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Abstract. Piecewise testable languages are widely studied area
in the theory of automata. We analyze the algebraic properties
of these languages via their syntactic monoids. In this paper a
normal form is presented for 2- and 3-piecewise testable languages
and a log-asymptotic estimate is given for the number of words
over these monoids.

1. Introduction

The theory of formal languages goes back to natural languages. Lin-
guists, e.g. Chomsky, gave mathematical de�nitions of natural concepts
such as words, languages and grammars: given a �nite set A, a word on
A is simply an element of the free monoid on A, and a language is a set
of words. The theory deals with languages, automata and semigroups,
and nowadays it has some interesting connections with model theory
in logic, symbolic dynamics and topology.
The foundation of the theory is based on Kleene's theorem: it proves

that the class of recognizable languages (e.g. recognized by �nite au-
tomata) coincides with the class of rational languages, which are given
by rational expressions. Rational expressions are the generalization of
polynomials involving three operations: union, product and star op-
eration. A real break-through in the history of language theory is a
work of Schützenberger: he established an equivalence between �nite
automata and �nite semigroups. He showed that a �nite monoid, called
the syntactic monoid, can be assigned to each recognizable language;
this is the smallest monoid recognizing the language. According to
Eilenberg's theorem varieties of �nite monoids are in one to one corre-
spondence with classes of recognizable languages closed under product
and boolean operations. For example, star-free languages correspond
to aperiodic monoids. For more details, see [4].
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A large class of star-free languages is the family of piecewise testable
languages, which has been deeply studied in formal language theory.
Simon [7] proved that a language is piecewise testable if and only if
its syntactic monoid is J -trivial. Simon found necessary and su�cient
conditions for an automaton to be piecewise testable. Stern [6] mod-
i�ed these conditions and described a polynomial time algorithm for
piecewise testability problem of order O(n5).
In this paper we analyze the word problem for the syntactic monoids

of the varieties of k-piecewise testable languages. We present a normal
form of the words for k = 2 and 3, and give an asymptotic formula for
the logarithm of the number of words for arbitrary k.

2. Preliminaries

At �rst, some basic notions and de�nitions are going to be intro-
duced. The word w is a subword of u if w is a subsequence of not
necessarily consecutive variables taken from u. Given an integer k > 0,
let u ∼k v if and only if the words u, v over the alphabet X have the
same set of subwords of length at most k. A language L over an al-
phabet X is k-piecewise testable if and only if L is a union of classes
of the equivalence relation ∼k. Another characterization says that a
language L over an alphabet X is k-piecewise testable if and only if it
is a �nite boolean combination of languages of the form

X∗x1X
∗x2X

∗ . . . X∗xlX
∗, where x1, . . . , xl ∈ X, 0 ≤ l ≤ k.

A language is piecewise testable if there exists a natural number k such
that the language is k-piecewise testable.
Simon [7] found a basis of identities for k-piecewise testable languages

if k = 1, 2. Moreover, Blanchet-Sadri [1, 2] gave a basis of identities
for k=3, and proved that there is no �nite basis of identities for k > 3.
For an integer k the classes of u ∼k v form the free syntactic monoid

in the variety corresponding to k-piecewise testable languages. We
denote this variety by Vk. The free monoid (generated by countably
many elements) in Vk will be denoted by F (Vk) and the n-generated
free monid by FVk(n). In the paper we often refer to the ∼k classes as
the elements of F (Vk). The number of ∼k classes of words on at most
n letters is equal to |FVk(n)|, the size of the n-generated free monoid in
Vk. The sequence |FVk(n)|, n = 1, 2, . . . is called the free spectra of the
variety Vk. For a word w let us denote the set of its subwords of length
at most k by Ck(w). This way v ∼k w if and only if Ck(v) = Ck(w).
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3. Normal form for k = 2

