class of finite structures that

can be embedded into Γ.

Theorem 1. A class C of finite structures over a given relational language is the age of a

homogeneous structure Γ if and only if the following hold.

(1) C is closed under isomorphism.

(2) If A ≤ B and B ∈ C, then A ∈ C.

(3) Up to isomorphism there are countably many structures in C.

(AP) For any A,B1, B2 ∈ C and embeddings f1 : A ↪→ B1, f2 : A ↪→ B2 there exist a

D ∈ C and embeddings g1 : B1 ↪→ D, g2 : B2 ↪→ D such that g1 ◦ f1 = g2 ◦ f2.

Moreover, if C satisfies the above conditions, then up to isomorphism there is a unique

homogeneous structure Γ with Age(Γ) = C.

The abbreviation (AP) in Theorem 1 stands for amalgamation property.

Classes of finite structures C over a given ralational language that satisfy the conditions

of Theorem 1 are called Fräıssé classes. The unique Γ with Age(Γ) = C is called the

Fräıssé limit of C, and is denoted by Frlim(C). It is very easy to check that the class of

all finite graphs, all finite k-uniform hypergraphs and all finite total orders are Fräıssé

classes, and the Fräıssé limits are the random graph, the random hypergraphs and the

dense linear order, respectively. Moreover, for any n ≥ 3 the class of all Kn-free graphs is a

Fräıssé class, and its Fräıssé limit is the so-called Henson graph (Hn, E). Except for trivial

constructions, the Henson graphs, the complement of the Henson graphs and the random

graph are the only homogeneous graphs [23]. The class of all finite partially ordered sets

is again a Fräıssé class. Its Fräıssé limit is called the random poset or the generic poset,

and is denoted by P.
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The classification programme of homogeneous structures is still a vivid area. As we have

indicated before, Lachlan and Woodrow characterized the homogeneous graphs in [23]. The

classification of homogeneous tournaments was given by Cherlin [10], and the case of posets

was settled by Schmerl [35]. Schmerl’s result shows that the random poset is the only non-

trivial construction for a homogeneous poset. Recently, Nešetřil and Hubička gave several

presentations for the generic poset [17]. These descriptions often reveal properties of the

structure which were not obvious from the definition or the recursive construction. For

more details about homogeneous structures, see [9].

2.2. Ramsey structures.

Definition 3. A class C of finite structures over a given language is a Ramsey class, if for

all k ∈ N, A,B ∈ C there exists a C ∈ C such that if the copies of A in C are colored with

k colors, then there is a monochromatic copy B′ of B in C, i.e., a copy of B such that all

copies of A in B′ have the same color.

The first prominent result concerning Ramsey structures was due to Nešetřil. He proved

that if a Ramsey class satisfies items (1), (2) and (3) of Theorem 1, then it satisfies item

(AP), as well. In particular, if the age of a countable structure Γ is a Ramsey class, then

Γ is homogeneous. If this is the case, then Γ is called a homogeneous Ramsey structure.

Homogeneous Ramsey structures are thoroughly investigated, see for example [25, 26,

22].

2.3. Reducts of homogeneous structures. We have already defined the notion of a

reduct in the introduction. The main goals of the present thesis is to characterize the

reducts of the random partial order and the Henson graphs with a constant. Although the

basic techniques used for these two results are very similar, both proofs are self-contained

for the sake of transparency. Hence, the most important definitions and theorems are

stated in both sections.

2.4. Galois connection. Homogeneous structures over a finite relational language are ω-

categorical. In particular, the therorem of ??? implies that the reducts of a homogeneous

structure Γ up to first-order interdefinability are in a one-to-one Galois correspondence with

the closed permutation groups containing Aut(Γ). The (local) closure of a permutation

group G acting on Γ consists of the permutations α such that for all A ⊆ Γ finite there

exists a permutation g ∈ G such that g|A = α|A. A permutation group G is closed if G

equals to its local closure. That is, G is closed if every permutation that can be interpolated

on any finite set is in G.

Throughout the dissertation we use this Galois connection.
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3. Reducts of the random poset

3.1. The reducts of the random partial order.

3.1.1. The group formulation. In a first formulation of our result, we will list the closed

groups containing Aut(P) by means of sets of permutations generating them: we say that

a set S of permutations on P generates a permutation α on P iff α is an element of the

smallest closed permutation group 〈S〉 that contains S. Equivalently, writing id for the

identity function on P , for every finite set A ⊆ P there exist n ≥ 0, β1, . . . , βn ∈ S, and

i1, . . . , in ∈ {1,−1} such that βi11 ◦ · · · ◦ βinn ◦ id agrees with α on A. We also say that a

permutation β generates α iff {β} generates α.

If for x, y ∈ P we define x ≥ y iff y ≤ x, then the structure (P ;≥) is isomorphic to P
– it is, for example, easy to verify that it contains all finite partial orders and that it is

homogeneous. Hence, there exists an isomorphism between the two structures, and we fix

one such isomorphism l: P → P ; so the function l simply reverses the order ≤ on P . It

is easy to see that any two isomorphisms of this kind generate one another, and the exact

choice of the permutation is thus irrelevant for our purposes.

The class C of all finite structures of the form (A;≤′, F ′), where ≤′ is a partial order on

A, and F ′ ⊆ A is an upward closed set with respect to ≤′, is an amalgamation class in the

sense of [13]. Hence, it has a Fräıssé limit; that is, there exists an up to isomorphism unique

countable structure which is homogeneous and whose age, i.e., the set of finite structures

isomorphic with one of its induced substructures, equals C. The partial order of this limit

is just the random partial order, and thus we can write (P ;≤, F ) for this structure, where

F ⊆ P is an upward closed set with respect to ≤. By homogeneity and universality of

(P ;≤, F ), F is even a filter, i.e., any two elements of F have a lower bound in F . We call

(P ;≤, F ) the random partial order with a random filter, and any filter W ⊆ P with the

property that (P ;≤,W ) is isomorphic with (P ;≤, F ) random.

Let F ⊆ P be a random filter, and let I := P \ F . Then I is downward closed, and in

fact an ideal, i.e., any two elements of I have an upper bound in I. Define a partial order

EF on P by setting

x EF y ↔ x, y ∈ F and x ≤ y, or

x, y ∈ I and x ≤ y, or

x ∈ F ∧ y ∈ I and y � x,

where a � b is short for ¬(a ≤ b). It is easy to see that (P ;EF ) is indeed a partial order,

and we will verify in the next subsection that (P ;EF ) and P are isomorphic. Pick an
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isomorphism �F : (P ;EF ) → P. Then for x, y ∈ F , we have f(x) ≤ f(y) if and only if

x ≤ y, and likewise for x, y ∈ I; if x ∈ F and y ∈ I, then f(x) ≤ f(y) if and only if

y � x; and moreover, f(x) � f(y) for all x ∈ F and y ∈ I. It is not hard to see that

any two permutations obtained this way generate one another, even if they were defined

by different random filters. We therefore also write � for any �F when the filter F is not

of particular interest.

Theorem 2. The following five groups are precisely the closed permutation groups on P

which contain Aut(P).

(1) Aut(P);

(2) Rev := 〈{l} ∪ Aut(P)〉;
(3) Turn := 〈{�} ∪ Aut(P)〉;
(4) Max := 〈{l,�} ∪ Aut(P)〉;
(5) The full symmetric group SymP of all permutations on P .

As a consequence, the only symmetries of P in the sense mentioned above are turning

it upside down, and “turning” it around a random filter F via the function �F . These

symmetries suggest the investigation of the corresponding operations on finite posets (es-

sentially, the restrictions of l and �F to finite substructures of P). While l for finite posets

is, of course, combinatorially not very exciting, the study of “turns” of finite posets seems

to be quite worthwhile – we refer to the companion paper [31].

We will also obtain explicit descriptions of the elements of the groups in Theorem 2.

Clearly, the group Rev contains exactly the automorphisms of P and the isomorphisms

between P and (P ;≥). We will show that Turn consists precisely of what we will call

rotations in Definition 30 – these are functions of slightly more general form than the

functions �F . Moreover, Max turns out to be simply the union of Rev, Turn, and the set

of all functions of the form l ◦f , where f is a rotation.

3.1.2. The reduct formulation. We now turn to the relational formulation of our result; that

is, we will specify five reducts of P such that any reduct of P is first-order interdefinable

with one of the reducts of our list.

Define a binary relation ⊥ on P by ⊥ := {(x, y) ∈ P 2 | x � y ∧ y � x}. We call

the relation the incomparability relation, and refer to elements x, y ∈ P as incomparable iff

(x, y) is an element of ⊥; in that case, we also write x⊥y. Elements x, y ∈ P are comparable

iff they are not incomparable.
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For x, y ∈ P , write x < y iff x ≤ y and x 6= y. Now define a ternary relation cycl on P

by

cycl := {(x, y, z) ∈ P 3 | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)∨

(x < y ∧ x⊥z ∧ y⊥z)∨

(y < z ∧ y⊥x ∧ z⊥x)∨

(z < x ∧ z⊥y ∧ x⊥y)}.

Finally, define a ternary relation Par on P by

Par := {(x, y, z) ∈ P 3 | x, y, z are distinct and the number of

2-element subsets of incomparable elements of {x, y, z} is odd}.

Theorem 3. Let Γ be a reduct of P. Then Γ is first-order interdefinable with precisely one

of the following structures.

(1) P = (P ;≤);

(2) (P ;⊥);

(3) (P ; cycl);

(4) (P ; Par);

(5) (P ; =).

Moreover, for 1 ≤ x ≤ 5, Γ is first-order interdefinable with structure (x) if and only if

Aut(Γ) equals group number (x) in Theorem 2.

3.2. Random filters and the extension property. Before turning to the main proof

of our theorems, we verify the existence of the permutation �F . That is, we must show

that if F ⊆ P is a random filter, then (P ; /F ) and P are isomorphic. The easiest way

to see this is by checking that (P ;EF ) satisfies the following extension property, which

determines P up to isomorphism and which we will use throughout the paper: for any

finite set S = {s1, . . . , sk} ⊆ P and any partial order with domain {y} ∪ S extending

the order induced by P on S, there exists x ∈ P such that the assignment from {x} ∪ S
to {y} ∪ S which sends x to y and leaves all elements of S fixed is an isomorphism. In

logic terminology, the extension property says that if we fix any finite set of elements

s1, . . . , sk ∈ P , and express properties of another imaginary element x by means of a

quantifier-free {≤}-formula with one free variable using parameters s1, . . . , sk, then an

element enjoying these properties actually exists in P unless the properties are inconsistent

with the theory of partial orders.
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Proposition 4. Let F ⊆ P be a random filter of P. Then (P ; /F ) satisfies the extension

property. Consequently, (P ; /F ) and P are isomorphic and �F exists.

Proof. Let s1, . . . , sk ∈ P and an extension of the order induced by /F on S = {s1, . . . , sk}
by an element y outside S be given. We will denote the order on T := S ∪ {y} by /F as

well. Let I := P \ F be the ideal in P corresponding to the filter F , and write S as a

disjoint union SF ∪SI , where SF := S ∩F , and SI := S ∩ I. Now suppose that there exist

a ∈ SI and b ∈ SF such that a /F y /F b. Then a /F b, which is impossible by the definition

of /F , since a ∈ I and b ∈ F . Hence, assume without loss of generality that we do not have

y /F b for any b ∈ SF . Then W := SI ∪ {y} is upward closed and SF downward closed in

(T ; /F ). Now define an order ≤W on T by setting

u ≤W v ↔ (u, v ∈ W ∧u/F v)∨ (u, v ∈ T \W ∧u/F v)∨ (u ∈ W ∧ v ∈ T \W ∧¬(v /F u)).

Note that this defines ≤W from /F in precisely the same way as /F is defined (though on

P) from ≤. Hence, ≤W is a partial order on T , and for u, v ∈ S we have u ≤V v if and

only if u ≤ v in P. Now the downward closed set SF in (T ; /F ) is an upward closed set in

(T ;≤W ). Hence, the structure (T ;≤W , SF ) has an embedding ξ into the universal object

(P ;≤, F ). Since ≤W agrees with ≤ on S, and by homogeneity, we may assume that ξ is

the identity on S. Set x := ξ(y). We leave the straightforward verification of the fact that

the assignment from {x} ∪ S to {y} ∪ S which sends x to y and leaves all elements of S

fixed is an isomorphism from ({x} ∪ S; /F ) onto (T ; /F ) to the reader. �

Let us remark that the ideal I = P \ F corresponding to a random filter F on P is

random in the analogous sense for ideals. Moreover, under �F the random filter F is sent

to a random ideal, and vice-versa. One could thus assume that the image of F under

�F equals I, in which case �F becomes, similarly to l, its own “almost” inverse in the

sense that applying it twice yields an automorphism of P. By adjusting it with such an

automorphism, one could even assume that �F = �−1F .

3.3. Ramsey theory: canonizing functions. Our combinatorial method for proving

Theorem 2 is to apply Ramsey theory in order to find patterns of regular behaviour in

arbitrary functions on P, and follows [7, 6, 4, 5]. We make this more precise.

Definition 5. Let ∆ be a structure. The type tp(a) of an n-tuple a of elements in ∆ is

the set of first-order formulas with free variables x1, . . . , xn that hold for a in ∆.

Definition 6. Let ∆,Λ be structures. A type condition between ∆ and Λ is a pair (t, s),

where t is a type of an n-tuple in ∆, and s is a type of an n-tuple in Λ, for some n ≥ 1.
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A function f : ∆→ Λ satisfies a type condition (t, s) between ∆ and Λ iff for all n-tuples

a = (a1, . . . , an) of elements of ∆ with tp(a) = t the n-tuple f(a) := (f(a1), . . . , f(an)) has

type s in Λ. A behaviour is a set of type conditions between structures ∆ and Λ. A function

from ∆ to Λ has behaviour B iff it satisfies all the type conditions of B.

Definition 7. Let ∆,Λ be structures. A function f : ∆→ Λ is canonical iff for all types

t of n-tuples in ∆ there exists a type s of an n-tuple in Λ such that f satisfies the type

condition (t, s). In other words, n-tuples of equal type in ∆ are sent to n-tuples of equal

type in Λ under f , for all n ≥ 1.

We remark that since P is homogeneous, every first-order formula is over P equivalent

to a quantifier-free formula, and so the type of an n-tuple a in P is determined by which of

its elements are equal and between which elements the relation ≤ holds. In particular, the

type of a only depends on its binary subtypes, i.e., the types of the pairs (ai, aj), where

1 ≤ i, j ≤ n. Therefore, a function f : P → P is canonical iff it satisfies the condition of

the definition for types of 2-tuples.

Roughly, our strategy is to make the functions we work with canonical, and thus easier to

handle. To achieve this, we first enrich the structure P by a linear order in order to improve

its combinatorial properties, as follows. We do not give the – in some cases fairly technical

– definitions of all notions in this discourse, as they will not be needed later on; in any case,

Proposition 8 that follows is used as a black box for this paper, and the reader interested

in its proof is referred to [7]. The class D of all finite structures (A;≤′,≺′) with two binary

relations ≤′ and ≺′, where ≤′ is a partial order and ≺′ is a total order extending ≤′, is an

amalgamation class, and moreover a Ramsey class (see for example [36, Theorem 1 (1)]).

By the first property, it has a Fräıssé limit. Checking the extension property, one sees

that the partial order of this limit is just the random partial order, and by uniqueness of

the dense linear order without endpoints its total order is isomorphic to the order of the

rationals. Hence, there exists a linear order ≺ on P which is isomorphic to the order of the

rationals, which extends ≤, and such that the structure P+ := (P ;≤,≺) is precisely the

Fräıssé limit of the class D. So P+ is a homogeneous structure in a finite language which

has a linear order among its relations and which is Ramsey, i.e. its age, which equals the

class D, is a Ramsey class. The following proposition is then a consequence of the results

in [7, 5] about such structures. To state it, let us extend the notion “generates” to non-

permutations: for a set of functions F ⊆ P P and f ∈ P P , we say that f is M-generated

by F iff it is contained in the smallest transformation monoid on P which contains F and

which is a closed set in the convergence topology on P P . In other words, f is M-generated

by F iff for all finite A ⊆ P there exist n ≥ 0 and f1, . . . , fn ∈ F such that f1 ◦ · · · ◦ fn ◦ id
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agrees with f on A. For a structure ∆ and elements c1, . . . , cn of ∆, we write (∆, c1, . . . , cn)

for the structure obtained by adding the constant symbols c1, . . . , cn to ∆.

Proposition 8. Let f : P → P be a function, and let c1, . . . , cn, d1, . . . , dm ∈ P . Then

{f}∪Aut(P+) M-generates a function which is canonical as a function from (P+, c1, . . . , cn)

to (P+, d1, . . . , dm), and which is identical with f on {c1, . . . , cn}.

Any canonical function g from (P+, c1, . . . , cn) to (P+, d1, . . . , dm) defines a function from

the set T of types of pairs of distinct elements in (P+, c1, . . . , cn) to the set S of such types

in (P+, d1, . . . , dm) – this “type function” simply assigns to every element t of T the type

s in S for which the type condition (t, s) is satisfied by g. Already when n = m = 0, i.e.,

there are no constants added to P+, then |T | = |S| = 4, so in theory there are 44 such type

functions. The following lemma states which of them actually occur.

Lemma 9. Let g : P+ → P+ be canonical and injective. Then it has one of the following

behaviours.

(i a) g behaves like id, i.e., it preserves ≤ and ⊥ (and hence also ≺);

(i b) g behaves like l, i.e., it reverses ≤ and preserves ⊥ (and hence reverses ≺);

(ii a) g sends P order preservingly onto a chain with respect to ≤ (and hence preserves

≺);

(ii b) g sends P order reversingly onto a chain with respect to ≤ (and hence reverses ≺);

(iii a) g sends P onto an antichain with respect to ≤ and preserves ≺;

(iii b) g sends P onto an antichain with respect to ≤ and reverses ≺.

Proof. We first prove that g either preserves or reverses the order ≺.

Suppose there exist a, b ∈ P with a ≺ b such that g(a) ≺ g(b). Assume first that a ≤ b.

Then g(c) ≺ g(d) for all c, d ∈ P with c ≺ d and c ≤ d because g is canonical. Now

using the universality of P+, pick u, v, w ∈ P with u ≺ v ≺ w, u ≤ w, u⊥v, and v⊥w.

Then g(u) ≤ g(w) by our observation above. If g(v) ≺ g(u), then also g(w) ≺ g(v) as g is

canonical, and hence g(w) ≺ g(u), a contradiction. Hence, g(u) ≺ g(v), and so g(c) ≺ g(d)

for all c, d ∈ P with c ≺ d, so g preserves ≺. Now suppose that a⊥b. Then g(c) ≺ g(d) for

all c, d ∈ P with c ≺ d and c⊥d, because g is canonical. Pick u, v, w ∈ P as before. This

time, g(u) ≺ g(v) ≺ g(w), and hence g(u) ≺ g(w). Therefore, g(c) ≺ g(d) for all c, d ∈ P
with c ≺ d, so g again preserves ≺.

By the dual argument, the existence of a, b ∈ P with a ≺ b such that g(b) ≺ g(a) implies

that g reverses ≺.

We next show that if g preserves ≺, then one of the situations (i a), (ii a), (iii a) occurs;

then by duality, if g reverses ≺, one of (i b), (ii b), (iii b) hold. We distinguish two cases.
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Suppose first that g(a)⊥g(b) for all a, b ∈ P with a ≤ b. Let c, d, e ∈ P such that

c ≺ d ≺ e, c⊥d, c ≤ e, and e⊥d. If g(c) and g(d) were comparable, then g(c) ≤ g(d) since

g(c) ≺ g(d), and likewise g(d) ≤ g(e), so that g(c) ≤ g(d), a contradiction. Hence, g(c)

and g(d) are incomparable, and so, since g is canonical, (iii a) holds.

Assume now that g(a) ≤ g(b) for all a, b ∈ P with a ≤ b. If g(c) ≤ g(d) also for all

c, d ∈ P with c⊥d and c ≺ d, then clearly we have situation (ii a). Otherwise, g(c)⊥g(d)

for all c, d ∈ P with c⊥d and c ≺ d, and we have case (i a).

Since one of these two situations must be the case, we are done. �

When applying Proposition 8, we will be able to ignore most of the possible behaviours

of canonical functions as a consequence of the following lemma.

Lemma 10. Let G ⊇ Aut(P) be a closed group such that for all finite A ⊆ P there is a

function M-generated by G which sends A to a chain or an antichain. Then G = SymP .

Proof. Suppose first that for all finite A ⊆ P there is a function M-generated by G which

sends A to an antichain. Let s, t be injective n-tuples of elements in P , for some n ≥ 1.

Let g : P → P and h : P → P be functions M-generated by G such that g(s) (the n-tuple

obtained by applying g to every component of s) and h(t) induce antichains in P. By the

homogeneity of P, there exists an automorphism α ∈ Aut(P) such that α(g(s)) = h(t).

Also, since G contains the inverse of all of its functions, there exists a function p : P → P

M-generated by G such that p(h(t)) = t, and hence p(α(g(s))) = t. Since p ◦ α ◦ g is M-

generated by G, there exists β ∈ G which agrees with this function on s. Hence, β(s) = t,

proving that G is n-transitive for all n ≥ 1, and so G = SymP .

Now suppose that for all finite A ⊆ P there is a function M-generated by G which sends

A to a chain. Let any finite A ⊆ P be given, and let B ⊆ P be so that |B| = |A| and such

that B induces an independent set in P. Let g : P → P and h : P → P be functions M-

generated by G such that g[A] and h[B] induce chains in P. There exists α ∈ Aut(P) such

that α[g[A]] = h[B]. Let p : P → P be a function generated by G such that p[h[B]] = B.

Then p[α[g[A]]] = B, and hence we are back in the preceding case.

