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Abstra
t. In this note we give an asymptoti
 estimate for the number of monounary
algebras of given size.

1. Introdu
tion

A monounary algebra is an algebra with a single unary operation. The theory

of monounary algebras is well-developed, for a re
ent monograph see [1℄. Let A =
(A, f) be a monounary algebra. The fun
tion f de�nes a dire
ted graph on A.

Let GA = (A,E), the vertex set is A and the edges are E = {(a, f(a)) | a ∈ A}.
In GA every vertex has outdegree 1, and every graph G with outdegree 1 de�nes

a monounary algebra on its vertex set, where f(a) is the single vertex su
h that

(a, f(a)) is an edge in G. Hen
e, there is a bije
tion between monounary algebras

and dire
ted graphs, where ea
h vertex has outdegree 1. At �rst, we investigate

the number of 
onne
ted monounary algebras.

Theorem 1.1. Let Cn denote the number of 
onne
ted monounary algebras of size

n. Then there is an α > 1 su
h that logα Cn ∼ n.

Proof. A dire
ted graph 
orresponding to a 
onne
ted monounary algebra is a di-

re
ted 
y
le with a (possibly one-element) rooted tree at ea
h vertex. If there is a

loop in the graph we say that the length of the 
y
le is 1. Ea
h edge of ea
h rooted

tree is dire
ted towards the 
y
le. Hen
e, a 
onne
ted graph of a monounary al-

gebra of size n is built up from a 
y
le of length k, where 1 ≤ k ≤ n and to ea
h

vertex of the 
y
le we glue a rooted tree su
h that the sum of the sizes of the rooted

trees is n. Every monounary algebra of size n 
an be obtained this way. Note that

these graphs are not ne
essarily non-isomorphi
. Naturally, ea
h rooted tree is a

monounary algebra. Let Tn denote the number of rooted trees on n verti
es. By

the above arguments we have

Tn ≤ Cn ≤
n
∑

k=1

∑

i1+···+ik=n

Ti1Ti2 · · ·Tik
(1)
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Let T0 = C0 = 1. Let ψ(x) =
∞
∑

n=1
Tnx

n−1 and Γ(x) =
∞
∑

n=0
Cnx

n. Now Γ is the

generating fun
tion of the number of 
onne
ted monounary algebras, and xψ(x) +
1 is the generating fun
tion of the number of rooted trees. By formula (1) the

following holds:

xψ(x) + 1 ≤ Γ(x) ≤ 1 +
∞
∑

n=1

(

n
∑

k=1

∑

i1+···ik=n

Ti1Ti2 . . . Tik

)

xn =
∞
∑

n=0

(xψ(x))n (2)

In [2℄ the fun
tion ψ(x) is well analyzed. It is proved that there is a 
onstant cT
su
h that Tn ∼ cTα

nn−
3

2 , where α ∼ 2.955765. Moreover the power series ψ(x)
has radius of 
onvergen
e 1

α
for the same α, and ψ( 1

α
) = α, hen
e 1

α
ψ( 1

α
) = 1

holds. As
∞
∑

n=0
(xψ(x))n =

1

1 − xψ(x)
is stri
tly monotoni
ally in
reasing in R

+,

the radius of 
onvergen
e of this power series is the unique positive solution of

the equation xψ(x) = 1, whi
h is 1
α
. Therefore for ea
h power series in (2) the

radius of 
onvergen
e is 1
α
. This holds for Γ(x), as well. Thus for the 
oe�
ients of

Γ(x) we have lim sup
n→∞

n
√
Cn = α. From Tn ≤ Cn we obtain lim inf

n→∞

n
√
Cn ≥ α, thus

lim
n→∞

n
√
Cn = α, and logα Cn ∼ n is gained.

�

Theorem 1.2. Let Mn denote the number of monounary algebras of size n. Then

logαMn ∼ n.

Proof. A monounary algebra is the disjoint union of 
onne
ted monounary alge-

bras. Let A be a monounary algebra of size n 
ontaining µi 
onne
ted algebras of

size i. Then
n
∑

i=1

iµi = n. Note that µi 
an be 0. The number of ways of pi
king

k indistinguishable obje
ts of p type is the 
oe�
ient of xk in the generating fun
-

tion
1

(1 − x)p
. Hen
e, the number of ways pi
king µi indistinguishable 
onne
ted

monounary algebras of Ci type is the 
oe�
ient of xiµi in
1

(1 − xi)Ci

. Thus the

generating fun
tion for the number of monounary algebras is

1 +

∞
∑

n=1

Mnx
n =

∞
∏

k=1

1

(1 − xk)Ck

(3)

For x > 0 this series 
onverges if and only if log

(

∞
∏

k=1

1
(1−xk)Ck

)

=
∞
∑

k=1

−Ck log(1−

xk) is 
onvergent. If x ∈ (0, 1
α
) then xk ∈ (0, 1

α
) for all k ≥ 1. As log x is


on
ave we have log(1 − t) ≥ −ct for all t ∈ (0, 1
α
) with c = −α log(1 − 1

α
).

Therefore
∞
∑

k=1

−Ck log(1 − xk) ≤
∞
∑

k=1

Ckcx
k = c(Γ(x) − 1). Hen
e this power series

� and 
onsequently
∞
∑

n=0
Mnx

n � is 
onvergent in (0, 1
α
). This yields lim sup

n→∞

n
√
Mn ≤
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α. The lower bound lim inf
n→∞

n
√
Mn ≥ α 
an be derived from Cn ≤ Mn. Thus

lim
n→∞

n
√
Mn = α and logαMn ∼ n.

�
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