In this section a normal form is given for the terms of F (V2). Let
w be a word. For a ∈ c(w) let Iw(a) = {b | ab is a subword of w} and
for a, b ∈ c(w) let a ∼ b if Iw(a) = Iw(b). Clearly, ∼ is an equivalence
relation. For an a ∈ c(w) the ∼ class of a is called the block of a
and denoted by Bw(a). Two letters are in the same block if they are
followed by the same set of letters. A letter a occurs exactly once in
w if and only if aa is not a subword of w. There is a natural ordering
≺ on the set of blocks. We say that Bw(a) ≺ Bw(b) if Iw(b) ( Iw(a).
Clearly, ≺ is a well-de�ned complete ordering. Let B1 ≺ B2 ≺ · · · ≺ Bt

be the blocks. For an a ∈ c(w) let Lw(a) = {b | ba is a subword of w}.
If b ∈ Lw(a) for some b ∈ Bi, then a ∈ Iw(b). Let c ∈ Bj for some j ≤ i.
By the de�nition of ≺ we obtain a ∈ Iw(b) ⊆ Iw(c), hence c ∈ Lw(a).
Therefore, Lw(a) is the union of the �rst few blocks. Let ia be the
index such that a ∈ Bia and ja be the index such that Bja ⊂ Lw(a)
and Bja+1 6⊂ Lw(a). Note that if the �rst letter of w occurs only once
in w, then Lw(a) is empty. In this case let ja = 0. If a occurs once in
w, then a is the �rst letter of w from Bia , and ja = ia − 1. In every
other case ja ≥ ia holds.

Construction 3.1. Let w be a word in F (V2). Then the normal form
of w can be obtained in the following way.

Step 1. Identify the blocks of the equivalence relation ∼; say B1, . . . , Bt,
in their standard ordering.

Step 2. With each block Bi we will associate a word wi in the following
way. The variables will be the variables appearing in Bi and
each letter of Bi appears once in wi. The order of appearance
of these letters is alphabetical, except that if there is a letter in
Bi appearing just once in w, then this is placed �rst (with the
remaining variables alphabetical after it).

Step 3. For each i = 1, . . . , t, let vi denote the product of all variables
a with ia ≤ ja = i, ordered alphabetically.

Step 4. The normal form w := w1v1w2 . . . wtvt.

Proposition 3.2. Let v and w be two words in X∗, then w ∼2 w̄. If
v ∼2 w, then v̄ = w̄. Hence, w̄ is a normal form of w.

Proof. Recall that v ∼2 w if they have the same subwords of length
at most 2. By de�nition ab is a subword of w if and only if b ∈ Iw(a)
if and only if a ∈ Lw(b). Therefore, if v ∼2 w, then Iw(a) = Iv(a)
and Lw(a) = Lv(a) for any a ∈ X. In Construction 3.1 the normal
form depends only on these subsets, so v̄ = w̄. Observe that by the
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construction Iw(a) = Iw̄(a) and Lw(a) = Lw̄(a), hence w ∼2 w̄, as we
claimed.

�

For example, consider the word w = bbaababcbb. Now, C2(w) =
{aa, ab, ac, ba, bb, bc, cb} the blocks are {a, b} and {c}, and the normal
form is abacb.
For a more detailed example we give a visual description of normal

forms. The normal form can be considered as a pair of indices, ia and
ja, assigned to each variable a ∈ c(w). The number ia shows in which
block a is and ja shows after which block a is written. For example,
ab is a subword of w if and only if ia ≤ jb. Every variable occurs at
most twice in the normal form. Obviously, ja ≥ ia−1 and the equality
holds if and only if a occurs exactly once in w. As we have seen before,
in this case a is the �rst letter of its block Ba. Thus in each block
there is at most one letter occuring once in w (and w̄), and all other
letters occur twice in w̄. Two consecutive blocks, Bl and Bl+1, can be
separated in two ways.

I. There is a letter d such that id ≤ l and jd = l,
II. The �rst letter of Bl+1 denoted by h occurs once in w, and

ih = jh + 1 = l + 1.

This suggests the following description of the normal forms in F (V2).

Proposition 3.3. Let w be a word. Assume that there are m blocks in
w. Then the normal form of w can be described by a map ϕ assigning
a pair of indices, (ia, ja), to each variable a ∈ c(w), where

ϕ : c(w)→{(i, j) | 0 ≤ i, j ≤ t}
a 7→(ia, ja)

and the following conditions hold:

(1) each 1 ≤ i ≤ t occurs at least once as a �rst coordinate,
(2) each 1 ≤ j ≤ t− 1 occurs at least once as a second coordinate,
(3) ia − 1 ≤ ja,
(4) the pairs (i, i− 1) are assigned to at most one variable.

Moreover, every map satisfying (1)-(4) corresponds to a word with ex-
actly t blocks.