Finally, observe that one of the two cases must occur: for otherwise, there exist finite

A1, A2 ⊆ P such that A1 cannot be set to an antichain, and A2 cannot be sent to a chain

by any function which is M-generated by G. But then A1 ∪ A2 can neither be sent to a

chain nor to an antichain by any such function, a contradiction. �

Lemma 11. Let G ⊇ Aut(P) be a closed group which M-generates a canonical function of

behaviour (ii a), (ii b), (iii a) or (iii b) in Lemma 9. Then G = SymP .

Proof. This is a direct consequence of Lemma 10. �
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Having enriched P with the linear order ≺ and taken advantage of Proposition 8, we pass

to a suitable substructure of (P+, c1, . . . , cn) in order to get rid of ≺ – this substructure

will be called a ≺-clean skeleton. Before giving the exact definition, we need more notions

and notation concerning the definable subsets of (P, c1, . . . , cn) and of (P+, c1, . . . , cn).

Definition 12. Let G be a permutation group acting on a set D. Then for n ≥ 1 and

a = (a1, . . . , an) ∈ Dn, the set

{(α(a1), . . . , α(an)) : α ∈ G} ⊆ Dn

is called an n-orbit of G. The 1-orbits are just called orbits. If ∆ is a structure, then the

n-orbits of ∆ are defined as the n-orbits of Aut(∆).

By the theorem of Ryll-Nardzewski, Engeler and Svenonius, two n-tuples in an ω-

categorical structure belong to the same n-orbit if and only if they have the same type; in

particular, this is true in the structures (P, c1, . . . , cn) and (P+, c1, . . . , cn).

Notation 13. Let c1, . . . , cn ∈ P . For R1, . . . , Rn ∈ {=, <,⊥, >} and S1, . . . , Sn ∈ {≺,�},
we set

XR1,...,Rn := {x ∈ P : c1R1x ∧ · · · ∧ cnRnx}

and

XS1,...,Sn

R1,...,Rn
:= {x ∈ P : (c1R1x ∧ c1S1x) ∧ · · · ∧ (cnRnx ∧ xnSnx)}.

The constants c1, . . . , cn are not specified in the notation, but will always be clear from the

context.

The following is well-known and easy to verify using the homogeneity and universality

of P and P+, and in particular the fact that first-order formulas over these structures are

equivalent to quantifier-free formulas.

Fact 14. Let c1, . . . , cn ∈ P .

• The sets XR1,...,Rn are either empty, or equal to {ci} for some 1 ≤ i ≤ n, or infinite

and induce P. The orbits of (P, c1, . . . , cn) are precisely the non-empty sets of this

form.

• The sets XS1,...,Sn

R1,...,Rn
are either empty, or equal to {ci} for some 1 ≤ i ≤ n, or infinite

and induce P+. The orbits of (P+, c1, . . . , cn) are precisely the non-empty sets of

this form.

Definition 15. Let ∆ be a structure on domain D. A subset S of D is called a skeleton

of ∆ iff it induces a substructure of ∆ which is isomorphic to ∆. Now let @ be a linear
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order on D. Then a skeleton S is called @-clean iff whenever a = (a1, a2), b = (b1, b2) ∈ S2

have the same type in ∆, then either a, b or a, b̃ := (b2, b1) have the same type in (∆,@).

In this paper, we only need a ≺-clean skeleton of (P, c1, . . . , cn), but we stated Defini-

tion 15 generally since we believe it could be useful in other situations where a homogeneous

structure is extended by a linear order with the goal of making it Ramsey.

Lemma 16. Let c1, . . . , cn ∈ P . Then (P, c1, . . . , cn) has a skeleton which is ≺-clean.

Proof. Let O1, . . . , Ok be the orbits of (P, c1, . . . , cn), and pick one representative element

ri of each orbit Oi. By relabelling the orbits, we may assume that r1 ≺ · · · ≺ rk; pick an

additional r0 ∈ P with r0 ≺ r1. Now for all 1 ≤ j ≤ k for which Oj is infinite set

Sj := {s ∈ Oj | rj−1 ≺ s ≺ rj}.

Let S be the union of all the Sj with {c1, . . . , cn}. To see that S is a skeleton, it suffices

to verify the extension property for (S;≤). Let U = {u1, . . . , ul} ⊆ S induce a finite

substructure of (S;≤), and let U ∪ {y} be an extension of U by an element y /∈ U .

We may assume that U contains {c1, . . . , cn}. By the extension property for P, we may

assume that y is an element of this structure, and so y ∈ Oj for some 1 ≤ j ≤ k. Since

y /∈ {c1, . . . , cn}, Oj is infinite. We claim there exists x ∈ Sj such that x, y have the same

type in (P, u1, . . . , ul) – then picking any such x yields the desired extension. Suppose there

exists 1 ≤ i ≤ l such that rj ≤ ui < y – we will derive a contradiction. Since rj ≤ ui, we

have ui 6≺ rj, implying ui /∈ Sj; but ui ∈ S, and so ui /∈ Oj. Hence, the orbits of ui and rj
in (P, c1, . . . , cn) are distinct. Therefore, there exists 1 ≤ m ≤ n such that either ui ≥ cm
and rj 6≥ cm, or rj < cm and ui 6< cm. In the first case we infer y > cm, contradicting

the fact that y and rj have the same type in (P, c1, . . . , cn). In the second case it follows

that y 6< cm, yielding the same contradiction. An isomorphic argument shows that there

is no 1 ≤ i ≤ l such that y < ui ≤ rj−1, and so we henceforth assume that y � ui for all

ui ≤ rj−1 and y � ui for all ui ≥ rj. Let x be a new object, and extend the partial order

≤ from W := {u1, . . . , ul, rj−1, rj} to W ∪ {x} by setting x ≤ ui iff y ≤ ui and ui ≤ x

iff ui ≤ y for all 1 ≤ i ≤ l, and taking the reflexive and transitive closure of this relation

on W ∪ {x}. Then x ≤ rj−1 iff this relation is forced by a transitivity condition, i.e., iff

there exists 1 ≤ i ≤ l such that x ≤ ui ≤ rj−1; by our above observation, this is not the

case. Similarly, rj ≤ x does not hold. Therefore extending ≺ from W to W ∪ {x} by

setting rj−1 ≺ x ≺ rj yields a partial order with linear extension on W ∪ {x}. By the

extension property for P+ (the analogue of the extension property for P), we may assume

that x ∈ P+ and that the partial order with linear extension on W is induced by P+; then
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x has the same type as y in (P, c1, . . . , cn) by the definition of ≤ on W ∪ {x}, and x ∈ Sj
since rj−1 ≺ x ≺ rj.

We show that S is ≺-clean. Let a = (a1, a2), b = (b1, b2) ∈ S2 have the same type in

(P, c1, . . . , cn). Then there exist 1 ≤ i, j ≤ k such that a1, b1 ∈ Oi and a2, b2 ∈ Oj. Suppose

i = j. If a1, a2 are comparable, say a1 ≤ a2, then b1 ≤ b2, a1 ≺ a2, and b1 ≺ b2, and we

are done. If a1⊥a2, then b1⊥b2 and so either a, b or a, b̃ = (b2, b1) have the same type in

(P+, c1, . . . , cn). Now suppose i 6= j, say i < j. Then a1 ≺ a2 and b1 ≺ b2, and so a, b have

the same type in (P+, c1, . . . , cn).

�

Lemma 17. Let f : P → P be a permutation, and let c1, . . . , cn, d1, . . . , dm ∈ P . Then

{f, f−1} ∪ Aut(P) M-generates a function g : P → P with the following properties.

• g agrees with f on {c1, . . . , cn};
• g is canonical as a function from (P, c1, . . . , cn) to (P, d1, . . . , dm).

Proof. Let h be the function guaranteed by Proposition 8. Since every infinite orbit X

of (P+, c1, . . . , cn) induces P+, h must have one of the behaviours of Lemma 9 on X. By

Lemma 10, we may assume that h behaves like l or like id on every infinite orbit of

(P+, c1, . . . , cn); for otherwise, 〈{f} ∪ Aut(P)〉 is the full symmetric group SymP , which

implies that {f, f−1} ∪ Aut(P) M-generates all injective functions, and in particular a

function with the desired properties.

Now let S ⊆ P be a ≺-clean skeleton of (P, c1, . . . , cn). We claim that h, considered as

a function from (P, c1, . . . , cn) to (P, d1, . . . , dm), is canonical on S, that is, it satisfies the

definition of canonicity for tuples in S. To see this, let a = (a1, a2), b = (b1, b2) ∈ S2 have

the same type in (P, c1, . . . , cn). Then either a, b or a, b̃ = (b2, b1) have the same type in

(P+, c1, . . . , cn), and so either h(a), h(b) or h(a), h(b̃) have the same type in (P+, d1, . . . , dm),

and hence also in (P, d1, . . . , dm). In the first case we are done; in the second case, tp(a) =

tp(b) = tp(b̃) in (P, c1, . . . , cn) implies that a1, a2, b1, b2 all belong to the same orbit in

(P, c1, . . . , cn). Since h behaves like l or like id on this orbit, we conclude that f(a), f(b)

have the same type in (P, d1, . . . , dm).

Let i : (P ;≤, c1, . . . , cn)→ (S;≤, c1, . . . , cn) be an isomorphism, and set g := h◦ i. Then

g is canonical as a function from (P, c1, . . . , cn) to (P, d1, . . . , dm), and agrees with f on

{c1, . . . , cn}. Since i preserves ≤ and its negation, it is M-generated by Aut(P). Hence so

is g, proving the lemma. �

3.4. Applying canonical functions.
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3.4.1. Ordering orbits.

Definition 18. For disjoint subsets X, Y of P we write

• X ≤ Y iff there exist x ∈ X, y ∈ Y such that x ≤ y;

• X⊥Y iff x⊥y for all x ∈ X, y ∈ Y ;

• X < Y iff x < y for all x ∈ X and all y ∈ Y .

We call X, Y incomparable iff X⊥Y , and comparable otherwise (which is the case iff

X ≤ Y or Y ≤ X). We say that X, Y are strictly comparable iff X < Y or Y < X.

Lemma 19. Let c1, . . . , cn ∈ P . The relation ≤ defines a partial order on the orbits of

(P, c1, . . . , cn).

Proof. Reflexivity is obvious. To see that X ≤ Y and Y ≤ X imply X = Y , observe first

that it follows from Fact 14 that X is convex, i.e., if x, z ∈ X satisfy x ≤ z and y ∈ P is

so that x ≤ y and y ≤ z, then y ∈ X. Now there exist x, x′ ∈ X and y, y′ ∈ Y such that

x ≤ y and x′ ≥ y′. Since y, y′ belong to the same orbit, they satisfy the same first-order

formulas over (P, c1, . . . , cn), and hence there exists z ∈ X such that z ≥ y. Since X is

convex, we have y ∈ X, which is only possible if X = Y since distinct orbits are disjoint.

Suppose that X ≤ Y and Y ≤ Z. Then there exist x ∈ X, y, y′ ∈ Y and z ∈ Z such

that x ≤ y and y′ ≤ z. Since y, y′ satisfy the same first-order formulas, there exists x′ ∈ X
such that x′ ≤ y′. Hence x′ ≤ z and so X ≤ Z, proving transitivity. �

Let X, Y be infinite orbits of (P, c1, . . . , cn). Then precisely one of the following cases

holds.

• X and Y are strictly comparable;

• X and Y are incomparable;

• X and Y are comparable, but not strictly comparable.

In the third case, if X ≤ Y , then there exist x, x′ ∈ X and y, y′ ∈ Y such that x < y

and x′⊥y′, and there are no x′′ ∈ X and y′′ ∈ Y such that x′′ > y′′.

Definition 20. If for two disjoint subsets X, Y of P we have X ≤ Y , Y � X, and X 6< Y ,

or vice-versa, then we write X ÷ Y .

3.4.2. Behaviours generating SymP .

Definition 21. Let X, Y ⊆ P be disjoint, and let f : P → P be a function. We say that f

• behaves like id on X iff x < x′ implies f(x) < f(x′) and x⊥x′ implies f(x)⊥f(x′)

for all x, x′ ∈ X;
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• behaves like l on X iff x < x′ implies f(x) > f(x′) and x⊥x′ implies f(x)⊥f(x′)

for all x, x′ ∈ X;

• behaves like id between X and Y iff x < y implies f(x) < f(y), x > y implies

f(x) > f(y), and x⊥y implies f(x)⊥f(y) for all x ∈ X, y ∈ Y .

Lemma 22. Let G ⊇ Aut(P) be a closed group, and let c1, . . . , cn ∈ P . Let g : (P, c1, . . . , cn)→
P be a canonical function M-generated by G. Then g behaves like id or like l on each infinite

orbit X of (P, c1, . . . , cn), or else G = SymP .

Proof. Let X be an infinite orbit, and let x, x′ ∈ X such that x⊥x′. Then the type of (x, x′)

in (P, c1, . . . , cn) equals the type of (x′, x) in (P, c1, . . . , cn). Hence, the type of (g(x), g(x′))

must equal the type of (g(x′), g(x)) in P, which is only possible if g(x)⊥g(x′), and hence g

preserves ⊥ on X.

Now if g(a) < g(a′) for some a, a′ ∈ X with a < a′, then the same holds for all a, a′ ∈ X
with a < a′, and g behaves like id on X. If g(a′) < g(a) for some a, a′ ∈ X with a < a′,

then g behaves like l on X. Finally, if g(a)⊥g(a′) for some a, a′ ∈ X with a < a′, then g

sends X to an antichain. Since X contains all finite partial orders, and by the homogeneity

of P, we can then refer to Lemma 10 to conclude that G = SymP . �

Lemma 23. Let G ⊇ Aut(P) be a closed group, and let c1, . . . , cn ∈ P . Let g : (P, c1, . . . , cn)→
P be a canonical function M-generated by G. Then g[X]÷ g[Y ] for all infinite orbits X, Y

of (P, c1, . . . , cn) with X ÷ Y , or else G = SymP .

Proof. Suppose there are infinite orbits X, Y with X ÷ Y but for which g[X]÷ g[Y ] does

not hold. Assume without loss of generality that X ≤ Y . By Lemma 22, we may assume

that g behaves like id or like l on X and on Y .

First consider the case where g[X] < g[Y ] or g[Y ] < g[X]. Let A ⊆ P be finite; we claim

that G M-generates a function which sends A to a chain. There is nothing to show if A is

itself a chain, so assume that there exist x, y in A with x ⊥ y. Then using the extension

property, one readily checks that there exists α ∈ Aut(P) which sends the principal ideal

of x in A into X and all other elements of A, and in particular y, into Y . Set h := g ◦ α.

Then h(x) and h(y) are comparable, and h does not add any incomparabilities between

elements of A. Hence, repeating this procedure and composing the functions, we obtain a

function which sends A to a chain. Lemma 10 then implies G = SymP .

The other case is where g[X]⊥g[Y ]. Then an isomorphic argument shows that we can

map any finite subset A of P to an antichain via a function which is M-generated by G.

Again, Lemma 10 yields G = SymP . �
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Lemma 24. Let G ⊇ Aut(P) be a closed group, and let c1, . . . , cn ∈ P . Let g : (P, c1, . . . , cn)→
P be a canonical function M-generated by G. Then g behaves like id on all infinite orbits of

(P, c1, . . . , cn), or it behaves like l on all infinite orbits of (P, c1, . . . , cn), or else G = SymP .

Proof. By Lemma 22, we may assume that g behaves like id or l on all infinite orbits.

Suppose that the behaviour of g is not the same on all infinite orbits. Consider the graph

H on the infinite orbits of (P, c1, . . . , cn) in which two orbits X, Y are adjacent if and only

if X ÷ Y holds. We claim that H is connected. To see this, let X, Y be infinite orbits

with X < Y . Pick x, x′ ∈ X and y, y′ ∈ Y such that x < x′ and y′ < y. By the extension

property, there exists z ∈ P such that x < z, z⊥x′, z⊥y′, and z < y. Let Z be the orbit

of z in (P, c1, . . . , cn). Then X ÷ Z and Z ÷ Y , and so there is a path from X to Y in H.

Now if X, Y are infinite orbits which are incomparable, then there exists an infinite orbit

Z with X < Z and Y < Z, and so again there is a path from X to Y in H.

Since H is connected, there exist infinite orbits X, Y with X ÷ Y such that g behaves

like id on X and like l on Y . Assume that X ≤ Y ; the proof of the case Y ≤ X is dual.

By Lemma 23, we may furthermore assume that g[X] ÷ g[Y ], or else we are done. This

leaves us with two possibilities, g[X] ≤ g[Y ] or g[Y ] ≤ g[X].

The first case g[X] ≤ g[Y ] splits into two subcases:

• For all x ∈ X, y ∈ Y , x < y implies g(x) < g(y) and x⊥y implies g(x)⊥g(y);

• For all x ∈ X, y ∈ Y , x < y implies g(x)⊥g(y) and x⊥y implies g(x) < g(y).

Let x, x′ ∈ X and y, y′ ∈ Y be so that x < x′, x < y′, x′ < y, y′ < y, and x′⊥y′. Then in

the first subcase we can derive g(x′) < g(y), g(y) < g(y′), and g(x′)⊥g(y′), a contradiction.

In the second subcase, g(x) < g(x′), g(x′) < g(y′), and g(x)⊥g(y′), again a contradiction.

In the second case g[Y ] ≥ g[X] we have the following possibilities:

• For all x ∈ X, y ∈ Y , x < y implies g(x) > g(y) and x⊥y implies g(x)⊥g(y);

• For all x ∈ X, y ∈ Y , x < y implies g(x)⊥g(y) and x⊥y implies g(x) > g(y).

Let x, x′ ∈ X and y, y′ ∈ Y be as before. Then in the first subcase we can derive

g(x) < g(x′), g(y′) < g(x), and g(x′)⊥g(y′), a contradiction. In the second subcase,

g(y) < g(y′), g(y′) < g(x′), and g(y)⊥g(x′), again a contradiction. �

3.4.3. Behaviours generating Rev.

Lemma 25. Let G ⊇ Aut(P) be a closed group, and let c1, . . . , cn ∈ P . Let g : (P, c1, . . . , cn)→
P be a canonical function M-generated by G. If g behaves like l on some infinite orbit of

(P, c1, . . . , cn), then G ⊇ Rev.

Proof. Let X be the infinite orbit. Pick an isomorphism i : (P ;≤)→ (X;≤). Then given

any finite A ⊆ P , there exists α ∈ Aut(P) such that α ◦ g ◦ i agrees with l on A. Since
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g and i are generated by G, there exists β ∈ G such that β agrees with l on A. Hence,

l∈ G. �

3.4.4. Behaviours generating Turn.

Lemma 26. Let G ⊇ Aut(P) be a closed group, and let c1, . . . , cn ∈ P . Let g : (P, c1, . . . , cn)→
P be a canonical function M-generated by G which behaves like id on all of its orbits. Then

g behaves like id between all infinite orbits of (P, c1, . . . , cn), or else G ⊇ Turn.

Proof. Let infinite orbits X, Y be given.

We start with the case X ÷ Y . Say without loss of generality X ≤ Y . By Lemma 23,

we may assume that g[X] ÷ g[Y ], or else G = SymP . Hence g[X] ≤ g[Y ] or g[Y ] ≤ g[X].

If g[X] ≤ g[Y ], then either g behaves like id between X and Y and we are done, or

x < y → g(x)⊥g(y) and x⊥y → g(x) < g(y) hold for all x ∈ X, y ∈ Y ; the latter,

however, is impossible, as for x, x′ ∈ X and y ∈ Y with x < x′, x < y, and x′⊥y we would

have g(x) < g(x′) < g(y) and g(x)⊥g(y). Now suppose g[Y ] ≤ g[X]. Then we have one of

the following:

• For all x ∈ X, y ∈ Y , x < y implies g(x) > g(y) and x⊥y implies g(x)⊥g(y);

• For all x ∈ X, y ∈ Y , x < y implies g(x)⊥g(y) and x⊥y implies g(x) > g(y).

The first case is absurd since picking x, x′, y as above yields g(x) < g(x′), g(x) > g(y), and

g(x′)⊥g(y). We claim that in the second case G contains �. Let F ⊆ P be any random

filter. Let A ⊆ P be finite, and set A2 := A ∩ F , and A1 := A \ A2. Then there exists an

automorphism α of P which sends A2 into Y and A1 into X. The composite g ◦α behaves

like �F on A for what concerns comparabilities and incomparabilities, and hence there

exists β ∈ Aut(P) such that β ◦ g ◦α agrees with �F on A. By topological closure we infer

�F ∈ G.

Now consider the case where X, Y are strictly comparable, say X < Y . Then we know

from the proof of Lemma 24 that there exists an infinite orbit Z such that X ≤ Z ≤ Y ,

X ÷ Z and Z ÷ Y . Let x ∈ X and y ∈ Y be arbitrary. There exists z ∈ Z such that

x < z < y. As g behaves like id between X and Z and between Z and Y , we have that

g(x) < g(z) < g(y), and hence g behaves like id between X and Y .

It remains to discuss the case X⊥Y . Suppose that g[X] and g[Y ] are comparable,

say g[X] < g[Y ]. Then given any finite A ⊆ P with incomparable elements x, y, using

the extension property we can find α ∈ Aut(P) which sends x into X, all elements of A

which are incomparable with x into Y , and all other elements of A into infinite orbits

which are comparable with both X and Y . Applying g ◦ α then increases the number of
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comparabilities on A, and hence repeated applications of such functions will send A onto

a chain, proving G = SymP . �

Lemma 27. Let G ⊇ Aut(P) be a closed group, and let c1, . . . , cn ∈ P . Let g : (P, c1, . . . , cn)→
P be a canonical function M-generated by G which behaves like id on all of its orbits. Then

g behaves like id between all orbits of (P, c1, . . . , cn) (including the finite ones), and hence

is M-generated by Aut(P), or else G ⊇ Turn.