Proof. By Construction 3.1 and Proposition 3.2 item (1) guarantees
that the blocks are not empty in a normal form. By item (2) the
blocks are separated, and by item (4) in each block there is at most
one variable occuring once in w. Note that if there is no pair with
ja = t, then by (1) and (3) the pair (t, t − 1) has to be assigned to a
variable. In this exceptional case Bt contains a single variable. �
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Figure 1

On Figure 1 the words a2a5a6a7a8a5a9a4a4a8a3a10a10a1a2a3a7a11a6

and a5a4a7a8a3a9a3a9a2a6a6a1a2a4a7a10 are depicted. The columns rep-
resent the blocks and the rows the places after the blocks. The letter
ak is written into the square (iak , jak). For example, in the �rst table
ia8 = 1 and ja8 = 2. Hence, a8 is written into the 1st block and after
the 2nd block. To sum up, to obtain a normal form the letters have to
be written into the table satisfying the following conditions:

• every letter is put into exactly one square of the table;
• there has to be at least one letter in each column;
• there has to be at least one letter in each row, except possibly
the 0th and the last ones;
• there is at most one letter in the shaded squares.

Moreover, every arrangement satisfying the above conditions corre-
sponds to a unique normal form.

4. Normal form for k = 3

In this section a normal form is given for the elements of F (V3). Let
w be a word with c(w) ⊆ {x1, x2, . . . , xn}. For a ∈ c(w) let

I2
w(a) = {bc | abc is a subword of w} ∪ {b | ab is a subword of w}

and

L2
w(a) = {bc | bca is a subword of w} ∪ {b | ba is a subword of w}.

The sets I2
w(a) and L2

w(a) are determined by C3(w). Let c2(w) =
{a|aa is a subword of w} be the set of the letters that occur at least
twice in w. Similarly to the case k = 2, let a ∼ b if I2

w(a) = I2
w(b) for

a, b ∈ c2(w). Clearly, ∼ is an equivalence relation. For an a ∈ c2(w)
the ∼ class of a is called the I-block of a. The L-blocks are de�ned
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dually. They are the equivalence classes of the relation ≈, where a ≈ b
if and only if L2

w(a) = L2
w(b) and both a and b occur in c2(w). The I-

blocks, the L-blocks and the one element sets {a}, where a is a variable
occuring once, are called blocks. The set of the blocks of w depend only
on C3(w).
For an I-block B let zB be the subword containing the left-most

appearances of the elements of B. If B and B′ are di�erent I-blocks,
and for b ∈ B and b′ ∈ B′ we have I2

w(b′) ( I2
w(b), then each letter

of zB is left to each letter of z′B. This obseration provides an ordering
on the set of the I-blocks. An ordering of the L-blocks can be de�ned
dually.
Now, we give a normal form for the elements of the blocks. This

normal form will be obtained in several steps.
Step 1. Let B = {b1, . . . , bt} be an I-block and w = ub1 . . . btv,

where b1 and bt are the �rst occurences of the �rst- and last occuring
letters of B in w, and u and v are words. Let v̄ be the normal form
of v in F (V2), and v′B the subword of v̄, where we keep only the �rst
occurences of the elements of B and cancel all other letters. Let v′B =
v1x, where x is the last letter of v′B. Finally, let vB = xv1 and wB =
uvBv. Note that in this step we eliminate a subword and replace it
by a word containig only the letters of the block B. The order of the
letters does not depend on the eliminated subword.

Lemma 4.1. Let w be a word and wB the word de�ned in Step 1. Then
wB ∼3 w.

Proof. Let B be an I-block, w = ub1 . . . btv as in Step 1 and z = b1 . . . bt
denote the word between u and v in w that is w = uzv. We have to show
that C3(wB) = C3(w). By the de�nition of an I-block, the following
hold:

(i) B ∩ c(u) = ∅,
(ii) c(z) \B ⊆ c(u),
(iii) c(z) ⊆ c(v), in particular
(iv) B ⊆ c(v),
(v) B ⊆ c(z),
(vi) C3(uv) ⊆ C3(w) ∩ C3(wB).

Note that item (iii) holds, because no variable in z is a last occurence
of a variable.