Proof. Let 1 ≤ i ≤ n, and let X be an infinite orbit which is incomparable with {ci}.
Suppose that g[X] and {g(ci)} are strictly comparable, say {g(ci)} < g[X]. Let Y be an

infinite orbit such that X ≤ Y , X ÷ Y , and {ci} < Y . Let moreover Z be an infinite

orbit such that Z < {ci}, Z ≤ X and Z ÷ X. Then by the preceding lemma, we may

assume that g behaves like id between X, Y and Z. We cannot have g[Z] < {g(ci)} as

this would imply g[Z] < g[X], contradicting the fact that g behaves like id between Z

and X. Suppose that g[Z]⊥{g(ci)}. Set S := Z ∪ X ∪ Y ∪ {ci}. Then it is easy to

see that (S;≤) satisfies the extension property, and hence is isomorphic which P; fix an

isomorphism i : (P ;≤, ci)→ (S;≤, ci). This isomorphism is M-generated by Aut(P) since

it can be approximated by automorphisms of P on all finite subsets of P . The restriction

of g to S is canonical as a function from (S;≤, ci) to P. Hence, the function h := g ◦ i is

canonical as a function from (P, ci) to P, and has the same behaviour as the restriction of

g to S. Let α ∈ Aut(P) be so that α(h(ci)) = ci. Then t := h ◦α ◦ h has the property that

t(x) > t(ci) for all x 6= ci, and that t(x)⊥t(y) if and only if x⊥y, for all x, y ∈ P \ {ci}.
Hence, given any finite A ⊆ P which is not a chain, we can pick x ∈ A which is not

comparable to all other elements of A, and find β ∈ Aut(P) which sends x to ci; then t ◦ β
strictly increases the number of comparabilities among the elements of A. Repeating this

process and composing the functions, we find a function which is M-generated by G and

which maps A onto a chain. Hence, G = SymP .

Therefore, we may henceforth assume that g behaves like id between all {ci} and all

infinite orbits X with {ci}⊥X. Now suppose that there exists 1 ≤ i ≤ n and an infinite

orbit X with X < {ci} such that {g(ci)} < g[X]. Pick an infinite orbit Y which is

incomparable with ci, and which satisfies X ≤ Y . Then {g(ci)} < g[Y ] since g behaves

like id between X and Y , a contradiction. Next suppose there exists 1 ≤ i ≤ n and an

infinite orbit X with X < {ci} such that {g(ci)}⊥g[X]. Then pick an infinite orbit Y as

in the preceding case, and an infinite orbit Z with {ci} < Z. Now given any finite A ⊆ P

which does not induce an antichain, we can pick y ∈ A which is not minimal in A. Taking

α ∈ Aut(P) which sends y to ci and A into X ∪Y ∪Z ∪{ci}, we then have that application

of g ◦ α increases the number of incomparabilites of A. Repeated composition of such
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functions yields a function which sends A onto an antichain. Hence, G = SymP . The case

where there exist 1 ≤ i ≤ n and an infinite orbit X with {ci} < X such that {g(ci)}⊥g[X]

is dual.

We turn to the case where we have two distinct finite orbits {ci} and {cj}. Suppose first

that they are comparable, say ci < cj. Picking an infinite orbit Z with {ci} < Z < {cj}
then yields, by what we know already, {g(ci)} < g[Z] < {g(cj)}, so we are done. Finally,

suppose that ci⊥cj. Then given any finite A ⊆ P which has incomparable elements x, y,

we can send x to ci, y to cj, and the rest of A to infinite orbits via some α ∈ Aut(P). But

then application of g ◦ α increases the number comparabilities on A, and hence repeating

the process yields a function which sends A to a chain. Hence, G = SymP . �

3.4.5. Climbing up the group lattice.

Proposition 28. Let G ) Aut(P) be a closed group. Then G contains either Rev or Turn.

Proof. There exist π ∈ G \Aut(P) and elements u, v ∈ P such that u ≤ v and π(u) � π(v).

Let g : (P, u, v) → P be a canonical function M-generated by G which agrees with π on

{u, v}. If g behaves like l on some infinite orbit of (P, u, v), then G ⊇ Rev by Lemma 25.

Otherwise Lemma 27 states that g is generated by Aut(P) or G ⊇ Turn. Since g(u) � g(v),

only the latter possibility can be the case. �

Proposition 29. Let G ) Rev be a closed group. Then G contains Turn.

Proof. Let π ∈ G \ Rev. Then there exists a finite tuple c = (c1, . . . , cn) of elements of

P such that no function in Rev agrees with π on c. Let g : (P, c1, . . . , cn) → P be a

canonical function which is M-generated by G and which agrees with π on {c1, . . . , cn}. By

Lemma 24, we may assume that either g behaves like id on all infinite orbits, or it behaves

like l on all infinite orbits of (P, c1, . . . , cn). By composing g with l, we may assume that

it behaves like id on all infinite orbits. But then Lemma 27 implies that G ⊇ Turn, or that

g is M-generated by Aut(P). The latter is, of course, impossible. �

3.4.6. Relational descriptions of Turn and Max. Before climbing up further, we need to

describe the groups Turn and Max relationally. The componentwise action of the group

Turn on triples of distinct elements of P has three orbits, namely:

Par: the orbit of the 3-element antichain, i.e., the set of all tuples (a, b, c) ∈ P 3 such that

one of the following holds: a ⊥ b, b ⊥ c, c ⊥ a;

a < b, a < c, b ⊥ c; b < a, b < c, a ⊥ c; c < a, c < b, b ⊥ c;

a > b, a > c, b ⊥ c; b > a, b > c, a ⊥ c; c > a, c > b, b ⊥ c;
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cycl: the orbit of the 3-element chain a < b < c, i.e., the set of all (a, b, c) ∈ P 3 such that

one of the following holds:

a < b < c; b < c < a; c < a < b;

a < b, c ⊥ a, c ⊥ b; b < c, a ⊥ b, a ⊥ c; c < a, b ⊥ a, b ⊥ c;

cycl′: the dual of cycl; that is, the orbit of the chain a > b > c, or more precisely the set

of all (a, b, c) ∈ P 3 such that one of the following holds:

a > b > c; b > c > a; c > a > b;

a > b, c ⊥ a, c ⊥ b; b > c, a ⊥ b, a ⊥ c; c > a, b ⊥ a, b ⊥ c.

Definition 30. Let {X, Y, Z} be a partition of P into disjoint subsets such that X is an

ideal of P, Z is a filter of P, X ≤ Y , Y ≤ Z and X < Z. A rotation on P with respect

to X, Y, Z is any permutation f on P which behaves like id on each class of the partition,

and such that for all x ∈ X, y ∈ Y , and z ∈ Z we have

• f(z) < f(x);

• f(y) < f(x) iff x⊥y and f(y)⊥f(x) iff x < y;

• f(z) < f(y) iff y⊥z and f(z)⊥f(y) iff y < z.

Observe that if F is a random filter, then �F is a rotation with respect to the partition

{∅, P \ F, F}.

Proposition 31. Turn contains all rotations on P.

Proof. Let f be a rotation on P, let {X, Y, Z} be the corresponding partition, and let

S ⊆ P be finite. Set X ′ := X ∩ S, Y ′ := Y ∩ S, and Z ′ := Z ∩ S. Let F ⊆ P be a random

filter with F ⊇ Z ′ and P \ F ⊇ X ′ ∪ Y ′. Since �F (u) 6< �F (z) for all u ∈ X ′ ∪ Y ′ and

all z ∈ Z ′, there exists a random filter F ′ with F ′ ⊇ �F [X ′ ∪ Y ′] and P \ F ′ ⊇ �F [Z ′]. It

is a straightforward verification that �F ′ ◦ �F changes the relations between elements of

X ′∪Y ′∪Z ′ in the very same way as the rotation f , and hence there exists an automorphism

α of P such that α ◦�F ′ ◦�F agrees with f on X ′ ∪ Y ′ ∪ Z ′. �

Lemma 32. Turn = Aut(P ; Par, cycl, cycl′).

Proof. To show that � preserves Par, cycl and cycl′ is only a matter of verification of a finite

number of cases. For the converse, let f ∈ Aut(P ; Par, cycl, cycl′); we show it is a rotation.

Define a binary relation ∼ on P by setting x ∼ y if and only if (x, y) and (f(x), f(y))

have the same type in P, for all x, y ∈ P . Clearly, ∼ is reflexive and symmetric; we claim

it is transitive, and hence an equivalence relation. To this end, let x, y, z ∈ P such that

x ∼ y and y ∼ z. Now by going through all possible relations that might hold between

x, y, z, using the fact that these relations remain unaltered between x and y as well as
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between y and z, and taking into account the fact that (x, y, z) in Par (cycl, cycl′) implies

(f(x), f(y), f(z)) in Par (cycl, cycl′), one checks that the relation which holds between x

and z has to remain unchanged as well – this is a finite case analysis which we leave to the

reader.

If∼ has only one equivalence class, then f it is an automorphism of P and there is nothing

to show, so assume henceforth that this is not the case. Then there exist equivalence classes

X, Y and x ∈ X, y ∈ Y such that x⊥y; we may assume without loss of generality that

f(x) > f(y).

Let u, v ∈ X ∪ Y such that u < v, and suppose that f(v) < f(u). Pick r ∈ P incom-

parable with u, v, x, y. Then (r, x, y) ∈ Par, so (f(r), f(x), f(y)) ∈ Par. Consequently,

f(r)⊥f(x) or f(r)⊥f(y), and hence r ∈ X ∪ Y . Now observe that (u, v, r), and hence also

its image under f , is an element of cycl. Hence f(v) < f(u) yields f(v) < f(r) < f(u),

contradicting r ∈ X ∪ Y . We conclude that comparable elements of X ∪ Y either belong

to the same class, or they are sent to incomparable elements.

Pick any u ∈ P such that u < x and u⊥y. Then (f(u), f(x), f(y)) ∈ cycl and f(x) >

f(y) imply f(u) < f(x), and so u ∈ X. Similarly, any v ∈ P such that y < v and v⊥x is

an element of Y , and in particular X ≤ Y .

We next claim that Y � X. Suppose there exist u ∈ Y , v ∈ X with u < v. If u > x, then

(x, u, v) ∈ cycl, and so f(x) < f(v) and the fact that we cannot have f(x) < f(u) yield

a contradiction. Hence, u 6> x, and by symmetry v 6< y. Suppose v > y. If v > x, then

(y, x, v) ∈ Par, but f(y) < f(x) < f(v), a contradiction. By the preceding paragraph,

v⊥x would imply v ∈ Y ; so v⊥y, and by symmetry u⊥x. If u < y and x < v, then

f(u) < f(y) < f(x) < f(v), contradicting the fact that u and v are elements of different

classes. So assume without loss of generality that u 6< y; since u > y would imply v > y,

which we already excluded, we then have u⊥y. Since (x, u, y) ∈ Par and f(x) > f(y),

we conclude f(u) < f(x). Hence, if v > x, then f(u) < f(x) < f(v), a contradiction,

so we must have v⊥x. But then (u, v, x) ∈ cycl, f(u) < f(x), and the fact that f(v) is

incomparable with f(u) and f(x) yield the final contradiction.

Suppose there exist u ∈ X and y ∈ Y with u⊥v and such that f(u) < f(v). As above,

we could then conclude that X � Y , a contradiction.

Say that A,B are equivalence classes for which A < B. Picking a ∈ A, b ∈ B, and any

c ∈ P which is incomparable with a and b, we then have (a, b, c) ∈ cycl. We cannot have

c ∈ A∪B, and so f(c) must be comparable with f(a) and f(b). The only possibility then

is that f(b) < f(a).

Let Z be an equivalence class distinct from X, Y and such that Y ≤ Z. Then X ≤
Z. We claim that Z > Y is impossible. Otherwise, there exist x ∈ X, y ∈ Y , and
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z ∈ Z such that x < y < z, and so (x, y, z) ∈ cycl. But f(x)⊥f(y) and f(z) < f(y)

imply (f(x), f(y), f(z)) /∈ cycl, a contradiction. We next claim that X < Z. Otherwise,

pick x ∈ X and z ∈ Z with x⊥z, and an arbitrary y ∈ Y such that x < y. Then

(f(x), f(y), f(z)) ∈ cycl, f(x) > f(z) and f(x)⊥f(y) yield a contradiction. Suppose next

that there exist two distinct classes Z1, Z2 with Y ≤ Z1, Z2. We know that Z1, Z2 must be

comparable, say Z1 ≤ Z2. Pick z1 ∈ Z1, z2 ∈ Z2 with z1 < z2. Since X < Z1, Z2, we then

have f(x) > f(z1), f(z2), and f(z1) 6< f(z2) yields a contradiction. So there is at most one

class Z distinct from Y with Z ≥ Y , and it satisfies Z > X and Z 6> Y .

Similarly there is at most one class W distinct from X with W ≤ X, and it satisfies

W < Y and W 6< X. By the same kind of argument that yielded uniqueness of Z above,

W and Z cannot exist simultaneously, say that W does not. Let U be any other class

distinct from X and Y . Then X ≤ U ≤ Y , and so X < Y , a contradiction.

If Z does not exist, then Y is a filter and f is of the form �Y . If Z does exist, then f is

a rotation with respect to the partition {X, Y, Z}. �

Corollary 33. The group Turn consists precisely of the rotations on P. In particular, the

composition of two rotations is again a rotation.

Proof. By Lemma 32, if f ∈ Turn, then f ∈ Aut(P ; Par, cycl, cycl′). It then follows from

the proof of the other direction of same lemma that f is a rotation. �

Proposition 34. Turn = Aut(P ; cycl).

Proof. By Lemma 32, Turn ⊆ Aut(P ; cycl). If the two groups were not equal, then

Aut(P ; cycl) would contain a function f which sends a triple a = (a1, a2, a3) in Par to

a triple in cycl′. Moreover, by first applying a function in Turn, we could assume that a

induces an antichain in P. But then for any automorphism α of P sending a to (a3, a2, a1)

we would get that f ◦ α sends a to a triple in cycl, a contradiction. �

Lemma 35. Let f ∈ Aut(P ; Par) \ Turn. Then for all a ∈ P 3 we have a ∈ cycl if and

only if f(a) ∈ cycl′, i.e., f switches cycl and cycl′.

Proof. Suppose there exists a = (a1, a2, a3) ∈ cycl with f(a) ∈ cycl – we will derive a

contradiction, implying f(a) ∈ cycl′. By symmetry, it then follows that all tuples in cycl′

are sent to cycl, and we are done.

Since f ∈ Aut(P ; Par) \ Turn, there exists b = (b1, b2, b3) in cycl such that f(b) ∈ cycl′.

We first claim that by replacing a and b with adequate triples, we may assume that both

a and b are strictly ascending, i.e., a1 < a2 < a3 and b1 < b2 < b3. Otherwise, either

all strictly ascending triples are sent to cycl, or all strictly ascending triples are sent to
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cycl′. Assume without loss of generality the former. Let g ∈ Turn be so that it sends some

strictly ascending triple e ∈ P 3 to b. Then f ◦ g sends e to f(b) ∈ cycl′; on the other hand,

since g is a rotation by Corollary 33, it sends some other strictly ascending triple w ∈ P 3

onto a strictly ascending triple, and so f ◦ g(w) ∈ cycl. Thus by replacing f by f ◦ g, a by

w and b by e, we may indeed henceforth assume that both a and b are strictly ascending

triples.

Now let c = (c1, c2, c3) be a strictly ascending triple such that ai < cj and bi < cj
for all 1 ≤ i, j ≤ 3. If f(c) ∈ cycl, then we replace a by c, and otherwise we replace

b by c. Assume without loss of generality the former; hence, from now on we assume

b1 < b2 < b3 < a1 < a2 < a3, f(b) ∈ cycl′, and f(a) ∈ cycl. By replacing f by h ◦ f for an

appropriate function h ∈ Turn we may moreover assume that f(ai) = ai for all 1 ≤ i ≤ 3.

Suppose that f(bi)⊥aj for some 1 ≤ i, j ≤ 3. Then, for any 1 ≤ k ≤ 3 with k 6= j,

the fact that (bi, aj, ak) /∈ Par implies (f(bi), aj, ak) /∈ Par, and consequently f(bi)⊥ak.
Hence, if f(bi) is incomparable with some aj, then it is incomparable with all aj, and if

it is comparable with some aj, then it is comparable with all aj. Suppose that f(bi)⊥a1
for some 1 ≤ i ≤ 3, and consider f(bj), where j 6= i. Since (bi, bj, a1) /∈ Par, we have

(f(bi), f(bj), a1) /∈ Par. This implies that if f(bj)⊥f(bi), then f(bj) and a1 are comparable.

Putting this information together, we conclude that any two distinct elements f(bi), f(bj)

which are incomparable with the ak are mutually comparable. Thus, the image of S :=

{a1, a2, a2, b1, b2, b3} under f is the disjoint union of at most two chains; by applying �F
for an appropriate random filter F ⊆ P , we may assume its image is a single chain. By

the same argument, we may assume that a3 is the largest element of this chain.

Since f(b) /∈ cycl, there exists bi, bj with bi < bj such that f(bj) < f(bi). As in the

following, we will not make use of the third element of b anymore, we may assume that

this is the case for b1, b2. Then either f(b2) < f(b1) < a2 < a3, or a1 < a2 < f(b2) < f(b1),

or f(b2) < a2 < f(b1) < a3. We will derive a contradiction from each of the three cases.

Pick any u1, u2, u3, u4 ∈ P such that u1 < u2, u3 < u4, and such that any other two

elements ui, uj are incomparable. Then there is an random filter F ⊆ P containing u1, u2
but not u3, u4, and so �F (u1) < �F (u2) < �F (u3) < �F (u4). Now if f(b2) < f(b1) < a2 <

a3, then by applying an automorphism of P, we may assume that (b1, b2, a2, a3) coincides

with the ascending 4-tuple t containing the �F (ui). Picking an random filter F ′ ⊆ P

containing a2 but not f(b1) and setting h := �F ′ ◦ f ◦ �F , we get that h(u2) < h(u1),

h(u3) < h(u4), and all other h(ui), h(uj) are incomparable. Pick any x ∈ P such that

x > u1, x > u3, x⊥u3, and x⊥u4. Then (u4, u3, x) ∈ Par implies that h(x) > h(u3),

(x, u1, u2) ∈ Par implies h(x) < h(u1), and hence h(u3) < h(u1), a contradiction. If

a1 < a2 < f(b2) < f(b1), then by applying an automorphism of P, we may assume that
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(b1, b2, a1, a2) coincides with the tuple t. Picking an random filter F ′ ⊆ P containing f(b2)

but not a2 and setting h := �F ′ ◦ f ◦ �F , we get that h(u2) < h(u1), h(u3) < h(u4),

and all other h(ui), h(uj) are incomparable, leading to the same contradiction as in the

preceding case. Finally, assume f(b2) < a2 < f(b1) < a3, and assume that (b1, b2, a2, a3)

coincides with t. Picking an random filter F ′ ⊆ P containing f(b1) but not a2 and setting

h := �F ′ ◦ f ◦�F , we get that h(u2) < h(u3), h(u1) < h(u4), and all other h(ui), h(uj) are

incomparable. Now pick x ∈ P such that x > ui for all 1 ≤ i ≤ 4. Then (u1, u2, x) /∈ Par

implies that h(x)⊥h(u1) or h(x)⊥h(u2). However, (u2, u4, x) ∈ Par implies that h(x) is

comparable with h(u2), and similarly (u1, u3, x) ∈ Par implies that h(x) is comparable with

h(u1), a contradiction.

�

Proposition 36. Max = Aut(P ; Par).

Proof. By Lemma 32, Turn is contained in Aut(P ; Par). Obviously, l preserves Par, so

that indeed Max ⊆ Aut(P ; Par).

For the other direction, let f ∈ Aut(P ; Par). If f ∈ Turn then f ∈ Max by definition of

Max, so assume f /∈ Turn. Then f switches cycl and cycl′ by Lemma 35. Since l switches

cycl and cycl′ as well, l ◦f preserves Par, cycl and cycl′. Thus, by Lemma 32, l ◦f is an

element of Turn, and so f ∈ Max. �

3.4.7. Climbing to the top.

Proposition 37. Let G ) Max be a closed group. Then G is 3-transitive.

Proof. Since G is not contained in Max, Par cannot be an orbit of its componentwise

action on P 3. Since it contains Max, the orbits of this action are unions of the orbits of

the corresponding action of Max. However, the latter action has only two orbits of triples

of distinct elements, namely Par and cycl∪ cycl′. Hence, G has only one such orbit, and is

3-transitive. �

Proposition 38. Let G be a 3-transitive closed group containing Turn. Then G = SymP .

Proof. We prove by induction that G is n-transitive for all n ≥ 3. Our claim holds for

n = 3 by assumption. So let n ≥ 4 and assume that G is (n − 1)-transitive. We claim

that every n-element subset of P can be mapped onto an antichain by a permutation in

G; n-transitivity then follows as in the proof of Lemma 10. We prove this claim in several

steps, and will need the following partial orders.

For every natural number k with 1 ≤ k ≤ n, let
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• Skn be the n-element poset consisting of k independent points and a chain of (n−k)

elements below them;

• T kn be the dual of Skn;

• Akn be the n-element poset consisting of k independent points, an element below

them, and an antichain of size (n− k − 1) independent from these points;

• Bk
n be the dual of Akn;

• Ck be the k + 1-element poset consisting of k independent points and an element

below them; that is, Ck = Akk+1 = Skk+1.

Step 1: From anything to Akn or Bk
n for k ≥ n−1

2
.

We first show that any n-element set A ⊆ P can me mapped to a copy of Akn or Bk
n,

where k ≥ n−1
2

, via a function in G. Let A be given, and write A = A′ ∪ {a}, where A′

has n − 1 elements. Then by the induction hypothesis there exists π ∈ G which maps A′

to an antichain. Let F ⊆ P be an random filter which separates π(a) from π[A′], i.e., for

all b ∈ π[A′] we have b ∈ F if and only if π(a) /∈ F . Then one can check that either π[A]

or (�F ◦ π)[A] induce Akn or Bk
n in P for some k ≥ n−1

2
.

Step 2: From Akn (Bk
n) to Skn (T kn ) for k ≥ n−1

2
.

We now show that any copy of Akn in P can be mapped to a copy of Skn via a function in

G. The dual proof then shows that any copy of Bk
n can be mapped to a copy of T kn .

Let {x1, . . . , xn−1} and {y1, . . . , yn−1} be disjoint subsets of P inducing an antichain and

a chain, respectively. By the (n − 1)-transitivity of G, the map xi 7→ yi, 1 ≤ i ≤ n − 1,

can be extended to a permutation π ∈ G. Let X be the orbit of (P, x1, . . . , xn−1) such

that x⊥xi for all x ∈ X and all 1 ≤ i ≤ n − 1. By Lemma 17 there exists a canonical

function g : (P, x1, . . . , xn−1) → (P, y1, . . . , yn−1) M-generated by G that agrees with π on

{x1, . . . , xn−1}. We may assume that g behaves like id or like l on X, by Lemma 22. If g

behaves like l on X, then G contains l by Lemma 25; replacing g by l ◦g and replacing

each yi by l (yi), we may assume that g behaves like id on X. Let D ⊆ X be so that it

induces Ck, and observe that D′ := D ∪ {x1, . . . , xn−k−1} induces a copy of Akn in P. Since

g is canonical, all elements of X, and in particular all elements of D are sent to the same

orbit Y of (P, y1, . . . , yn−1). Thus for all 1 ≤ i ≤ n − 1 we have that either g[D] < {yi},
or g[D]⊥{yi}, or g[D] > {yi}. Let S be the set of those yi for which the first relation

holds, and set E := g[D] ∪ ({y1, . . . , yn−1} \ S). Let F ⊆ P be an random filter which

separates E from S, i.e., F contains S, but does not intersect E. Then �F [S]⊥�F [E].

Choose an random filter F ′ which contains �F [S] and which does not intersect �F [E].

Then �F ′ ◦ �F [S] < �F ′ ◦ �F [E]. Set h := �′F ◦ �F ◦ g. Now for all 1 ≤ i ≤ n − 1 we

have that either h[D] > {h(xi)} or h[D]⊥{h(xi)}. Moreover, h behaves like id on D, and
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the h(xi) form a chain. Either there are at least n−1
2

elements among the h(xi) for which

h[D] > {h(xi)}, or there are at least n−1
2

of the h(xi) for which h[D]⊥{h(xi)}. In the first

case, observe that k ≥ n−1
2

implies n−1
2
≥ n− k − 1. Hence, by relabelling the xi, we may

assume that h[D] > {h(xi)} for 1 ≤ n− k− 1, and so h sends D′ to a copy of Skn, finishing

the proof. In the second case, pick an random filter F ′′ ⊆ P which contains all h(xi) for

which h[D]⊥{h(xi)}, and which does not contain any element from h[D]. Then replacing

h by �F ′′ ◦ h brings us back to the first case.

Step 3: From Skn (T kn ) to an antichain when k > n−1
2

.

We show that if k > n−1
2

, then any copy of Skn in P can be mapped to an antichain

by a permutation in G. Clearly, the dual argument then shows the same for T kn . Let

{u1, . . . , un−1} ⊆ P be so that it induces a chain. By the (n− 1)-transitivity of G, there is

some ρ ∈ G that maps {u1, . . . , un−1} to an antichain {v1, . . . , vn−1}. Let Z be the orbit of

(P, u1, . . . , un−1) that is above all the uj. By Lemma 17 there exists a canonical function f :

(P, u1, . . . , un−1)→ (P, v1, . . . , vn−1) M-generated by G that agrees with ρ on {u1, . . . , un−1}.
All elements of Z are mapped to one and the same orbit O of (P, v1, . . . , vn−1). Now pick

z1, . . . , zk ∈ Z which induce an antichain. By applying an appropriate instance of � in

a similar fashion as in Step 2, we may assume that O is incomparable with at least n−1
2

of the singletons {vi}. Choose (n − k) out of these vi. This is possible, as k > n−1
2

and consequently n−1
2
≥ n − k. By relabelling the ui, we may assume that the chosen

elements are v1, . . . , vn−k. Then f [{z1, . . . , zk}] ∪ {v1, . . . , vn−k} is an antichain. Since

{z1, . . . , zk, u1, . . . , un−k} induces a copy of Skn, we are done.

Step 4: From Akn to an antichain when k = n−1
2

.

Assuming that k = n−1
2

, we show that any copy of Akn in P can be mapped to an antichain

by a function in G. Note that this assumption implies that n is odd, so n ≥ 5, and thus

k = n−1
2
≥ 2.

Let {x1, . . . , xk−1} ⊆ P induce an antichain. Let s ∈ P be a point below all the xi,

and let {y1, . . . , yk} ⊆ P induce an antichain whose elements are incomparable with all

the xi and s. The set A := {s, x1, . . . , xk−1, y1, . . . , yk} induces a copy of Ak−1n−1. By the

(n− 1)-transitivity of G there exists ϕ ∈ G which maps A to an antichain {z1, . . . , zn−1} ⊆
P . Without loss of generality, we write ϕ(s) = zn−1, ϕ(xi) = zi for 1 ≤ i ≤ k − 1,

and ϕ(yi) = zk+i for 1 ≤ i ≤ k. By Lemma 17 there exists a canonical function h :

(P, s, x1, . . . , xk−1, y1, . . . , yk)→ (P, z1, . . . , zn−1) M-generated by G which agrees with ϕ on

A. Let U be the orbit of (P, s, x1, . . . , xk−1, y1, . . . , yk) whose elements are larger than s

and incomparable to all other elements of A. Since h is canonical, h[U ] is contained in an

orbit V of (P, z1, . . . , zn−1).
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Assume that the elements of the orbit V do not satisfy the same relations with all the

zi for 1 ≤ i ≤ n − 2. Then there is a partition R ∪ S = {z1, . . . , zn−2}, with both R and

S non-empty, such that the elements of V are incomparable with the elements of R and

strictly comparable with the elements of S. By applying an appropriate instance of � we

may assume that |R| ≥ k. Pick any R′ ⊆ R of size k, any S ′ ⊆ S of size 1, and a k-element

antichain W ⊆ U . Then h−1[R′]∪ h−1[S ′]∪W induces an antichain of size n whose image

I under h induces either Akn or Bk
n. In the second case, let F ⊆ P be an random filter

which separates the largest element of I from its other elements. Then �F sends I to a

copy of Akn. Thus in either case, G contains a function which sends an n-element antichain

to a copy of Akn. Since G contains the inverse of all of its functions, it also maps a copy of

Akn to an antichain.

Finally, assume that V satisfies the same relations with all the zi for 1 ≤ i ≤ n − 2.

By applying an appropriate instance of � we may assume that V is incomparable with all

the zi for 1 ≤ i ≤ n − 2. Let W ⊆ U induce a (k − 1)-element antichain, and consider

R := W ∪ {x1, y1, . . . , yk, s}; then R induces a copy of Akn. If V is incomparable with zn−1,

then h[R] is an antichain and we are done. So assume that V and zn−1 are comparable.

Then h[R] induces Ak−1n or Bk−1
n . Let F ⊆ P be an random filter that separates h(s) from

the other elements of h[R]. Then �F ◦ h[R] induces Bn−k+1
n or An−k+1

n . By Steps 2 and 3,

both An−k+1
n and Bn−k+1

n can be mapped to an antichain by permutations from G, finishing

the proof. �

Proposition 39. Let G ) Turn be a closed group. Then G contains Max.

Proof. If G = SymP , then there is nothing to show, so assume this is not the case. Then G
is not 3-transitive; since G ⊇ Turn, the orbits of its action on triples of distinct entries of P

are unions of the action of Turn on such triples. Since G 6= Turn, it cannot preserve cycl or

cycl′; thus it preserves Par. Thus G ⊆ Max by Proposition 36. Now if f ∈ G \ Turn, then

it flips cycl and cycl′, by Lemma 35. Hence, l ◦f preserves cycl, and so it is an element of

Turn ⊆ G, by Proposition 34. But then l=l ◦f ◦ f−1 ∈ G, and so G contains Rev. �

Theorem 2 now follows from Propositions 28, 29, 37, 38, and 39.

3.4.8. Relational description of Rev.

Proposition 40. Rev = Aut(P ;⊥).

Proof. By definition, the function l preserves the incomparability relation and its negation,

so the inclusion ⊇ is trivial. For the other direction, let f ∈ Aut(P ;⊥). We claim that f

is either an automorphism of P, or satisfies itself the definition of l (i.e., f(b) ≤ f(a) iff
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a ≤ b for all a, b ∈ P ). Suppose that f is not an automorphism of P, and pick a ≤ b such

that f(a) � f(b). Since f preserves comparability, we then have f(b) ≤ f(a). To prove

our claim, since f preserves ⊥ it suffices to show that likewise f(d) ≤ f(c) for all c ≤ d.

We first observe that if e ≤ b and e⊥a, then f(e) ≥ f(b). For if we had f(e) ≤ f(b),

then it would follow that f(e) ≤ f(b) ≤ f(a), a contradiction since f preserves ⊥. Hence,

f(e) � f(b), and so f(e) ≥ f(b) since f preserves comparability.

Next let r, s ∈ P so that r ≤ s, r ≤ b, and s⊥b; we show f(r) ≥ f(s). Since f(r) and

f(s) are comparable, it is enough to rule out f(r) ≤ f(s). By our previous observation,

we have f(b) ≤ f(r), so f(r) ≤ f(s) would imply f(b) ≤ f(s), contradicting the fact that

f preserves ⊥.

Now let u, v ∈ P be so that u ≤ v and such that both u and v are incomparable with

both a and b. Then using the extension property, we can pick r, s ∈ P as above and such

that u ≤ s and v⊥s. By the preceding paragraph, f(r) ≥ f(s), and applying the above

once again with (u, v) taking the role of (r, s) and (r, s) the role of (a, b), we conclude

f(v) ≥ f(u).

Finally, given arbitrary c, d ∈ P with c ≤ d, we use the extension property to pick u, v ∈
P incomparable with all of a, b, c, d, and apply the above twice to infer f(c) ≥ f(d). �

Theorem 3 now follows from Propositions 34, 36, and 40.

4. Reducts of the Henson graphs with a constant

4.1. Ramsey theory and other preliminaries. The structure N = {X, (Qj)j∈J} is a

reduct of the structureM = {X, (Ri)i∈I} if Qj is first-order definable from the set {Ri|i ∈
I} for all j ∈ J . In this thesis, reducts are considered up to first-order interdefinability.

Thus two reducts A and B are equivalent if A is the reduct of B and vice versa. The

reducts of M up to first-order interdefinability are in a one-to-one Galois correspondence

with the closed subgroups of Sym(X) containing Aut(M). A group C is closed if it is the

automorphism group of a structure. Equivalently, a group is closed if any permutation

that can be interpolated on finite substructures ofM by C is in C. I.e., C is closed if and

only if for any permutation ρ the condition that for all finite A ≤M there exists a π ∈ C
such that π|A = ρ|A implies that ρ ∈ C. Instead of directly characterizing the reducts of

(Hn, E, 0) we determine the closed groups containing Aut(Hn, E, 0).

A countable relational structureM is homogeneous if every partial isomorphism between

finite substructures ofM is the restriction of an automorphism ofM. The complete list of

homogeneous graphs was given by A. H. Lachlan and R. E. Woodrow [23]. A homogeneous

graph is isomorphic to one of the following structures.
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(1) The random graph (R,E).

(2) The Henson graph (Hn, E) for some n ≥ 3.

(3) The complement of the Henson graph (Hn, E) for some n ≥ 3.

(4) The disjoint union of complete graphs of equal size.

(5) The complement of the disjoint union of complete graphs of equal size.

The age of a structureM is the class of all finite structures that has an isomorphic copy in

M. The Henson graph (Hn, E) is the unique homogeneous graph with Age(Hn, E) being

the class of finite Kn-free graphs (n ≥ 3). In other words, (Hn, E) is the Fräıssé limit of

all finite Kn-free graphs. These structures were first discovered by C. W. Henson in [12].

According to Thomas’ theorem in [37] the structure (Hn, E) has no non-trivial reducts.

Theorem 4 (Thomas). There is no closed group between Aut(Hn, E) and Sym(Hn).

We determine the reducts of the Henson graphs with a constant, that is, (Hn, E, 0) up to

first-order interdefinability. Usually, this notation means that the element 0 ∈ Hn is added

to the language as a constant sign. Contrary to the investigation of (Q, <, 0) in [20] we

do not allow constant signs in the language. In fact, we always work with structures that

are homogeneous in a finite relational language. So in our setup (Hn, E, 0) means that a

unary relation 0 is added to the language, and it is interpreted as the singleton {0}. As

(Hn, E, 0) is not homogeneous, we need to add the unary relations to the language that are

first-order definable in (Hn, E, 0). Note that this does not alter the automorphism group

of the structure.

Definition 41. The set of neighbours of 0 in (Hn, E, 0) is denoted by U1. The set

of non-neighbours of 0 in (Hn, E, 0) is denoted by U2. The Ui-part of a substructure

A ≤ (Hn, E, 0, U1, U2) is the set of points in Ui ∩ A for i ∈ {1, 2}. The 0-part of a

substructure A ≤ (Hn, E, 0, U1, U2) is {0} ∩ A. The intermediate pairs in a substruc-

ture A ≤ (Hn, E, 0, U1, U2) are the 2-element substructures of A with one point in U1 and

one point in U2. Intermediate edges and non-edges are the intermediate pairs constitut-

ing an edge and a non-edge, respectively. Throughout the dissertation the language of

(Hn, E, 0, U1, U2) is denoted by τ , and the language of (Hn, E) is denoted by ∆.

The structure (Hn, E, 0, U1, U2) is homogeneous. To prove this, let f be a partial τ -

isomorphism. We show that if 0 is not in the domain of f , then extending f to f̄ with

f̄(0) = 0 is still a partial τ -isomorphism. The partial map f̄ is injective, and f̄ does not

violate the unary relations by definition. If f̄ violates an edge e, then e must contain 0.

But then the other endpoint of e is mapped from U1 into U2 by f , which is impossible.

Similarly, f̄ preserves non-edges, as well. Thus we may assume that 0 is in the domain
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of f , and then f(0) = 0. Hence, f is a partial ∆-isomorphism fixing 0. According to the

homogeneity of (Hn, E), we have that f extends to an automorphism α of (Hn, E) fixing

0. Then α is also an isomorphism of (Hn, E, 0, U1, U2), and α extends f .

Proposition 42. The structures (Hn, E, 0) and (Hn, E, 0, U1, U2) have the same reducts

up to first-order interdefinability.

Proof. (Hn, E, 0) and (Hn, E, 0, U1, U2) are first-order interdefinable. �

In [27] the following Ramsey type theorem is shown.

Theorem 5 (Nešetřil, Rödl). Let n ≥ 3 and r ≥ 2. Then for all Kn-free graphs A there

exists a Kn-free graph B such that if the edges and non-edges of B are colored with r colors,

then there exists a copy A′ ≤ B of A that is monochromatic, i.e., edges have the same color

and non-edges have the same color.

The class of ordered Kn-free graphs has an even stronger property, namely that it is a

Ramsey class [28]. A class C of finite structures is called a Ramsey class if for all A,B ∈ C
and r ∈ N there is a C ∈ C such that if the copies of A in C are colored with r colors,

then there is a copy B′ ≤ C isomorphic to B that is monochromatic. The (homogeneous)

structure M is a Ramsey structure if Age(M) is a Ramsey class.

Theorem 6 (Nešetřil, Rödl). The class of finite ordered Kn-free graphs is a Ramsey class

for all n ≥ 3. In particular, the randomly ordered Henson graph (Hn, E,<) is a homoge-

neous ordered Ramsey structure. I.e., given any n ≥ 3, r ≥ 2 and finite ordered Kn-free

graphs A,B, there exists a finite ordered Kn-free graph C such that if the copies of A in C

are colored with r colors, then there is a monochromatic copy of B in C.

In [7] the following is shown.

Proposition 43 (Bodirsky, Pinsker, Tsankov). Let M be a homogeneous ordered Ramsey

structure. If we add a constant to the language of M, then the structure obtained is an

ordered Ramsey structure.

We need a generalization of Theorem 5, when there are finitely many constants in the

graph. This structure is not Ramsey, but it satisfies a weaker property that we show in

Proposition 45.

For a structure M and a k-tuple a = (a1, . . . , ak) ∈ Mk the type tp(a) is the set of

first-order formulas with free variables x1, . . . , xn that hold for a. If M is homogeneous

in a finite relational language, then M is η-categorical, and thus there are finitely many

k-types ofM for all k ∈ N. Moreover, the k-tuples a and b have the same type if and only
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if there is an automorphism α ∈ AutM with α(a) = b. In particular, the k-types can be

identified with the orbits of Aut(M) in Mk. This identification is used throughout the

dissertation. E.g., U1 is a one-type and the set of intermediate edges (u1, u2) with u1 ∈ U1,

u2 ∈ U2 is a two-type of (Hn, E, 0, U1, U2). If c1, . . . , cn ∈ M are given constants, then

a relative k-type in M is a k-type in (M, c1, . . . , cn). Here, (M, c1, . . . , cn) denotes the

structure M with the constants c1, . . . , cn added to the language.

Definition 44. Let k ∈ N. A class C of finite structures is called a k-Ramsey class if for

all A,B ∈ C with |A| ≤ k and r ∈ N there is a C ∈ C such that if the copies of A in C are

colored with r colors, then there is a copy B′ ≤ C isomorphic to B that is monochromatic.

The (homogeneous) structure M is a k-Ramsey structure if Age(M) is a k-Ramsey class.

Proposition 45. Let n ≥ 3, r ≥ 2, t ≥ 0. Let (Hn, E, 0, 1, . . . , t− 1) be the Henson graph

with t constants. Then (Hn, E, 0, 1, . . . , t− 1) is 2-Ramsey.

Proof. Let T1, T2, . . . , Tk be the at most 2-element substructures in (Hn, E, 0, 1, . . . , t− 1)

up to isomorphism. It is enough to prove that for any r ≥ 2, T ∈ {T1, T2, . . . , Tk} and

B ∈ Age(Hn, E, 0, 1, . . . , t − 1) there exists a C ∈ Age(Hn, E, 0, 1, . . . , t − 1) such that if

the copies of T in C are colored with r colors, then there is a monochromatic copy of B in

C.

According to Theorem 6 and Proposition 43 we can extend the language of (Hn, E, 0, 1, . . . , t−
1) with a total order so that it becomes an ordered Ramsey structure. Let us denote

the structure obtained in this way by (Hn, E,<, 0, 1, . . . , t − 1). Observe that B ≤
(Hn, E, 0, 1, . . . , t − 1) has an ordered version B< such that all ordered versions of the

copies of T in B< are isomorphic to some T<. Indeed, if |T | = 1 or |T | = 2 and both

vertices of T have the same relative 1-type, then T has only one ordered version up to

isomorphism. If |T | = 2 and the two vertices of T have different 1-types Q1 and Q2 with

Q1 not bigger than Q2, then we order B such that the points in Q1 become smaller than

the points in Q2. According to the Ramsey property of (Hn, E,<, 0, 1, . . . , t − 1) there

is a C< in Age(Hn, E,<, 0, 1, . . . , t − 1) such that if the copies of T< in C< are colored

with r colors, then there is a monochromatic copy of B< in C<. We show that if we omit

the total order from C<, then the unordered structure C satisfies the required condition.

Assume that the copies of T in C are colored with r colors. In particular, the copies of T<

are colored with r colors in C<. Then there is a monochromatic copy B′< of B< in C<.

As all ordered versions of the copies of T in B′< are isomorphic to T<, we have that B′ is

monochromatic. �

Throughout this section we use a variant of the notion behaviour defined in [4].
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Definition 46. Let M, N be countable homogeneous relational structures over finite re-

lational languages with maximal arity of relations k. Let TM, TN be the set of k-types, i.e.

the set of orbits of the automorphism group on the k-tuples of M and N , respectively. A

function b : TM → TN is called a behaviour. A set of functions H = {fi :M→N|i ∈ I}
admits the behaviour b if for all finite A ≤ M there exists a copy A′ ≤ M and an i ∈ I
such that fi|A′ has the property that the image of any k-tuple a in A′ is isomorphic to b(a).

To realize the behaviour b on A means that we map A to A′ with an automorphism in

Aut(M), and apply fi. We also say that fi realizes the behaviour b on A.

Definition 47. Let C be the age of a countable relational structure over a finite language.

The sequence A1 ( A2 ( · · · of structures in C tends to infinity if for any B ∈ C there is

an i ∈ N such that B embeds into Ai.

Example 48. For a general construction of a sequence of structures tending to infinity let

M be a countable structure with age C. Let m1,m2, . . . be an enumeration of the elements

of M . Then the sequence (Ai)i∈N with Ai = {m1, . . . ,mi} tends to infinity.

Proposition 49. Let s, t ≥ 0. Then any set of functions H = {fi : (Hn, E, 0, . . . , s−1)→
(Hn, E, 0, . . . , t− 1)|i ∈ I} admits some behaviour b.

Proof. Note that in the structures (Hn, E, 0, . . . , s − 1) and (Hn, E, 0, . . . , t − 1) every

relation is at most binary, thus a behaviour is a function between the set of two-types of

the two structures.