Case 1.C3(wB) ⊆ C3(w). Let abc ∈ C3(wB). We may assume that a
is a �rst and c is a last appearance of some variables. By the de�nition
of a block, vB does not contain a last appearance. If a ∈ v or c ∈ u,
then abc ∈ C3(w) by (vi). Hence, we may assume that c is from v
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and a is from uvB. At �rst let a ∈ c(u). Then either ab ∈ C2(u)
or b is in vB or bc ∈ C2(v). In the �rst and third cases by (vi), in
the second case by (v) we obtain that abc ∈ C3(w) holds. Secondly,
let a ∈ B. Then either bc ∈ C2(v) or ab ∈ C2(vB). In the �rst case
abc ∈ C3(w) is obvious by (v). Finally, let ab ∈ C2(vB). Note that
b2c, b3c, . . . , blc ∈ I2

w(b1) = I2
w(bt), and I

2
w(bt) = C2(v) = C2(v). Thus if

b 6= b1, then bc ∈ C2(v), so abc ∈ C3(w), again by (v). The remaining
case is b = b1. As ab = ab1 is a subword of vB = xv1, we have x = bi
for some i 6= 1. Since x = bi is the variable in B which occurs last in v,
the letter b1 preceeds bi in v. Thus b1c ∈ C2(v). Then a ∈ c(z) implies
that abc ∈ C3(w).

Case 2.C3(w) ⊆ C3(wB). As in the previous case, we may assume
that a is a �rst appearance, and c is a last appearance of some variables.
Again, by the de�nition of a block no variable in z is a last appearance.
If a ∈ v or c ∈ u, then abc ∈ C3(wB) by (vi). So, we may assume that
c is from v and a is from uz. If a is from u and b is from u or v, then,
again by (vi) abc ∈ C3(wB) holds. If b is from z and b is not the �rst
occurence of b1, then bc ∈ I2(b1) = I2(bt) = C2(v), hence abc ∈ C3(wB).
Finally, if b is the �rst occurence of b1, then a is from u and b is from
B, and the inclusion is implied by (v).

�

Step 2 Let B1,B2,. . . , Bt be the blocks. Proceed with Step 1 for
each I-block and the dual of Step 1 for each L-block (in arbitrary
order). Then we obtain the word w1.

Lemma 4.2. Let w be a word and w1 the word obtained from w in
Step 2. Then w1 ∼3 w, and w1 does not depend on the order of imple-
mentation of Step 1 on the blocks.

Proof. By Lemma 4.1 for any block B we have wB ∼3 w, and by the
ordering of the blocks and the order of the blocks are determined by
C3(w) = C3(wB). Hence, w1 is detremined by C3(w) and w1 ∼3 w, as
we wanted.

�

Construction 4.3. Let w be a word in F (V3) and ŵ be de�ned in the
following way.

Step 1-2 Let B1, B2, . . . , Bh be the blocks of w. Proceed with Step 1 for
each block to obtain the word w2 = vB1u1vB2u2 . . . vBh

. where
u1, . . . uh are words.

Step 3 For any subword vBl
u1vBl+1

u2 . . . vBm where
� Bl, Bl+1, . . . , Bm are all I-blocks and not L-blocks,
� Bl−1 is not an I-block or l = 1,



8 KÁTAI, PACH, PLUHÁR, PONGRÁCZ, AND SZABÓ

� Bm+1 is not an I-block
de�ne

Ui = c(ui) \
m⋃

h=i+1

c(uh) for l − 1 ≤ i ≤ m− 1 and Um = c(um)

In case Bl, Bl+1, . . . , Bm are all L-blocks and not I-blocks
and Bl−1 and Bm+1 are not L-blocks, then Ui is de�ned dually.
The remaining case is when we have two consecutive 1-element
blocks consisting of variables occuring once in w. Then let
Ui = c(ui). For every i write the elements of Ui in alphabetical
order to get the word u∗i and replace each ui by u∗i in w1 to
obtain the normal form

ŵ = vB1u
∗
1vBi+1

u∗2 . . . vBh

The last step of the construction can be interpreted in the follow-
ing way. We considered the subwords of the form vBl

u1vBl+1
u2 . . . vBm

where Bl, Bl+1, . . . , Bm are all I-blocks and Bl−1 and Bm+1 are not
I-blocks. Then we kept only the last appearances of the variables from
m⋃
j=l

c(uj), and put them into alphabetical order between two neighbour-

ing blocks. The word ŵ doesn't depend on the order of these proce-
dures.