Let A1 ( A2 ( · · · be a sequence of structures in Age(Hn, E, 0, . . . , s − 1) tending to

infinity. Let S1, . . . , Sq be the at most 2-element substructures of (Hn, E, 0, . . . , s− 1), and

let T1, . . . , Tr be the at most 2-element substructures of (Hn, E, 0, . . . , t− 1). According to

Proposition 45 for all Aj there exists a Bj ∈ Age(Hn, E, 0, . . . , s − 1) such that if the at

most 2-element substructures of Bj are colored with r colors, then there is a monochromatic

copy A′j of Aj in Bj. Let us choose an arbitrary copy of Bj in (Hn, E, 0, . . . , s − 1) and

color its at most 2-element substructures by the isomorphism type of their f1-image. Then

for any 1 ≤ m ≤ q we have that all copies of Sm in the monochromatic A′j have the

same f1-image up to isomorphism. Thus we can assign a structure from T1, . . . , Tr to any

Sm. Hence, some behaviour bj can be realized on Aj by f1. As there are only finitely

many possible behaviours, there is a behaviour b that occurs infinitely many times in the

sequence (bj)j∈N. Given a finite A ∈ Age(Hn, E, 0, . . . , s− 1) there is a j such that Aj has

an induced substructure isomorphic to A and bj = b. Thus the behaviour b can be realized

on any A ∈ Age(Hn, E, 0, . . . , s−1) by f1, and consequently f1 admits the behaviour b. �
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We use the terminology of [4]. Let (G,E) be a countable homogeneous graph. Then

there are four possible behaviours of a function f : (G,E)→ (G,E).

Definition 50. The behaviour mapping edges to edges and non-edges to non-edges is called

the identical behaviour, and it is denoted by id. The behaviour switching edges and non-

edges is denoted by −. The constant behaviour mapping edges to both two-types is denoted

by eE. The constant behaviour mapping non-edges to both two-types is denoted by eN .

There are some direct connections between behaviours and closed groups. The following

is proven in [4] for the random graph.

Proposition 51. Let (G,E) be a countable homogeneous graph. If a permutation π of G

admits the behaviour eN or eE, then Aut(G,E) and π generates the fully symmetric group

Sym(G) as a closed group.

Proof. We prove the statement for the behaviour eN , the other case is analogous. Let C

be the closed group generated by the set Aut(G,E) ∪ {π}. We have to show that for any

permutation ρ ∈ Sym(G) on any finite substructure A ≤ (G,E) there exists a permutaion

in C that agrees with ρ on A. Let A = {a1, . . . , an}. As C contains Aut(G,E) and π,

the behaviour eN can be realized on A and ρ(A). Let γA, γρ(A) ∈ C be permutations that

realize eN on A and ρ(A), respectively. As the images are empty graphs, the partial map

γA(ai) 7→ γρ(A)(ρ(ai)) is a partial isomorphism. Hence, there exists an α ∈ Aut(G,E) such

that α(γA(ai)) = γρ(A)(ρ(ai)). Thus γ−1ρ(A) ◦ α ◦ γA ∈ C interpolates ρ on A. �

Proposition 49 provides the main technique of the present thesis. Given a closed group

Aut(M) we characterize the closed groups C that are minimal over Aut(M) as follows. Any

π ∈ C \Aut(M) together with Aut(M) generates C as a closed group. The fact that π is

not an automorphism ofM is witnessed on a finite set {c1, . . . , ck}. We add c1, . . . , ck to the

language as constants, and fix a behaviour b of π as an (M, c1, . . . , ck) → (M, c1, . . . , cn)

function. As π violates a relation on {c1, . . . , ck} the behaviour b is not identical. By

analyzing the possible behaviours we show that C is among finitely many closed groups.

Proposition 52. Let Aut(Hn, E, 0, U1, U2) ⊆ C be a closed group. Assume that for any

A ∈ Age(Hn, E, 0, U1, U2) there exists a copy A′ of A in Hn and a permutation πA ∈ C

such that either all intermediate pairs of A′ are mapped to edges by πA or all intermediate

pairs of A′ are mapped to non-edges by πA. Then C contains Aut(U1, E) × Aut(U2, E).

In particular, if C admits a behaviour b that is constant on the intermediate pairs, then

Aut(U1, E)× Aut(U2, E) ⊆ C.
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Proof. Let A1 ( A2 ( · · · be a sequence in Age(Hn, E, 0, U1, U2) tending to infinity. Ac-

cording to Proposition 45 for all Ai there is a Bi ∈ Age(Hn, E, 0, U1, U2) such that by

coloring all the 2-element substructures T1, T2, . . . , Tk with r colors there is a monochro-

matic copy Ai of Ai in Bi. Choose a copy B′i of Bi in Hn such that all intermediate pairs in

B′i are mapped to non-edges by some πBi
. Color the 2-element substructures of B′i according

to the isomorphism type of their πBi
-image. Then the intermediate edges and non-edges of

the monochromatic copy Ai are mapped to the same 2-type. Hence, the assigned canonical

behaviour on Ai is constant on the intermediate pairs. There is a behaviour b that occurs

infinitely many times as an assigned behaviour to some Ai. This behaviour b is constant on

the intermediate pairs, and C admits b. To prove the assertion of the proposition we have

to show that any permutation α ∈ Aut(U1, E)×Aut(U2, E) can be interpolated on the fi-

nite substuctures of Hn. Let A = {a1, . . . , ak} be a finite substructure and B = {b1, . . . , bk}
its α-image, bi = α(ai). Then these two structures differ only in the intermediate pairs.

More precisely, ai 7→ bi is a partial τ -isomorphism except that some intermediate edges are

mapped to non-edges and vice versa. Let γA and γB be permutations in C realizing the

behaviour b on A and B, respectively. Then g : γA(ai) 7→ γB(bi) is a partial τ -isomorphism.

Thus there exists a β ∈ Aut(Hn, E, 0, U1, U2) such that β(γA(ai)) = γB(bi) for all i. Hence,

the composition γ−1B ◦ β ◦ γA interpolates α on A. �

Note that in the above application of the notion behaviour, we considered permuta-

tions as functions (Hn, E, 0, U1, U2) → (Hn, E). In some proofs this is not enough. We

will use that there is a behaviour of any permutation as a function (Hn, E, 0, U1, U2) →
(Hn, E, 0, U1, U2), and sometimes several other constants are added to the language. If

these more complicated structures are considered, then we use the following terminology.

Let L be the language of the domain structure and L′ be the language of the image struc-

ture. We say that there is a behaviour b : L→ L′ of the function f . E.g., there is a τ → τ

behaviour b of any permutation π of Hn, which means that b is a behaviour of π consid-

ered as a function (Hn, E, 0, U1, U2)→ (Hn, E, 0, U1, U2). For example, the behaviour of a

function mapping Hn isomorphically onto U1 is not identical as a τ → τ behaviour, but is

identical as a τ → ∆ behaviour.

Behaviours can be defined naturally on the one-types, as well. Thus given a τ → τ

behaviour b it has a value at U1, e.g., b(U1) = U2.

In order to characterize the reducts of (Hn, E, 0) we often need constructions of sub-

structures with several extra conditions, such as being connected to a particular subset.

We say that a construction is realizable if there exists a substructure satisfying the given

properties. In most of the cases it is straightforward to verify that the construction is
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realizable, and it is left to the reader. E.g., it is realizable to consider any Kn-free graph H

in U2. Indeed, the graph G that consits of H and an isolated vertex is a Kn-free graph, and

thus G is a subgraph of (Hn, E). As (Hn, E) is homogeneous, there is an automorphism

mapping the isolated vertex in G to 0. The image of the other (n− 1) vertices of G induce

a subgraph isomorphic to H in U2.

We introduce the following notations for the finite structures that are used several times

in the constructions.

Definition 53. Kn denotes the complete graph on n vertices. In denotes the empty graph

on n vertices. K∗n−1 denotes the graph consisting of a Kn−1 and an isolated vertex. K−n
denotes the graph on n vertices with exactly one non-edge.

4.2. The result. We state the second main theorem of the present dissertation and study

the reducts of (Hn, E, 0, U1, U2). Some of them occur naturally.

If we drop the constant sign 0 and the other unary relations U1, U2 that are definable using

0, we obtain the original Henson graph (Hn, E). This gives rise to the closed supergroup

Aut(Hn, E).

By omitting the vertex 0, the remaining vertices constitute a graph isomorphic to the

original one. Formally this is not a reduct, as the unerlying set is changed. However, this

observation leads to the structure (Hn \ {0}, E) ∪ {0}. From the aspect of closed groups

we obtain Aut(Hn, 0, E|Hn\{0}).

As there are intermediate edges in (Hn, E, 0, U1, U2), an automorphism of this structure

can not act independently on U1 and U2. If the intermediate edges are omitted, the

connection disappears. This yields Aut(U1, E) × Aut(U2, E). In the next subsection it is

shown that these three closed groups are exactly the minimal ones above Aut(Hn, E, 0).

According to Theorem 4 the only closed group above Aut(Hn, E) is Sym(Hn). Thus

the only closed group above Aut(Hn, 0, E|Hn\{0}) that stabilizes 0 is Sym(Hn \ {0}), the

stabilizer of 0 in Sym(Hn). This corresponds to the reduct (Hn, 0).

If n ≥ 4 then (U1, E) is not an empty graph. In this case Aut(U2, E) × Sym(U1) is a

proper supergroup of Aut(U1, E)×Aut(U2, E). This is the permutation group compatible

with all the unary relations and the edge relation in U2.

The group Aut(U1, E)×Sym(U2) is always a proper supergroup of Aut(U1, E)×Aut(U2, E).

The relations can be chosen similarly to the previous case.

For n ≥ 4 we have Sym(U1)× Sym(U2), the group consisting of the permutations com-

patible with all the unary relations 0, U1, U2.

The permutations preserving the partition (U1 ∪ {0}) ∪ U2 and the graph structure on

U2 are Sym(U1 ∪ {0}) × Aut(U2, E). Analogously, we have Sym(U2 ∪ {0}) × Aut(U1, E).
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This is strictly smaller than Sym(U2 ∪ {0}) × Sym(U1) for n ≥ 4. The group Sym(U2 ∪
{0}) × Sym(U1) consists of the permutations compatible with U1. Similarly, there is the

closed group Sym(U1 ∪ {0}) × Sym(U2) containing the permutations that are compatible

with U2. This is always bigger than Sym(U1 ∪ {0})× Aut(U2, E).

Given a partition X ∪ Y of a set Γ into countably infinite sets X and Y the group

Sym(X) × Sym(Y ) is not a maximal closed group in Sym(Γ). According to Theorem 55

in Subsection 4.3 there is exactly one closed group above Sym(X) × Sym(Y ) that is not

the fully symmetric group. We denote the unique proper closed supergroup of Sym(X)×
Sym(Y ) by (Sym(X)× Sym(Y ))o Z2.

Definition 54. The group (Sym(X) × Sym(Y )) o Z2 consists of the permutations that

preserve X and Y or switch X and Y .

As an abstract group this is indeed the semidirect product of Sym(X)× Sym(Y ) and a

2-element subgroup generated by a permutation that is given by infinitely many transpo-

sitions. This construction is the automorphism group of the complete bipartite graph with

bipartition {X, Y }. Thus we have the closed group (Sym(U1)× Sym(U2))oZ2 compatible

with the unary relation 0 and the complete bipartite graph with classes U1 and U2.

The same construction yields the groups (Sym(U1∪{0})×Sym(U2))oZ2 and (Sym(U2∪
{0}) × Sym(U1)) o Z2. These are the automorphism groups of the bipartite graphs with

bipartition {(U1 ∪ {0}), U2} and {(U2 ∪ {0}), U1}, respectively.

Finally there is the biggest group Sym(Hn) corresponding to the trivial structure (Hn, ∅).
In Subsection 4.5 it is shown that these are all closed groups containing Aut(Hn, E, 0).

As all relations in the description of these groups were at most binary, the action of the

automorphism group on the pairs determines every reduct of (Hn, E, 0).

4.3. Big closed groups.

Proposition 55. Let Γ := X ∪ Y be a partition with both classes X and Y infinite. Then

(Sym(X)× Sym(Y ))o Z2 is the unique proper closed group above Sym(X)× Sym(Y ), in

particular, (Sym(X)× Sym(Y ))o Z2 is a maximal closed group in Sym(Γ).

Proof. Assume we have a closed group Sym(X)× Sym(Y ) ( H different from (Sym(X)×
Sym(Y ))oZ2. Note that Sym(X)×Sym(Y ) is a maximal (closed) subgroup of (Sym(X)×
Sym(Y ))oZ2, as it has index 2. Hence, there is some α ∈ H \ (Sym(X)× Sym(Y ))oZ2.

We show that H is k-transitive for any fixed k. As H is a closed group this implies

H = Sym(Γ).



C
E

U
eT

D
C

ol
le

ct
io

n

40

An element of Γ is class-changing if α maps it from X to Y , or vice versa. Otherwise,

it is class-preserving. A simple analysis shows that either there are infinitely many class-

preserving points in both classes, or there are infinitely many class-changing points in both

classes.

Assume that there are infinitely many class-preserving elements in X and in Y , as well.

As α ∈ H \ (Sym(X)× Sym(Y ))o Z2, we have a class-changing element. Without loss of

generality, assume that α(x) ∈ Y for some x ∈ X. Let (a1, . . . , ak) ∈ Y k be a fixed k-tuple.

Given x1, . . . , xm ∈ X and ym+1, . . . , yk ∈ Y it is enough to show that an appropriate

permutation in H maps the k-tuple t = (x1, . . . , xm, ym+1, . . . , yk) to (a1, . . . , ak). By

applying an appropriate permutation in Sym(X) × Sym(Y ) we first map all points to

class-preserving elements, except for xm which we map to x. By applying α the element

xm is mapped to Y and every other elements in the tuple t preserves its class. By iterating

this step all the elements of t can be mapped to Y . Then a permutation in Sym(Y ) maps

them to (a1, . . . , ak).

Now assume that there are infinitely many class-changing points in both classes. As

α /∈ (Sym(X) × Sym(Y )) o Z2, we have a class-preserving element. Without loss of gen-

erality, assume that α(x) ∈ X for some x ∈ X. Let (a1, . . . , ak) ∈ Y k be a fixed k-tuple. Let

x1, . . . , xm ∈ X and ym+1, . . . , yk ∈ Y , and let us denote the k-tuple (x1, . . . , xm, ym+1, . . . , yk)

by t. First we map all points to class-changing elements, except for xm which is mapped to

x. By applying α the element xm is preserved in X and every other element in t changes

its class. If we map all the images to class changing elements, and apply α again, then

xm is mapped to Y and every other element of t preserves its class. By iterating this step

all the elements of t can be mapped to Y . Then a permutation in Sym(Y ) maps them to

(a1, . . . , ak). �

Proposition 56. Sym(Γ \ {c}) is a maximal closed subgroup of Sym(Γ) for any c ∈ Γ.

Proof. We prove the stronger statement that Sym(Γ\{c}) is a maximal subgroup of Sym(Γ).

Assume that there is some Sym(Γ \ {c}) ⊆ H ⊆ Sym(Γ). Then H is transitive. Let

α ∈ Sym(Γ) be a permutation, and assume that it maps c to some d ∈ Γ. As H is

transitive there is a β ∈ H such that β(c) = d. Then π = α ◦ β−1 stabilizes c, and hence

it is in Sym(Γ \ {c}) ≤ H. Thus α = π ◦ β ∈ H, as well. �

4.4. Minimal closed groups.

Lemma 57. Assume that a closed group Aut(U1, E)×Aut(U2, E) ( C admits the behaviour

b : τ → τ which as a τ → ∆ behaviour is eN on Uk for some k ∈ {1, 2}. Then C contains

Aut(Um, E)× Sym(Uk) with {k,m} = {1, 2}.
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Proof. To prove that C contains Aut(Um, E) × Sym(Uk) we need to show that any per-

mutation ζ ∈ Aut(Um, E) × Sym(Uk) can be interpolated on the finite substructures.

Now assume that we are given two substructures A and B of (Hn, E, 0, U1, U2) such

that ζ|A(A) = B. Then their Um-parts are isomorphic, their 0-parts are also isomor-

phic, and they have the same number of vertices in U2. Applying some permutations

in Aut(U1, E) × Aut(U2, E) we may assume that both of them have only non-edges for

intermediate pairs. Choose πA and πB in C that realize the behaviour b on A and B,

respectively. As b is eN in Uk as a τ → ∆ behaviour, mapping elements in πA(A) to the

corresponding elements in πB(B) is a τ -isomorphism. Let ϕ ∈ Aut(Hn, E, 0, U1, U2) be an

automorphism extending this partial isomorphism. Then π−1B ◦ ϕ ◦ πA interpolates ζ on

A. �

Theorem 7. Assume that a closed group Aut(Hn, E, 0) ( C admits the behaviour b : τ → τ

which as a τ → ∆ behaviour is not identical on the 2-types contained in U2. Then C

contains Aut(U1, E)× Sym(U2).

Proof. As In is a substructure of U2, the behaviour b can not map edges to the non-edges

in U2. Hence, b is neither eE nor − on U2. As b is not identical, b = eN on U2.

By Lemma 57 it is enough to show that C contains Aut(U1, E)× Sym(U2).

According to Proposition 52 it is enough to prove that for any finite substructure A ≤
(Hn, E, 0, U1, U2) there exists an element of C that maps the intermediate pairs of A to

non-edges. Let us denote the vertices of A in U1 by X = {x1, . . . , xr} and in U2 by

Y = {y1, . . . , ys}. The intermediate edges of A are going to be deleted in r steps, i.e., with

the composition of r permutations π1, . . . , πr in C. The i-th step is as follows. Assume

that the intermediate pairs containing x1, . . . , xi−1 are already mapped to non-edges by the

composition πi−1◦· · ·◦π1 such that πi−1◦· · ·◦π1 maps the elements of Y to U2. The elements

of X are not necessarily mapped to U1. Let v1, v2, . . . , vi−1 be the images of x1, x2, . . . , xi−1,

let ui, . . . , ur be the images of xi, . . . , xr, and let z1, . . . , zs be the images of y1, . . . , ys,

respectively. We shall find a permutation πi that stabilize the vertices v1, v2, . . . , vi−1 and

maps the pairs (ui, zj) to non-edges.

Let (πi−1 ◦ · · · ◦ π1)(A) = A′. We construct a substructure B of (Hn, E, 0, U1, U2) using

A′. At first we omit the vertices z1, . . . , zs and add the new elements z1,1, z1,2, . . . , zs,n−1.

We keep all edges and non-edges between the remaining vertices of A′. A vertex g ∈ A′

that was not omitted is connected to some zp,q in B if and only if g and zp are connected

in A′. Similarly, the zp,q are connected according to their first index. Then we omit all

vertices from A′ those are not in the image of Y except for {v1, . . . , vi−1}. We need to

check that replacing the zp by the zp,q is realizable.
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A complete subgraph in the union of that graph and {0} can not contain two vertices of

the form {zp,q1 , zp,q2}, as such vertices constitute a non-edge. Thus all the vertices of the

form zp,q in the complete subgraph have different first indices. The map that is identical

on the original vertices of A′ and assigns zp to zp,q for all vertices of the form zp,q in this

complete subgraph is an embedding into A′. Thus a complete subgraph has at most n− 1

elements.

Drop all edges from the substructure induced by {z1,1, z1,2, . . . , zs,n−1} in B and put

edges between zt,pzt,q for all 1 ≤ t ≤ s, 1 ≤ p, q ≤ n − 1. Fix an isomorphic copy in

(Hn, E, 0, U1, U2) of the τ -structure D obtained in this way. We may assume that the

vertices corresponding to {v1, . . . , vi−1} are {v1, . . . , vi−1} themselves. There are permu-

tations γB, γD ∈ C realizing the behaviour b on the substructures B and D, respectively.

The resulting structures are isomorphic, as the only difference between B and D is in

their U2-part. Hence, by using an automorphism α ∈ Aut(Hn, E, 0, U1, U2) we have that

δ = γD ◦ α ◦ γB maps B to D. For any 1 ≤ t ≤ s the vertex δ(ui) can not be connected

to all of the δ(zt,p), as the δ(zt,p) induce a Kn−1. Thus for all 1 ≤ t ≤ s there exists a

smallest 1 ≤ pt ≤ n − 1 such that N(δ(ui)δ(zt,pt)). By omitting all vertices of the form

zt,q from B except for the zt,tp , and by adding the vertices in the image of A those were

omitted in the construction of B, we obtain an isomorphic copy of A′. Let us denote by

αA′ ∈ Aut(Hn, E, 0, U1, U2) an automorphism such that the image of A′ under αA′ is this

structure. Observe that δ maps all pairs (ui, zt,tp) (1 ≤ t ≤ s) to non-edges, and fixes the

vertices {v1, . . . , vi−1}. It also maps the zt,tp (1 ≤ t ≤ s) to U2. Hence, πi = δ ◦ αA′ is an

appropriate choice.

Hence, C indeed contains Aut(U1, E) × Aut(U2, E) by Proposition 52, and thus the

statement follows from Lemma 57. �

The analogue version of this theorem is somewhat more complicated to prove.

Theorem 8. Assume that a closed group Aut(Hn, E, 0) ( C admits the behaviour b : τ → τ

which as a τ → ∆ behaviour is not identical on the 2-types contained in U1. Then C

contains Aut(U2, E)× Sym(U1).

Just as in the previous case we have that b restricted to the 2-types in U1 can not be −
or eE, thus it must be eN . For n = 3 the behaviours eN and id are the same on U1. Thus

we may assume that n ≥ 4. According to Lemma 57 it suffices to show that C contains

Aut(U1, E)× Aut(U2, E).

Lemma 58. Let C be a closed group containing Aut(Hn, E, 0) with n ≥ 4. Assume that

for any Kn-free graph S there exists a permutation πS ∈ C and a copy S ′ of S in U2 such
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that πS(S ′) is triangle-free. Then C admits a behaviour b : τ → τ that is not identical on

U2 as a τ → ∆ behaviour.

Proof. Let A1 ( A2 ( . . . be a sequence in Age(Hn, E, 0, U1, U2) tending to infinity. Let

k be large enough so that the U2-part of Ak contains a triangle and an In. Let m ≥ k.

According to Proposition 45 for every r ≤ 2 there is a Bm ∈ Age(Hn, E, 0, U1, U2) such that

coloring all the 2-types with r colors there is a monochromatic copy Am of Am in Bm. Let

r be the number of 2-types in (Hn, E, 0, U1, U2). We use the following coloring. Choose Bm

in Hn such that its U2-part Sm can be mapped to a triangle free graph by πSm ∈ C. Color

the 2-types of Bm according to their πSm-image. Then the U2-part Y of the monochromatic

copy Am is mapped to a triangle-free graph. As Y contains a triangle, the edges in U2 can

not be mapped to edges. As Y contains an independent set of n vertices, the non-edges

in U2 can not be mapped to edges. Hence the assigned canonical behaviour on Am maps

non-edges to both 2-types in U2. As we assign such behaviours for large enough structures

(in fact for all m ≥ k), there is a behaviour b that occurs infinitely many times as an

assigned behaviour in the sequence (Ai)i∈N. This behaviour b as a τ → ∆ behaviour is not

identical on U2. �

Proof of Theorem 8. According to Lemma 58 we may assume that there is a Kn-free graph

S such that the image of any copy of S in U2 under any permutation in C contains a

triangle. Throughout the proof we fix such a graph S.

The method is similar to that of the previous proof. Assume we are given a finite τ -

substructure A. Let us denote the vertices of A in U1 by X = {x1, . . . , xr} and in U2 by Y =

{y1, . . . , ys}. According to Proposition 52 it is enough to show that there exists an element

of C such that the intermediate edges of A are mapped to non-edges. This permutation

will be constructed in s steps. In the j-th step we construct a perutation πj. Assume

we have already dealt with some vertices in Y , i.e., the intermediate pairs containing

y1, . . . , yj−1 are mapped to non-edges by the permutation πj−1 ◦ · · · ◦ π1. Assume further

that the permutation πj−1 ◦ · · · ◦ π1 maps X to U1. Let us denote the images of the points

x1, . . . , xr, y1, . . . , yj−1, yj under the permutation πj−1◦· · ·◦π1 by z1, . . . , zr, v1, . . . , vj−1, uj,

respectively. Our goal is to construct a permutation πj that maps z1, . . . , zr to X, stabilizes

v1, . . . , vj−1, preserves the non-edges vtxp for all 1 ≤ t ≤ j − 1, 1 ≤ p ≤ s, and turns all

the ujxp into non-edges.

We first show that we may assume that the U1-part of A′ = {z1, . . . , zr, v1, . . . , vj−1, uj} is

an independent set. Let us consider the τ -structure B in Hn which is ismorphic to A except

that all the edges in U2 are removed. As C admits the behaviour b, there are permutations

ν1, ν2 ∈ C that realize the behaviour b on A and B, respectively. Mapping the elements
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in ν1(A) to the corresponding elements in ν2(B) is a τ -isomorphism, as A and B differ

only in the U1-part. Thus ν−12 ◦ µ ◦ ν1 maps A to B with some µ ∈ Aut(Hn, E, 0, U1, U2).

As {z1, . . . , zr} is in the U1-part of A′, the vertices {z1, . . . , zr} induce an empty graph.

If uj ∈ U1 then we are done, so we may assume that uj ∈ U2. Let us denote by rE and

rN the number of vertices in {z1, . . . , zr} that are connected and not connected to uj,

respectively. A is determined by the τ -structure B induced by {v1, . . . , vj−1, uj} and the

natural numbers rE and rN .

We construct a τ -structureD. Consider |S| isomorphic copies ofB. These areB1, . . . , B|S|.

In the k-th copy the points are vk1 , . . . , v
k
j−1, u

k
j . Between two such copies there are no

edges, except that the set {ukj |k = 1, 2, . . . , |S|} induce a graph in U2 isomorphic to

S. Let {ztp,q|1 ≤ p ≤ n − 2, 1 ≤ q ≤ 3(2rE − 1) + (2rN − 1), 1 ≤ t ≤
(|S|

3

)
} be(|S|

3

)
(n − 2)(3(2rE − 1) + (2rN − 1)) independent points in U1. All the pairs ztp,qv

k
m are

non-edges. To finish the construction of D it remains to define when ztp,q is connected to

ukj . Let us list the three-element subsets of S. Thus every three-element subset of S has

an index between 1 and
(|S|

3

)
. Each subset is ordered according to the parameter k of the

ukj . The vertex ztp,q is connected to ukj if and only if

(1) ukj is in the three-element subset of index t,

(2) 1 ≤ q ≤ 2rE − 1 and ukj is the second or third element inside its three-element

subset,

(3) 2rE ≤ q ≤ 2(2rE − 1) and ukj is the third or first element inside its three-element

subset,

(4) 2(2rE − 1) + 1 ≤ q ≤ 3(2rE − 1) and ukj is the first or second element inside its

three-element subset.

The first thing to check is that this structure D is realizable. For this we have to show

that considering an extra vertex 0 connected to the U1-part of D a Kn-free is obtained. It

is clear that a subgraph containing 0 can not constitute a Kn as the U1-part of D is empty.

So we can restrict ourselves to D. For the same reason, a complete subgraph of D can

contain at most one point in the U1-part.

First assume the complete subgraph contains one vertex in the U1-part. If this vertex

is vkm, then all the vertices of the complete subgraph are in Bk as vkm is not connected to

anything else. However, Bk is isomorphic to B, which is a subgraph of the Kn-free graph

A. If the vertex of the complete subgraph is ztp,q, then the complete subgraph has at most

three points, as all vertices of the form ztp,q have degree at most two in D.
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Now assume that all vertices of the complete subraph are in U2. If it contains a vkm,

then, again all of its vertices are in Bk which is Kn-free. If the whole complete subgraph

is in S, then it has at most (n− 1) vertices, as S is Kn-free.

As D is realizable, we can consider an isomorphic copy of it in Hn. Now we construct a

τ -structure F . It is derived from D in the following way. Its underlying set is D \ S. The

edge relation is unaltered everywhere except between the points ztp,q. Two vertices zt1p1,q1
and zt2p2,q2 are connected if and only if q1 = q2 and t1 = t2. We show that F is realizable.

If a complete subgraph of F ∪ {0} does not contain any vertex of the form ztp,q, then it is

contained in D∪{0}, and we have already proven that D∪{0} is Kn-free. If the complete

subgraph contains some ztp,q, then it can only contain vertices of the form ztp,q and possibly

0. However, the clique number of the subgraph induced by the ztp,q is n−2, thus the biggest

clique obtained by the addition of 0 has cardinality n− 1.

We fix an isomorphic copy of F in Hn. Choose πF , πD\S ∈ C that realize the behaviour

on F and D \ S, respectively. As F and D \ S differ only in edges in U1, the natural

mapping from πF (F ) to πD\S(D \S) is a τ -isomorphism. Thus there exists an α ∈ C such

that π−1F ◦ α ◦ πD\S = ρ ∈ C maps D \ S to F . According to the choice of S it has a

three-element subset such that its image under ρ is a triangle. Without loss of generality

we may assume that it is {u1j , u2j , u3j} which has index t = 1. The (n − 2) vertices ρ(z1p,q)

for a fixed 1 ≤ q ≤ 3(2rE − 1) + (2rN − 1) form a Kn−2. Hence, there are at least two

points in {ρ(u1j), ρ(u2j), ρ(u3j)} that are disconnected to at least one of these (n− 2) points

for a fixed q. For all 1 ≤ q ≤ 3(2rE − 1) + (2rN − 1) let us assign two such vertices from

{ρ(u1j), ρ(u2j), ρ(u3j)}.
By a simple pigeonhole argument, there are at least two vertices in {ρ(u1j), ρ(u2j), ρ(u3j)}

that are assigned at least rN times to some 3(2rE − 1) + 1 ≤ q ≤ 3(2rE − 1) + (2rN − 1).

Without loss of generality we may assume that ρ(u1j) and ρ(u2j) are such. Again, by a

simple pigeonhole argument, either ρ(u1j) or ρ(u2j) is assigned to at least rE times to some

2(2rE − 1) + 1 ≤ q ≤ 3(2rE − 1). Without loss of generality we may assume that ρ(u1j) is

such.

Thus there exist

• rE numbers Q1, . . . , QrE such that 2(2rE−1)+1 ≤ Q1, . . . , QrE ≤ 3(2rE−1) and for

some 1 ≤ p(Qi) ≤ n− 2 depending on Qi we have that ρ(z1p(Qi),Qi
) is not connected

to ρ(u1j) (1 ≤ i ≤ rE),

• rN numbers Q′1, . . . , Q
′
rE

such that 3(2rE − 1) + 1 ≤ Q′1, . . . , Q
′
rE
≤ 3(2rE − 1) +

(2rN −1) and for some 1 ≤ p(Q′i) ≤ n−2 depending on Q′i we have that ρ(z1p(Q′
i),Q

′
i
)

is disconnected to ρ(u1j) (1 ≤ i ≤ rN).
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The rE + rN = r vertices {ρ(z1p(Qi),Qi
)|1 ≤ i ≤ rE} ∪ {ρ(z1p(Q′

i,Q
′
i
)|1 ≤ i ≤ rN} together

with the v1m (1 ≤ m ≤ j−1) and u1j constitute a τ -structure A′′. The function f : A′ → A′′

with

(1) f(vm) = v1m (1 ≤ m ≤ j − 1),

(2) f(uj) = u1j ,

(3) f mapping the rE vertices in A′ of the form zm connected to uj to the rE vertices

of the form z1p(Qi),Qi
with 2(2rE − 1) + 1 ≤ Qi ≤ 3(2rE − 1) such that ρ(z1p(Qi),Qi

) is

not connected to ρ(u1j),

(4) f mapping the rN vertices in A′ of the form zm disconnected to uj to the rN vertices

of the form z1p(Q′
i),Q

′
i

with 3(2rE − 1) + 1 ≤ Q′i ≤ 3(2rE − 1) + (2rN − 1) such that

ρ(z1p(Q′
i),Q

′
i
) is not connected to ρ(u1j)

is a τ -isomorphism. Let β ∈ Aut(Hn, E, 0, U1, U2) be an automorphism that extends

f . Then σ = ρ ◦ β|A′ preserves everything except that it deletes the edges of the form

zmuj and possibly maps uj outside U2. Thus σ|A′\{uj} is a partial τ -isomorphism. Let

γ ∈ Aut(Hn, E, 0, U1, U2) be an automorphism extending σ|A\{uj}. Then γ−1 ◦ σ stabilizes

the vm (1 ≤ m ≤ j−1), preserves the zm (1 ≤ m ≤ r) in U1, and prevesrves the τ -structure

of A′ except that it turns all the pairs zmuj into non-edges. Thus γ−1 ◦σ is an appropriate

choice for πj. �

Proposition 59. Assume that the closed group Aut(Hn, E, 0) ⊆ C admits the behaviour

b : τ → τ that is not identical either on U1, or on U2, or between U1 and U2. Then C

contains at least one of the groups

(1) Aut(Hn, E),

(2) Aut(Hn, 0, E|Hn\{0}),

(3) Aut(U1, E)× Aut(U2, E).

Proof. If b as a τ → ∆ behaviour is not identical on U2, then item (2) applies by Theorem 7.

Thus we may assume that b as a τ → ∆ behaviour is identical on U2. As a Kn−1 in U2 can

not be mapped identically to U1, we have that b(U2) 6= U1. Hence, b is identical on U2 as

a τ → τ behaviour. Intermediate non-edges can not be turned into edges by b, otherwise

b could not be realized on a K∗n−1 with the Kn−1 in U2 and the isolated vertex in U1.

According to Theorem 8 and Proposition 52 we may assume that b as a τ → ∆ behaviour

is also identical on U1 and between U1 and U2, otherwise we are done by item (2). Then

the condition of the statement can hold for b only if b(U1) = U2.
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Note that as b is identical on U2, the non-edges containing 0 can not be turned into

edges, otherwise a Kn−1 in U2 together with 0 would be mapped to a Kn. So there are two

cases.

First, if b maps the edges between 0 and U1 to non-edges, then b is constant on the 2-

types containing 0 as a τ → ∆ behaviour. We show that in this case Aut(Hn, 0, E|Hn\{0})

is contained in C. Let π ∈ Aut(Hn, 0, E|Hn\{0}) and let A = {a1, . . . , ak} be a finite

substructure of Hn. Let π(ai) = bi and π(A) = B. Then ai 7→ bi is a graph isomorphism

fixing 0 except that there might be edges containing 0 mapped to non-edges containing 0,

and vice versa. Let γA and γB be permutations in C realizing the behaviour b on A and

B, respectively. Then f : γA(ai) 7→ γB(bi) is a partial τ -isomorphism that extends to some

automorphism α ∈ Aut(Hn, E, 0). Thus γ−1B ◦ α−1 ◦ γA interpolates π on A.

Secondly, suppose that b maps the edges between 0 and U1 to edges. Then b is identical

everywhere, i.e.,on and between every one-type as a τ → ∆ behaviour. We prove that

C contains Aut(Hn, E). It is enough to find a permutation ρ in C such that any finite

substructure A of Hn is mapped to U2 by ρ and ρ|A is a graph isomorphism. We may

assume that the U1-part of A is non-empty, otherwise it can be extended by a vertex in U1.

Let γA be a permutation in C that realizes the behaviour b on A. If 0 6∈ A then γA = ρ

is an appropriate choice. Assume that 0 ∈ A. As U1 is mapped to U2 by b, and the edges

containing 0 are mapped to edges, 0 can not be fixed. So 0 is either mapped to U1 or to

U2. If 0 is mapped to U2, then γA = ρ is an appropriate choice, again. If 0 is mapped to

U1, then let us apply a permutation that realizes b on the image. The composition of these

two permutations in C maps A into U2, and the restriction of this map to A is a graph

isomorphism. �

Corollary 60. Let Aut(Hn, E, 0) ⊆ C be a closed group. Assume that for all A ∈
Age(Hn, E, 0, U1, U2) there exists a permutation πA ∈ C such that either the U1-part of

A is mapped to U2 or the U2-part of A is mapped to U1. Then C contains at least one of

the groups

(1) Aut(Hn, E),

(2) Aut(Hn, 0, E|Hn\{0}),

(3) Aut(U1, E)× Aut(U2, E).

Proof. Let A1 ( A2 ( · · · be a sequence of τ -structures tending to infinity. Let r be

the number of two-element substructures up to isomorphism in (Hn, E, 0). According to

Proposition 4.1, for all Am there is a τ -structure Bm such that coloring all the two-types

with r colors there is a monochromatic copy Am of Am in Bm. Choose the copy of Bm in

Hn such that its U1-part is mapped to U2 or its U2-part is mapped to U1 by πBm . Color the
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two-element substructures of Bm according to their πBm-image. Then we have a canonical

behaviour bi on the monochromatic copy Am such that bi(U1) = U2 or bi(U2) = U1. Let us

assign this behaviour to Ai. Then there is a behaviour b that occurs infinitely many times

as an assigned behaviour in the sequence (Ai)i∈N. Thus C admits the behaviour b, and

b(U1) = U2 or b(U2) = U1. Either way, C satisfies the conditions of Proposition 59. �

In the upcoming proofs we use the followinng notations.

Definition 61. Let c1, . . . , ck ∈ Hn. We denote by Ui0,i1,...,ik with i0 ∈ {1, 2} and ij ∈
{cj, 6 cj} the subset of Hn that consists of the vertices w such that

• w is connected to 0 if and only if i0 = 1,

• for j = 1, . . . , k we have that w is connected to cj if and only if ij = cj.

For k ≥ 1 we will always denote the language of (Hn, E, 0, c1, . . . , ck, {Ui0,...,ik}) by η. The

sets Ui0,...,ik are either empty or infinite, and induce Henson graphs (of different degree).

The sets Ui0,...,ik are exactly the 1-types relative to the constants 0, c1, . . . , ck ∈ Hn that

are different from these constants. After showing three technical lemmata, we are ready

to determine the minimal closed supergroups of Aut(Hn, E, 0).

Lemma 62. Let Aut(Hn, E, 0) ⊆ C be a closed group such that {0} and Ui is in the same

orbit for some i ∈ {1, 2}. Then there exist a u ∈ Ui and a permutation π ∈ C such that π

switches 0 and u.

Proof. Let Uj denote the infinite 1-type different form Ui. Let ρ ∈ C be such that ρ(0) = u.

If the ρ-preimage v of 0 is also in Ui, then there is a permutation α ∈ Aut(Hn, E, 0) such

that α(u) = v. Thus π = ρ ◦ α switches 0 and u. Assume that v ∈ Uj. Let w 6= v be a

vertex in Uj, and let ρ(w) = z. If z ∈ Uj then there are β, γ ∈ Aut(Hn, E, 0) with β(v) = z

and γ switching v and w. Hence, π = ρ◦β−1 ◦ρ◦γ ◦ρ−1 ◦β ◦ρ−1 switches 0 and u. Finally,

if z ∈ Ui then there exist µ, ν ∈ Aut(Hn, E, 0) with µ(v) = w and ν switching u and z.

Thus π = ρ ◦ µ−1 ◦ ρ−1 ◦ ν ◦ ρ ◦ µ ◦ ρ−1 switches 0 and u. �

Lemma 63. Assume that the vertex u 6= 0 in Hn is added to the language of (Hn, E, 0) as

a constant. Let us denote the language of the structure obtained by η. Assume further that

a closed group Aut(Hn, E, 0) ⊆ C admits the behaviour b : η → η such that b(Uij) is in Ui

for i, j ∈ {1, 2}.
(1) Then either C contains Aut(U1, E) × Aut(U2, E), or b as an η → ∆ behaviour is

identical on and between U1k and U2m for any k,m ∈ {u, 6 u}.
(2) Moreover, for any i ∈ {1, 2} we have that C contains Sym(Ui) × Aut(Ut, E) with

{i, t} = {1, 2} or b as an η → ∆ behaviour is identical on the Uij for j ∈ {u, 6 u}.
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Proof. At first item (2) is shown. Any τ -structure has a copy such that its Ui-part is in

Ui 6u. Thus b is identical on Ui 6u as an η → ∆ behaviour, or otherwise C admits a behaviour

that is eN on Ui, and we are done by Theorem 7 or Theorem 8. It is clear that b can not

map the non-edges to edges on any of the Uij (j ∈ {u, 6 u}), as both contain an In.

It is realizable to put a Kn+i−3 into Ui 6u and an isolated vertex into Uiu. Thus b maps

non-edges with one endpoint in Ui 6u to non-edges, otherwise b could not be realized on this

(n + i − 2)-element structure. Given any finite τ -structure A, its Ui-part can be put into

Ui 6u except for one vertex which is put into Uiu (provided that Uiu is non-empty). Thus

edges between Uiu and Ui 6u are mapped to edges by b, otherwise we can kill all edges in

the Ui-part while preserving the non-edges there, and obtain eN on Ui. If Uiu contains

an edge then the following construction is realizable. Given a finite τ -structure A such

that its Ui-part contains an edge. Then this edge can be put into Uiu, while all other

vertices of the Ui-part is put into Ui 6u. This shows that if b deletes the edges in Uiu, then

C admits a behaviour that is eN on Ui, as we can delete the edges in Ui one-by-one while

preserving the non-edges there. Thus b is identical on Uiu, as well, otherwise C contains

Sym(Ui)× Aut(Ut, E).

To show item (1) observe that for any i ∈ {1, 2} we have that b is identical on and

between Uij for all j ∈ {u, 6 u}, otherwise item (2) can be applied. It is realizable to put a

Kn−1 into U26u and an isolated vertex in any of the U1j with j ∈ {u, 6 u}. Thus intermediate

non-edges between U1j and U22 are mapped to non-edges for j ∈ {u, 6 u}, otherwise b could

not be realized on this structure. As any τ -structure A has a copy such that the U1-part

of A is in U16u and the U2-part of A is in U26u, we have that edges between U1 6u and U26u can

not be mapped to non-edges, otherwise C would admit a behaviour that is eN between

U1 and U2. For the same reason edges between U1u and U26u are preserved, as any finite

τ -structure A with a fixed intermediate edge has a copy such that the U2-part of A is in

U2 6u, and the U1-part is in U16u except for the endpoint of the edge which is in U1u. Thus

b is identical between U1j and U22 (j ∈ {1, 2}) as an η → ∆ behaviour. We show that

non-edges between U1j and U2u (j ∈ {u, 6 u}) are mapped to non-edges by b. It is well

defined to extend such a non-edge to a K−n such that all other vertices of it are in U2 6u. If

the non-edge is mapped to an edge by b, then b could not be realized on this structure.

It remains to show that edges between U1j and U2u (j ∈ {1, 2}) are mapped to edges by

b. Assume there is at least one of these 2-types is mapped to a non-edge by b. Any τ -

structure containing an intermediate edge has a copy such that at least one edge is moved

into the violated two-type. Then realizing the behaviour b would delete this edge, while

intermediate non-edges are preserved. By iterating this step we can delete all intermediate
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edges while preserving the intermediate non-edges, so C would admit a behaviour that is

eN on the intermediate pairs. �

Lemma 64. Let the vertices u, v 6= 0 in Hn be added to the language of (Hn, E, 0) as

constants. Let us denote the language of the structure obtained by η. Assume further that

a closed group Aut(Hn, E, 0) ⊆ C admits the behaviour b : η → η such that b(Uijk) is in Ui

for i ∈ {1, 2}, j ∈ {u, 6 u}, k ∈ {v, 6 v}.
(1) • Either C contains Aut(U1, E)× Aut(U2, E),

• or b as an η → ∆ behaviour is identical on and between the U1jk and U2mp for

j,m ∈ {u, 6 u} and k, p ∈ {v, 6 v}.
(2) Moreover, for any i ∈ {1, 2} we have that

• either C contains Sym(Ui)× Aut(Ut, E) with {i, t} = {1, 2},
• or b as an η → ∆ behaviour is identical on the Uijk for j ∈ {u, 6 u}, k ∈ {v, 6 v}.

Proof. At first item (2) is shown. Any τ -structure has a copy such that its Ui-part is in

Ui 6u6v. Thus b is identical on Ui 6u6v as an η → ∆ behaviour, or otherwise C admits a behaviour

that is eN on Ui, and we are done by Theorem 7 or Theorem 8. It is clear that b can not

kill non-edges on any of the Uijk, as all of these contain an In.

It is realizable to put a Kn+i−3 into Ui 6u6v and an isolated vertex to any other 1-type of η

in Ui. Thus b maps non-edges with one endpoint in Ui 6u6v to non-edges, otherwise b could not

be realized on this (n+ i−2)-element structure. Given any finite τ -structure A, its Ui-part

can be put into Ui 6u6v except for one vertex which is put into Uijk with (j, k) 6= ( 6 u, 6 v)

(provided that Uijk is non-empty). Thus edges between Uijk and Ui 6u6v are mapped to edges

by b, otherwise we can kill all edges in the Ui-part while preserving the non-edges there, and

obtain eN on Ui. If Uijk ((j, k) 6= (6 u, 6 v)) contains an edge then the following construction

is well defined. Given a finite τ -structure A such that its Ui-part contains an edge. Then

this edge can be put in Uijk, while all other vertices of the Ui-part is put into Ui 6u6v. This

shows that if b deletes the edges in Uijk, then C admits a behaviour that is eN on Ui, as

we can delete the edges in Ui one-by-one while preserving the non-edges there. Thus b is

identical on Uijk, otherwise we are ready either by Theorem 7 or Theorem 8. To obtain

that b is identical as an η → ∆ behaviour between Uiu 6v and Ui 6uv we first show that non-

edges are preserved between these one-types. If this is not the case, then let us consider

a copy of K−n+i−2 in Uiu 6v ∪ Ui 6uv ∪ Ui 6u6v such that the endpoints of the non-edge are moved

to Uiu 6v and Ui 6uv and all other points are moved to Ui 6u6v. Then b cannot be realized on

this structure. If there are edges between Uiu 6v and Ui 6uv, then the Ui-part of any finite

τ -structure A containing an edge in Ui could be put into Uiu 6v ∪ Ui 6uv ∪ Ui 6u6v such that one

edge is moved to a (Uiu 6v, Ui 6uv)-edge. The realization of b on this structure delets an edge



C
E

U
eT

D
C

ol
le

ct
io

n

51

in the Ui-part of A and preserves the non-edges. Thus C would admit a behaviour that

is eN on Ui. Hence, we have that b as an η → ∆ behaviour is identical on and between

Uiu 6v, Ui 6uv and Ui 6u6v. We have also shown that b as an η → ∆ behaviour is identical on

and between Uiuv and Ui 6u6v. The only thing left to prove is that b as an η → ∆ behaviour

is identical between Uiuv and Uiu 6v and between Uiuv and Ui 6uv. We prove the former one,

the latter can be shown similarly. A K−n+i−3 can be put in Ui such that the non-edge is

a pair with one vertex in Uiuv and the other one in Ui 6uv, and all other points are in Ui 6u6v.

Thus non-edges between Uiuv and Ui 6uv are mapped to edges, otherwise b cannot be realized

on this structure. If there are edges between Uiuv and Ui 6uv, then the Ui-part of any finite

τ -structure A can be put in Ui such that an edge is moved to an edge between Uiuv and

Ui 6uv, and all other vertices are in Ui 6u6v. If the edges between Uiuv and Ui 6uv are deleted, then

one-by-one we could delete all edges from the Ui-part and obtain eN on Ui.

To show item (1) observe that for any i ∈ {1, 2} we have that b is identical on and

between Uijk for all j, k, otherwise we are done by item (2). It is realizable to consider a

K∗n−1 with a Kn−1 in U26u6v and an isolated vertex in some U1jk. Thus intermediate non-edges

between any U1jk and U26u6v are mapped to non-edges, otherwise b could not be realized on

this structure. As any τ -structure A has a copy such that the U1-part of A is in U16u6v and

the U2-part of A is in U26u6v, we have that edges between U16u6v and U26u6v can not be mapped

to non-edges, otherwise C would admit a behaviour that is eN on the intermediate edges.

For the same reason edges between U1jk and U26u6v are preserved for all j, k. Indeed, any

finite τ -structure A with a fixed intermediate edge has a copy such that the U2-part of

A is in U26u6v, and the U1-part is in U16u6v except for one endpoint of the edge which is in

U1jk. Thus b is identical between U1jk and U2 6u6v as an η → ∆ behaviour. We show that

non-edges between U1jk and U2mp for (m, p) 6= (6 u, 6 v) are mapped to non-edges by b. It is

realizable to extend such a non-edge to a K−n such that all other vertices of it are in U26u6v.

If the non-edge is mapped to an edge by b, then b could not be realized on this structure.

To finish the proof we show that edges between U1jk and U2mp for (m, p) 6= (6 u, 6 v) are

mapped to edges by b. Assume that there is at least one such two-type that is mapped to

a non-edge by b. Any τ -structure containing an intermediate edge has a copy such that

at least one edge is put in the violated 2-type. Then realizing the behaviour b would kill

this edge, while intermediate non-edges are preserved. By iterating this step we can delete

all intermediate edges while preserving the intermediate non-edges, so C would admit a

behaviour that is eN on the intermediate pairs. �

Theorem 9. Let Aut(Hn, E, 0) ( C be a closed group. Then C contains one of the

following groups
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(1) Aut(Hn, E),

(2) Aut(Hn, 0, E|Hn\{0}),

(3) Aut(U1, E)× Aut(U2, E).

Proof. The proof is a case-by-case analysis of the orbit system of C. This system can be

refined to {0, U1, U2}, thus the following cases cover everyhing.

• Either U1 and U2 are in one C-orbit,

• or {0} is not a C-orbit, and U1 and U2 are not in the same C-orbit,

• or the orbit system is {0, U1, U2}.

C ase 1. U1 and U2 are in one C-orbit.

Then there exists a u ∈ U1 that is mapped to U2 by some π ∈ C. Let us add u to the

language as a constant. Then we obtain the structure (Hn, E, 0, u, U1u, U16u, U2u, U26u). Let

η denote the language of this structure.

Let b be a behaviour η → τ .

Let A ∈ Age(Hn, E, 0). It is realizable to extend A by a vertex in U1 that is disconnected

to all vertices of A (except for 0.) Hence, every τ -structure A has a copy in Hn such that

the U1-part of A is in U16u and the U2-part of A is in U2 6u. Thus we have that b is identical on

and between U16u and U2 6u, otherwise we are done by to Proposition 59. Another realizable

way to distribute the nonzero vertices of any A ∈ Age(Hn, E, 0, U1, U2) is that we put the

U1-part into U16u, and all but one points in the U2 part into U26u, while the last point is

put in U2u. Thus if U2u is mapped to U1, then by using this construction and by applying

a permutation in C that realizes the behaviour b on A, we can map the U2-part of A

element-by-element to U1. According to Corollary 60 this would imply that C contains

one of the minimal groups. Thus we may assume that U2u is preserved in U2 by b. Given

any A ∈ Age(Hn, E, 0, U1, U2) we can map an arbitrary point from the U1-part of A to u

by a permutation in Aut(Hn, E, 0). By applying a permutation that realizes the behaviour

b on this substructure, we map at least one vertex in the U1-part of A to U2, while all

its vertices in U2 are preserved there. Thus after finitely many steps we can collect the

U1-part of A in U2. Hence, we are ready by Corollary 60.

C ase 2. {0} is not a C-orbit, and U1 and U2 are not in the same C-orbit.

The orbit system is either {U1 ∪ {0}, U2} or {U2 ∪ {0}, U1}. We denote by Ui the set

that is in the same orbit as 0. According to Lemma 62 there is a u ∈ Ui and a π ∈ C such

that π switches 0 and u. Again, we add u to the language as a constant Then we obtain

the structure (Hn, E, 0, u, U1u, U1 6u, U2u, U26u) with language denoted by η. Let b : η → τ be

a behaviour that is admitted by π.
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According to Lemma 63, we have that b(Ui 6u) = Ui 6u (i ∈ {1, 2}), as a Kn+i−3 in Ui 6u can

not be identically mapped into Uiu. Assume that the orbit system of C is {Up ∪ {0}, Uq}.
Let A ∈ Age(Hn, E, 0, U1, U2).

If p = 1, that is, if u ∈ U1, then we put a vertex in the U1-part of A into u. By applying

a permutation in C that realizes the behaviour b on A, this vertex goes to 0, and the τ -

structure induced by the remaining vertices in U1 ∪ U2 is preserved. It is realizable to put

the U1-part of the image into U16u and the U2-part to U26u. By applying a permutation in C

that realizes the behaviour b on the substructure obtained, the original intermediate pairs

containing the vertex put into u turn to non-edges, while all other intermediate pairs are

preserved. By iterating this step, we can turn all intermediate pairs of A into non-edges,

and then we are ready by Proposition 52.

If p = 2, i.e., if u ∈ U2, then we put a vertex in the U2-part into u. By applying a

permutation in C that realizes the behaviour b on A, this vertex goes to 0. It is realizable

to move all vertices in the U2-part of the image into U2 6u. By applying a permutation in C

that realizes the behaviour b on the image, the original pairs in U2 containing the vertex

put into u turn to non-edges, while all other edges and non-edges in U2 are preserved. By

iterating this step, we can turn all pairs of A in U2 into non-edges, and then we are done

by Theorem 7.

C ase 3. The orbit system is {0, U1, U2}.
Then C does not violate any of the unary relations in (Hn, E, 0, U1, U2), thus it violates

E. As edges and non-edges containing 0 are preserved, an edge or a non-edge in Hn \{0} is

violated. Considering the inverse of the permutation if necessary, we may assume that an

edge is mapped to a non-edge by some π ∈ C. Assume that the edge relation is violated

only on U1 by π and nowhere else. Then there is a non-edge in U1 that is mapped to an

edge in U1. Let us extend the violated non-edge with (n− 2) points in U2. It is realizable

that these n vertices constitute a K−n . Then π maps this substructure to a Kn, which is a

contradiction.

So there are two cases left; the violated edge is either an intermediate one or an edge in

U2.

C ase 3.a. The edge uv that we map to a non-edge by π ∈ C is an intermediate one.

Let us add the vertices u ∈ U1 and v ∈ U2 to the language as constants. Consider

the structure (Hn, E, 0, U1uv, U1u6v, U16uv, U1 6u6v, U2uv, U2u6v, U26uv, U26u6v) the language of which

is denoted by η.

According to item (1) of Lemma 64 we may assume that b is identical on and between

the infinite 1-types Uijk. Let w ∈ {u, v}. The behaviour b can’t map non-edges between w

and U26u6v to edges, otherwise b could not be realized on a K∗n−1 with a Kn−1 in U2 6u6v and
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an isolated vertex in w. Thus b is identical between w and U26u6v. Assume that b violates

the edge relation between u and U2u6v. Let A be a finite τ -structure which has an edge

in U2. It is realizable to put an endpoint of this edge into u, the vertices in the U2-part

connected to u into U2u6v and the vertices in the U2-part not connected to u into U2 6u6v. If

we realize the behaviour on this copy of A, then the vertex mapped to u becomes isolated,

but otherwise the graph structure of the U2-part of A is preserved. Hence, by iterating this

procedure, we could map the U2-part to an independent set of vertices. Then C admits a

behaviour that is eN on U2, and then we are done by Theorem 7. Thus we may assume

that edges between u and U2u6v are mapped to edges. Similarly, we may assume that edges

between v and U26uv are mapped to edges. Let Uijk 6= U26u6v such that there are non-edges

between u and Uijk, and assume that b maps this non-edge to an edge. It is realizable to

put a copy of K−n into Hn such that the non-edge is moved to a non-edge between u and

Uijk, and all other vertices are put into U2u6v. As b can not be realized on this structure,

this is a contradiction. Hence, b maps non-edges to all types of non-edges between u and

some Uijk. Similarly, b maps non-edges to all types of non-edges between v and some Uijk.

Assume that an edge relation between u and some Uijk is mapped to a non-edge by b. The

U1 ∪ U2-part of a given finite τ -structure has a copy such that an edge is put into this

violated two-type (if there is such an edge in the structure). If this edge is an intermediate

one, then we can map all intermediate pairs to non-edges and obtain a behaviour that is

eN between U1 and U2. If this edge is in U2, then we can map all pairs in U2 to non-edges

and obtain a behaviour that is eN on U2. Thus we may assume that b is identical on and

between all 1-types of η in U1∪U2 except that the edge uv is mapped to a non-edge. Then

we can delete the U2-edges of a given finite τ -structure one-by-one, while the graph relation

is preserved everywhere else in the U1 ∪U2-part. This yields a behaviour that is eN on U2.

C ase 3.b. The edge uv that is mapped to a non-edge by π ∈ C is in U2.

With the same argument as in C ase 3.a. we may assume that b is identical on and

between all one-types of η in U1 ∪ U2 except that the edge uv is mapped to a non-edge.

Then we can delete the intermediate edges of a given A ∈ Age(Hn, E, 0, U1, U2) one-by-one,

while the graph relation is preserved everywhere else in the U1 ∪ U2-part. Thus C admits

a behaviour that is eN between U1 and U2. �

4.5. Characterization of the reducts. In this subsection we finish the characterization

of the reducts of (Hn, E, 0, U1, U2). It is shown that the reducts of (Hn, E, 0, U1, U2) up to

first order interdefinability are those which were described in Subsection 4.2. We continue

the proof of this result by determining the minimal closed groups above Aut(Hn, 0, E|Hn\{0})

and Aut(U1, E)× Aut(U2, E).
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Theorem 10. Every closed group C above Aut(Hn, 0, E|Hn\{0}) contains Sym(Hn \ {0}).

Proof. If C stabilizes 0 then the restriction of all permutations in C to Hn \ {0} is a closed

group on Hn \ {0} containing Aut(Hn, 0, E|Hn\{0}). According to Theorem 4 the only such

groups are Aut(Hn, 0, E|Hn\{0}) and Sym(Hn \ {0}). Thus all we have to show is that the

stabilizer of 0 in C is strictly bigger than Aut(Hn, 0, E|Hn\{0}).

By Lemma 62 we may assume that there exist π ∈ C and u ∈ U1 such that π

swithes 0 and u. We add u to the language as a constant, and obtain the structure

(Hn, E, 0, u, U1u, U16u, U2u, U26u) with language η. Let b : η → η be a behaviour admitted by

π.

If b as an η → ∆ behaviour is not identical on U26u then C admits a behaviour that

as a τ → ∆ behaviour is eN on U2. If this is the case, then C contains Sym(U2), which

implies that there are additional permutations in the stabilizer of 0. Thus assume that b

is identical on U26u as an η → ∆ behaviour. Then b is also identical on U26u as an η → τ

behaviour, as not all finite subgraphs of U2 can be identically mapped to U1. Moreover,

b is identical on U26u as an η → η behaviour, as well. The only thing left to check is that

b(U26u) 6= b(U2u), which holds as a Kn−1 in U2 6u cannot be identically mapped to U2u. Thus

b(U26u) = U26u.

Assume that the behaviour b can turn non-edges between U2u and U26u into edges. It is

realizable to put an isolated vertex into U2u and a Kn−1 into U26u, but b can not be realized

on this copy of K∗n−1. Thus b maps non-edges to the non-edges between U2u and U26u. If

the edges between these two two-types are deleted by b, then we show that C contains

Sym(U2). Let A be any finite τ -structure, and chose a vertex in the U2-part of A. It

is realizable to consider a copy of A such that the U1-part of A is put in U16u, and the

U2-part of A is put in U26u except for the chosen vertex which is put in U2u. As C contains

Aut(Hn, 0, E|Hn\{0}) we can map A \ {0} to this copy. If we apply π to realize b on this

copy of A, then the composition of these permutations turn all pairs containing the fixed

vertex into non-edges and preserve all other edges and non-edges in A \ {0}. By iterating

this process we map A \ {0} to an independent set, in particular, eN can be obtained in

U2. Thus we may assume that b as an η → ∆ behaviour is identical between U2u and U2 6u.

Given any A ∈ Age(Hn, E, 0, U1, U2) with U2-part Y it is realizable to put an edge in

Y into U2u and all other vertices of Y into U26u. Using this construction and a similar

argument as above we may assume that b : η → ∆ is not eN on U2u. As U2u contains an

In we have that b : η → ∆ does not map edges to non-edges in U2u. Thus we may assume

that b as an η → ∆ behaviour is identical on and between U2u and U26u.
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Let A be a finite τ -structure. We show that the U2-part Y of A can be mapped to an

independent set of vertices by C, and thus C contains Sym(U2). We obtain a Kn-free graph

by adding a vertex (0) connected to a fixed v ∈ Y and disconnected to all other vertices

in Y . Thus by an appropriate permutation in Aut(Hn, 0, E|Hn\{0}) we can map Y to a

substructure of Hn such that v is mapped to u, neighbours of v are mapped to U2u and

non-neighbours of v are mapped to U26u. By applying π to realize the behaviour b the vertex

u is mapped to 0 and the subgraph induced by the other vertices is preserved. By some

permutation in Aut(Hn, 0, E|Hn\{0}) this subgraph can be moved into U26u. If we realize b

again, then 0 is mapped to u while U26u is preserved. Hence, the composition of the applied

permutations deletes all edges from v but preserves the graph structure of Y , otherwise.

By iterating this step we can map Y to an independent set of vertices. Thus C contains

Sym(U2), and the stabilizer of 0 in C is strictly bigger than Aut(Hn, 0, E|Hn\{0}). �

Theorem 11. Every closed group C above Aut(U1, E)×Aut(U2, E) contains either Aut(U1, E)×
Sym(U2) or Aut(U2, E)× Sym(U1).

Proof. First assume that 0 is not an orbit of C. Then according to Lemma 62 we have a

u ∈ Ui for some i ∈ {1, 2} such that there exists a π ∈ C switching 0 and u. There are two

cases. Either there exists a u ∈ U2 that can be switched with {0} by some permutation in

C, or all such elements u are in U1.

C ase 1. Assume that we have such a u in U2.

We add u to the language as a constant and denote the extended language of

(Hn, E, 0, u, U1u, U16u, U2u, U26u) by η. Let b : η → η be a behaviour admitted by π. As

before, b as an η → ∆ behaviour is identical on U16u and on U2 6u, otherwise C contains

Aut(U2, E)× Sym(U1) or Aut(U1, E)× Sym(U2), respectively. In particular, b(U26u) = U26u,

as U2 6 u can not be identically mapped to any other one-type of η. We can consider a

K∗n−1 with an isolated vertex put in U16u and a Kn−1 put in U26u. Thus we have that b maps

non-edges between U16u and U26u to non-edges. We show that if b(U2u) ∈ U2 then C admits

a behaviour that is eN on U2. Let A be a finite τ -structure with U2-part Y . Let v ∈ Y .

We put v into u and realize the behaviour b. Then u maps to 0, and the τ -structure of

Y \ v is preserved. With an appropriate automorphism in Aut(Hn, E, 0) we can move the

image of Y \v into U26u. If we realize b, then the U2-part is preserved except that v becomes

isolated. By iterating this step Y can be mapped to an independent set of vertices.

Assume that b(U2u) ∈ U1. Again, we show that C admits a behaviour that is eN on U2.

Let A be a finite τ -structure with U1-part x and U2-part y. Let v ∈ Y . If b(U1 6 u) ∈ U1,

then we can collect X ∪ Y in U1. Indeed, by applying an appropriate automorphism in

Aut(Hn, E, 0) we may assume that X ∈ U1u, v ∈ U2u and Y \v ⊆ U26u, as this is a realizable
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distribution of the vertices. By realizing b on this structure we map v in U1, while X is

preserved in U1 and Y \ {v} is preserved in U2. Thus one-by-one all vertices in Y can

be mapped to U1. It remains to prove that C admits a behaviour that is eN on U2 if

b(U1 6 u) ∈ U2. At first we move X to U16u and Y to U26u, and realize b. Thus we may

assume that all non-zero vertices of A are in U2, that is X = ∅. If we put v into U2u

and Y \ {v} into U26u, and realize b, then v is moved to U1 and Y \ {v} is preserved in

U2. By an appropriate permutation in Aut(U1, E) × Aut(U2, E) we can map this image

to a substructure such that everything is preserved except that all intermediate pairs are

turned to non-edges. We may assume that the image of v is still in U16u and the image of

Y \ {v} is still in U26u. By realizing b again Y is mapped into U2, and the graph structure

of it is preserved except that v has become an isolated vertex. After finitely many steps Y

can be mapped to an independent set of vertices, and thus C admits a behaviour that is

eN on U2.

C ase 2. Assume that all such u are in U1.

In particular, U1 ∪ {0} is a C-orbit according to Lemma 62. Let us fix a u ∈ U1 and a

π ∈ C such that π switches 0 and u. We add u to the language as a constant and denote

the language of (Hn, E, 0, u, U1u, U16u, U2u, U2 6u) by η.

According to Lemma 63 item (2) we may assume that for any i ∈ {1, 2} the behaviour

b is identical on and between Uiu and Ui 6u. Note that b(U16u) = U16u as U16u can not be

identically mapped to U1u. We show that C admits a behaviour that is eN on U1. Let

A be a finite τ -structure with U1-part X. Let v ∈ X. We put v into u and realize b.

Then u is mapped to 0 and the graph structure of X \ {v} is preserved. By applying a

permutation in Aut(Hn, E, 0) we can move the image of X \ {v} into U16u. By realizing b

again the graph structure of X is preserved, except that u has become an isolated vertex.

By iterating this step we can map X to an independent set of vertices, and obtain that C

admits a behaviour that is eN on U1.

In both cases it turned out that the group C contains either Aut(U1, E) × Sym(U2) or

Aut(U2, E)× Sym(U1). Thus we may assume that {0} is an orbit.

Assume that C maps edges in U2 to edges. As any non-edge in U2 can be extended to a

K−n in U2, we have that non-edges is U2 are also mapped to non-edges. Thus C|U2 consists

of graph isomorphisms. As U1 does not contain a Kn−1, U2 can not be embedded into U1.

Thus for all π ∈ C there exists a vertex v ∈ U2 such that π(v) ∈ U2. Assume that there

is a w ∈ U2 such that π(w) ∈ U1 and vw is an edge. Then the edge vw is mapped to an

intermediate pair by π, and the image can be mapped to a non-edge by some permutation

in Aut(U1, E) × Aut(U2, E). Hence, the neighbourhood of v is also mapped into U2 by

π. The graph (U2, E) has diameter 2, thus π(U2) ⊆ U2. As π was an arbitrary element
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in C, we have that π−1(U2) ⊆ U2, as well. We obtain that π(U2) = U2 for all π ∈ C,

and π|U2 ∈ Aut(U2, E). For a π ∈ C let us denote by π̄ the permutation that is identical

on U1 ∪ {0} and acts as π|U2 on U2. Then π̄ ∈ Aut(U1, E) × Aut(U2, E) ⊆ C for all π.

Let π ∈ C \ Aut(U1, E) × Aut(U2, E). Then ρ = π̄−1 ◦ π ∈ C \ Aut(U1, E) × Aut(U2, E)

stabilizes every vertex in U2 ∪ {0}. Thus ρ violates the edge relation in U1. As C is

closed and it contains Aut(U1, E) ∪ {ρ}, we have that it contains the local closure of

Aut(U1, E) ∪ {ρ}. According to Theorem 4 this local closure is Sym(U1), thus C contains

Aut(U2, E)× Sym(U1).

Thus we may assume that C stabilizes 0 and some π ∈ C violates an edge uv in U2. We

add u and v to the language as constants and obtain the structure (Hn, E, 0, u, v, {Uijk|1 ≤
i ≤ 2, j ∈ {u, 6 u}, k ∈ {v, 6 v}}) with language η. Let b be a behaviour admitted by π. We

may assume that b as an η → ∆ behaviour is identical on U16u6v and U26u6v, otherwise we

are done by Theorem 7 or Theorem 8. In particular, b(U26u6v) = U26u6v as U26u6v can not be

identically mapped to any other one-type. Given any one-type of η different from U26u6v we

can put an isolated vertex into that one-type and a Kn−1 into U26u6v. Thus non-edges with

one endpoint in U26u6v are mapped to non-edges by b, otherwise the behaviour could not be

realized on this structure. Our goal is to show that b maps the one-types of η in U2 to U2.

At first assume that b(U16u6v) ∈ U1. Let A be a finite τ -structure with U1-part X and U2-

part Y . By applying a permutation in Aut(Hn, E, 0) any vertex of Y can be put into any

one-type U2jk with (j, k) 6= ( 6 u, 6 v), while all other vertices of Y are moved into U26u6v, and

all vertices of X are moved into U1 6u6v. Thus if b(U2jk) ∈ U1 for some (j, k) 6= ( 6 u, 6 v), then

we can realize b on this structure and move an arbitrary vertex of Y to U1, while all other

vertices in Y are preserved in U2, and all vertices in X are preserved in U1. Hence, vertices

of Y can be moved to X. Thus C admits a behaviour that maps U2 to U1, and consequently

this behaviour is eN on U2. Thus b(U2jk) ∈ U2. If u (or v) is mapped to U1, then first

we map all intermediate pairs of A to intermediate non-edges by Aut(U1, E)×Aut(U2, E).

Then we can put any vertex of Y into u (or v). Then by realizing b we can move a vertex

of Y to U1, while all other vertices in Y are preserved in U2, and all vertices in X are

preserved in U1. Thus with the same argument as above we are done. So we may assume

that b maps the one-types of η in U2 to U2.

Assume that b(U16u6v) ∈ U2. Let A be a finite τ -structure with U1-part X and U2-part

Y . By applying a permutation in Aut(Hn, E, 0) any vertex of Y can be put into any one-

type U2jk with (j, k) 6= (6 u, 6 v), while all other vertices of Y are moved into U26u6v, and all

vertices of X are moved into U1 6u6v. Thus if b(U2jk) ∈ U1 for some (j, k) 6= (6 u, 6 v), then

we can realize b on this structure and move an arbitrary vertex of Y to U1, while all other

vertices in X ∪Y are moved into U2. All intermediate pairs of the image can be mapped to
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intermediate non-edges by Aut(U1, E)× Aut(U2, E). We may assume that the U1-part of

this image is in U16u6v and the U2-part of this image is in U26u6v. Realizing b again yields that

all vertices in X ∪Y are moved to U2 and a vertex in Y becomes isolated, while non-edges

in X ∪ Y are preserved. Hence if b(U2jk) ∈ U1 for some (j, k) 6= ( 6 u, 6 v), then C admits a

behaviour that is eN on U2, and we are done by Theorem 7. The same argument works if

u (or v) is mapped to U1. So in this case we may also assume that b maps the one-types

of η in U2 to U2.

Acording to Lemma 63 we may assume that b as an η → ∆ behaviour is identical on and

between the U2jk. Assume that b violates the edge relation between u and U2u6v. Let A be

a finite τ -structure which has an edge in U2. It is well defined to put an endpoint of this

edge into u, the vertices in the U2-part connected to u into U2u6v and the vertices in the

U2-part disconnected to u into U26u6v. If we realize the behaviour b on this copy of A, then

the vertex mapped to u becomes isolated, but otherwise the graph structure of the U2-part

of A is preserved. Thus we could map the U2-part to an independent set of vertices. Hence,

C admits a behaviour that is eN on U2, and then we are done by Theorem 7. Thus we may

assume that edges between u and U2u6v are mapped to edges. Similarly, we may assume

that edges between v and U26uv are mapped to edges. Assume that b maps the non-edge

between u and U26uv to an edge. It is realizable to put a copy of K−n into Hn such that the

non-edge is moved to a non-edge between u and U26uv, and all other vertices are put into

U2u6v. As b can not be realized on this structure, this is a contradiction. Hence, b maps

non-edges to all types of non-edges between u and some U2jk. Similarly, b maps non-edges

to all types of non-edges between v and some U2jk. Thus non-edges in the U2-part are

preserved by b. Let A be a τ -structure with at least one edge in the U2-part. If this edge

is moved into uv and b is realized, then at least one edge in the U2-part is deleted, while

the U2-part is mapped to U2 and non-edges are preserved there. Thus edges in the U2-part

can be successively deleted, and C admits a behaviour that is eN on U2. �

Lemma 65. Let C be a closed group with Aut(Hn, E, 0) ⊆ C. Assume that U1 ∪ U2 is

contained in a C-orbit. Then there exist a permutation π ∈ C and two vertices in U1 such

that π maps both of these vertices into U2.

Proof. As U1 ∪ U2 is contained in a C-orbit there exist ρ ∈ C and x1 ∈ U1 such that

y1 = ρ(x1) ∈ U2. We may assume that no vertex in U1 other than x1 is mapped into

U2 by ρ. There is at most one vertex in U2 that is mapped into U1 by ρ, otherwise ρ−1

satisfies the condition of the lemma. Hence, there exist x2 ∈ U1, y2 ∈ U2 such that the

pair x2y1 has the same 2-type in (Hn, E, 0) as x1y2, ρ(y2) ∈ U2 and ρ−1(x2) ∈ U1. As
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(Hn, E, 0) is homogeneous, there is a permutation α ∈ Aut(Hn, E, 0) such that α(x2) = x1
and α(y1) = y2. Then π = ρ ◦ α ◦ ρ ∈ C moves x1 and ρ−1(x2) into U2. �

Theorem 12. Let C be a closed group.

(1) If C is above Aut(U1, E) × Sym(U2), then C contains either Sym(U1) × Sym(U2),

or Aut(U1, E)× Sym(U2 ∪ {0}).

(2) If C is above Aut(U2, E) × Sym(U1), then C contains either Sym(U1) × Sym(U2),

or Aut(U2, E)× Sym(U1 ∪ {0}).

Proof. We show item (1), item (2) is analogous.

If the orbit system of C is {U1, U2, {0}}, then some π ∈ C violates E on U1. As

π|U2 ∈ Sym(U2), we have that ρ = π|−1U2
◦π ∈ C also violates E on U1, and ρ is identical on

U2∪{0}. Hence, C contains the closed group generated by Aut(U1, E) and ρU1 . According

to Theorem 4 this closed group is Sym(U1), thus C contains Sym(U1)× Sym(U2).

If the orbit system of C is {U1, U2∪{0}}, then some π ∈ C moves 0 into U2. Let π(0) = u

and π−1(0) = v. Let α ∈ Sym(U2) such that α(u) = v. Then ρ1 = π ◦ α ◦ π stabilizes

0. Let β, γ ∈ C such that β(u) 6= v and γ(π(β(u))) = v. Then ρ2 = π ◦ γ ◦ π ◦ β ◦ π
stabilizes 0. Observe that ρ1|U1 = (π|U1)

2 and ρ2|U1 = (π|U1)
3. If any of the ρi|U1 is not in

Aut(U1, E), then we are ready by the previous case. If ρ1|U1 , ρ2|U1 ∈ Aut(U1, E), then π|U1

is also in Aut(U1, E). As Aut(U1, E) ⊆ C, by multiplying by (π|U1)
−1 if necessary we may

assume that π is identical on U1. According to Proposition 56 we have that C contains

Sym(U2 ∪ {0}), and consequently Aut(U1, E)× Sym(U2 ∪ {0}) ⊆ C.

If the orbit system of C is {U2, U1 ∪ {0}}, then according to Lemma 62 there exist

π ∈ C and u ∈ U1 such that π switches 0 and u. We may assume that π is identical

on U2. We add u to the language as a constant and denote the language of the structure

(Hn, E, 0, u, U1u, U16u, U2u, U26u) by η. Let b be a behaviour η → η admitted by π. According

to Lemma 63 we may assume that b is identical on and between U1u and U16u. In particular,

b(U16u) = U16u, as U1 6u can not be identically mapped to U11. Let A be a finite τ -structure

with U1-part X. Assume that X contains an edge. It is realizable to put an endpoint of

this edge into u, neighbours of u in X into U1u and non-neighbours into U16u. We realize b

on this structure, and move the vertices mapped to U1 into U16u and the vertices mapped to

U2 into U26u. If we realize b then u becomes an isolated vertex in X and the graph structure

of X is otherwise preserved. By applying this step to all vertices in X we can move X to

an independent set of vertices in U1. Hence, C admits a behaviour that is eN on U1.

Finally, we assume that U1∪U2 is contained in a C-orbit. According to Lemma 65 there

exist π ∈ C and u, v ∈ U1 such that π(u), π(v) ∈ U2. The transposition tπ(u)π(v) switching

π(u) and π(v) is in C. Thus tuv = π−1 ◦ tπ(u)π(v) ◦ π ∈ C. Using the automorphisms in
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Aut(Hn, E, 0) we can switch any pair in U1 with the same τ -type as (u, v). Note that

the Henson graphs and the complement of the Henson graphs are connected, except for

(H2, E), which is empty. Moreover, the non-empty graphs obtained this way have diameter

2. Hence, if the 2-type of (x, y) is different from the 2-type of (u, v) for some x, y ∈ U1,

then there is some z ∈ U1 such that the 2-type of (x, z) and (y, z) are the same as that of

(u, v). Thus txy = txz ◦ tzy ◦ txz ∈ C. Hence, all transpositions of elements in U1 are in C,

and thus Sym(U1) ⊆ C. �

We prove the main theorem of the section.

Theorem 13. (i) (H3, E, 0) has 13 reducts. The closed groups C such that Aut(H3, E, 0) ⊆
C are

• Aut(H3, E, 0),

• Aut(H3, E),

• Aut(H3, 0, E|H3\{0}),

• Sym(U1)× Aut(U2, E),

• Sym(U1)× Sym(U2),

• Sym(U1 ∪ {0})× Aut(U2, E),

• (Sym(U1)× Sym(U2))o Z2,

• Sym(U1 ∪ {0})× Sym(U2),

• Sym(U2 ∪ {0})× Sym(U1),

• Stab0(Sym(H3)),

• (Sym(U1 ∪ {0})× Sym(U2))o Z2,

• (Sym(U2 ∪ {0})× Sym(U1))o Z2,

• Sym(H3).

(ii) (Hn, E, 0) has 16 reducts for n ≥ 4. The closed groups C such that Aut(Hn, E, 0) ⊆
C are

• Aut(Hn, E, 0),

• Aut(Hn, E),

• Aut(Hn, 0, E|Hn\{0}),

• Aut(U1, E)× Aut(U2, E),

• Sym(U1)× Aut(U2, E),

• Sym(U2)× Aut(U1, E),

• Sym(U1)× Sym(U2),

• Sym(U1 ∪ {0})× Aut(U2, E),

• Sym(U2 ∪ {0})× Aut(U1, E),

• (Sym(U1)× Sym(U2))o Z2,
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• Sym(U1 ∪ {0})× Sym(U2),

• Sym(U2 ∪ {0})× Sym(U1),

• Stab0(Sym(Hn)),

• (Sym(U1 ∪ {0})× Sym(U2))o Z2,

• (Sym(U2 ∪ {0})× Sym(U1))o Z2,

• Sym(Hn).

Proof. Let C be a closed group above (Hn, E, 0). Then C contains at least one of the closed

groups Aut(Hn, E), Aut(Hn, 0, E|Hn\{0}) and Aut(U1, E)×Aut(U2, E) by Theorem 9. For

n = 3 the group Aut(U1, E)×Aut(U2, E) is Sym(U1)×Aut(U2, E), as (U1, E) is an empty

graph. According to Theorem 4 the group Aut(Hn, E) is a maximal closed subgroup of

Sym(Hn). By Theorem 10 we have that if C is above Aut(Hn, 0, E|Hn\{0}), then C contains

Stab0(Sym(Hn)). As this stabilizer is a maximal subgroup of Sym(Hn) by Proposition 56,

the list contains all the groups containing Aut(Hn, E) or Aut(Hn, 0, E|Hn\{0}). Assume

that C is above Aut(U1, E) × Aut(U2, E). Then according to Theorem 11 we have that

C contains either Sym(U1) × Aut(U2, E) or Sym(U2) × Aut(U1, E). The latter one is

Sym(U1) × Sym(U2) if n = 3. By Theorem 12 either C = Sym(U1) × Aut(U2, E), or C =

Sym(U2)×Aut(U1, E)}, or C contains at least one of the closed groups Sym(U1)×Sym(U2),

Aut(U1, E)× Sym(U2 ∪{0}) and Aut(U2, E)× Sym(U1 ∪{0}). If n = 3 then Aut(U1, E)×
Sym(U2 ∪ {0}) = Sym(U1)× Sym(U2 ∪ {0}), thus these closed groups are in the provided

list of groups. Hence, we may assume that C is strictly above either Sym(U1)× Sym(U2),

or Aut(U1, E)× Sym(U2 ∪ {0}) or Aut(U2, E)× Sym(U1 ∪ {0}). We claim that C contains

at least one of the groups Sym(U1) × Sym(U2 ∪ {0}), Sym(U2) × Sym(U1 ∪ {0}) and

(Sym(U1)× Sym(U2))o Z2.

At first we show that every closed group C above Aut(U1, E)× Sym(U2 ∪ {0}) contains

Sym(U1)×Sym(U2∪{0}). (The argument that closed groups above Aut(U2, E)×Sym(U1∪
{0}) contain Sym(U2)× Sym(U1 ∪{0}) is analogous.) If the orbit system of C is {U1, U2 ∪
{0}}, then some π ∈ C violates E on U1. We may assume that π is identical on U2.

Hence, according to Theorem 4 we have that C contains Sym(U1). If C is transitive, than

according to Lemma 65 there exist π ∈ C and u, v ∈ U1 such that π(u), π(v) ∈ U2. As

the transposition tπ(u)π(v) ∈ C, we have that tuv = π−1 ◦ tπ(u)π(v) ◦ π ∈ C. Using the

automorphisms in Aut(Hn, E, 0) we can switch any pair in U1 with the same τ -type as

(u, v). If the two-type of (x, y) is different from the two-type of (u, v) for some x, y ∈ U1,

then there exists a z ∈ U1 such that the two-type of (x, z) and (y, z) are the same as that

of (u, v). Thus txy = txz ◦ tzy ◦ txz ∈ C. Hence, all transpositions of elements in U1 are in

C, and thus Sym(U1) ⊆ C.
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Secondly, assume that C is above Sym(U1) × Sym(U2). If {0} is an orbit of C, then C

is either (Sym(U1) × Sym(U2)) o Z2 or Stab0(Sym(Hn)) by Proposition 55. Assume that

the orbit system of C is {U1, U2 ∪ {0}}. Then some π ∈ C maps 0 into U2. We may

assume that π is identical on U1. Hence, Sym(U2 ∪ {0}) is contained in C as Sym(U2)

is a maximal closed subgroup of Sym(U2 ∪ {0}) by Proposition 56. Thus C contains

Sym(U1) × Sym(U2 ∪ {0}). Similarly, if the orbit system of C is {U2, U1 ∪ {0}}, then C

contains Sym(U2)× Sym(U1 ∪ {0}). Finally, assume that C is transitive. Then according

to Lemma 62 there exist u ∈ U1, v ∈ U2 and πu, πv ∈ C such that πu switches 0 and u, and

πv switches 0 and v. Assume that there is an x ∈ U1 \ {u} such that πu(x) ∈ U1. If some

w ∈ U1 is mapped to z ∈ U2 by πu, then ρ = πu ◦ txw ◦ π−1u ∈ C is a permutation fixing

0, and moving z ∈ U2 to U1. Then Stab0(C) is transitive on U1 ∪ U2, and we are done by

Proposition 55. Hence, U1 \ {u} is mapped into U1 \ {u} by πu. By applying the same

argument for π−1u , we may assume that πu permutes U1 \ {u}. Consequently, πu preserves

U2, and we are done by a previous case. Thus we may assume that πu maps U1 \ {u} into

U2. By applying the same argument for π−1u , we may assume that πu switches U1 \{u} and

U2. Similarly, we may assume that πv switches U2 \ {v} and U1. Let p = π−1u (v). Then

πv ◦ πu ◦ tup ◦ πu stabilizes 0 and maps u ∈ U1 into U2. Thus we have a proper supergroup

of Sym(U1)× Sym(U2) in C stabilizing 0, and we are done by Proposition 55.

To finish the proof, observe that the closed groups above Sym(U1) × Sym(U2 ∪ {0})
are (Sym(U1) × Sym(U2 ∪ {0})) o Z2 and Sym(Hn) by Proposition 55, and these are in

the list. Similarly, the closed groups above Sym(U2) × Sym(U1 ∪ {0}) are (Sym(U2) ×
Sym(U1 ∪ {0}))o Z2 and Sym(Hn) by Proposition 55, and these are also contained in the

list. Finally, assume that C is above (Sym(U1) × Sym(U2)) o Z2. If 0 is an orbit of C,

then by Proposition 55 we have that C contains Sym(U1 ∪ U2) = Stab0(Sym(Hn)), and

consequently C is either Stab0(Sym(Hn)) or Sym(Hn)} by Proposition 56. Hence, assume

that C is transitive. We show that either C contains an extra permutation fixing 0, or C

contains (Sym(U1)×Sym(U2 ∪{0})) or (Sym(U2)×Sym(U1 ∪{0})), and then we are done

by Proposition 55. According to Lemma 62 there exist u ∈ U1, v ∈ U2 and πu, πv ∈ C such

that πu switches 0 and u, and πv switches 0 and v. Assume that there is an x ∈ U1 \ {u}
such that πu(x) ∈ U1. If some w ∈ U1 is mapped to z ∈ U2 by πu, then ρ = πu◦txw◦π−1u ∈ C
is a permutation fixing 0 and u, and moving z ∈ U2 to U1. This permutation fixes 0 and is

not contained in (Sym(U1)× Sym(U2))o Z2, thus we have an extra permutation fixing 0.

Hence, we may assume that U1 \ {u} is mapped into U1 \ {u} by πu. By applying the same

argument for π−1u we have that πu preserves U1 \ {u}, and consequently, πu preserves U2.

Such a permutation together with Sym(U1) generate Sym(U1 ∪ {0}), and then C contains

(Sym(U2)× Sym(U1 ∪ {0})).
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Thus we may assume that πu maps U1\{u} into U2, and similarly πv maps U2\{v} into U1.

By applying the same argument for π−1u and π−1v we have that πu switches U1 \{u} and U2,

and πv switches U2\{v} and U1. Let q = πv(u) ∈ U2. Then π−1v ◦tqv◦πv ∈ C switches 0 and

u while fixing all other elements of Hn. Thus C contains (Sym(U2)× Sym(U1 ∪ {0})). �

5. Additional remarks, open problems

5.1. Rotations. Two posets A and B of equal size are rotation equivalent if there exists

a rotation f : A → B. Some combinatorial, enumerative and computational complexity

questions arise naturally (similar questions were investigated for the switch operation of

the random graph).

Problem 66. What is the cardinality of the smallest and the biggest rotation equivalence

class of posets on n vertices?

Problem 67. How many rotaion equivalence classes are there (of posets on n vertices)?

Problem 68. Is there a well-understood subclass C of finite posets such that every rotation

equivalence class contains at least one poset in C?

Problem 69. Let X be a finite set and let R1, R2 and R3 be disjoint ternary relations on

X such that their union consists of all the triples with pairwise different entries. What is

the complexity of deciding whether there exists a poset with underlying set X such that the

Par, cycl and cycl′ relations defined from the poset are R1, R2 and R3, respectively?

The analoguous question corresponding to the closed group Max is as follows.

Problem 70. Let X be a finite set and let R1 be a ternary relations on X that consists

of triples with pairwise different entries. What is the complexity of deciding whether there

exists a poset with underlying set X such that the Par relation defined from the poset is

R1?

5.2. Reducts.

Problem 71. Give a bound for the number of the reducts of a homogeneous structure in

terms of the number and arity of its relations.

Problem 72. Is it true that ifM has finitely many reducts, then (M, 0) has finitely many

reducts, as well?

Problem 73. Is it decidable about a homogeneous structure whether or not it has finitely

many reducts (from the computational complexity perspective)?

Note that if Thomas’ conjecture is true, then the last two problems are trivial.
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