Proposition 4.4. Let v and w be two words in F (V3). Then w ∼3 ŵ.
If v ∼3 w, then v̂ = ŵ. Hence ŵ is a normal form of w.

Proof. The construction and Lemmas 4.1 and 4.2 imply that w ∼3 ŵ.
The order of the blocks is determined by C3(w), and by Lemma 4.1 for
any block B the word wB is determined by C3(w), as well.
In order to prove v̂ = ŵ, it remains to show that u∗i is determined by

C3(w). Let vBl
u1vBl+1

u2 . . . vBm be a subword, where Bl, Bl+1, . . . , Bm

are all I-blocks and not L-blocks and Bl−1 and Bm+1 are not I-blocks.
Then for i > 1

Ui = {x : yixym+1 ∈ C3(w), yi+1xym+1 /∈ C3(w)}
for arbitrary yi ∈ Bi, yi+1 ∈ Bi+1 and ym+1 ∈ Bm+1. If i = 1, then
l ≥ 2, and

U1 = {x : yxym+1 ∈ C3(w), ylxym+1 /∈ C3(w)}
for arbitrary y1 ∈ B1, yl ∈ Bl and ym+1 ∈ Bm+1. For L-blocks the
arguments are the dual ones. Finally, if Bl = {y} and Bl+1 = {z} are
one element blocks, then
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U = {x : yxz ∈ C3(w).

�

Remark 4.5. Let w be a word. In each step of the construction the
number of letters in w is not increasing. Hence, ŵ is a shortest possi-
ble representant in its ∼3 class. Listing the triples occuring in C3(w)
takes O(|w|3) time and all other steps are linear in |C3(w)|. Hence,
�nding and multiplying normal forms takes O(|w|3) time, as expected.
Moreover, we can reduce the number of steps for long inputs. Let w
be the word obtained from w by keeping w′ and only one occurence
of each variable between suuccessive positions in w′. Then w ∼3 w.
As w has length O(n2), the normal form of w can be obtained in
O(n6) time. Hence, the normal form of a word w can be determined in
O(max{|w|3, |w|+ n6}) time.

Problem. Is there an in-place algorithm that outputs the k = 3 normal
form, and can it be done in log-space?

5. Counting words

In this section we give estimates on the number of equivalence classes
of ∼k, in other words we estimate the free spectra of the variety Vk.

Proposition 5.1. Let fk(n) denote the number of ∼k equivalence classes
on n letters. Then

log fk(n) = Θ(n(k+1)/2), if k is odd

and

log fk(n) = Θ(nk/2 log n), if k is even,

where Θ(f) = g if there are constants d1 and d2 such that d1 · g(n) ≤
f(n) ≤ d2 · g(n).

Proof. The theorem is proved by induction. We have f1(n) = 2n, so
log f1(n) = n log 2 = Θ(n), and the statement holds for k = 1. Given
a word w let w′ denote the word in which only the �rst and last oc-
curences of the variables are kept and the others are deleted. For k = 2
the word w′ determines w as C2(w) = C2(w′). The word w′ has length
at most 2n. This yields an obvious upper bound for k = 2, namely
that f2(n) ≤ (n + 1)2n. On the other hand, for each permutation π of
the numbers {1, 2, . . . n} we obtain a di�erent set C2(xπ(1) · . . . · xπ(n)).
Hence, n! ≤ f2(n) ≤ (n + 1)2n holds, and Stirling's formula implies
log f2(n) = Θ(n log n).
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Let k ≥ 3. For arbitrary words w0, w1, . . . , w[n/2]+1 with c(wi) ⊆
{x[n/2]+1, . . . , xn} for every 1 ≤ i ≤ [n/2] + 1 let

w = w0x1w1x1x2w2x2 . . . x[n/2]w[n/2]x[n/2]w[n/2]+1.

As xi occurs only twice in w, xiuxi ∈ Ck(w) if and only if u ∈ Ck−2(wi)
for 1 ≤ i ≤ [n/2]. Similarly, ux1x1 ∈ Ck(w) if and only if u ∈ Ck−2(w0),
and x[n/2]x[n/2]u ∈ Ck(w) if and only if u ∈ Ck−2(w[n/2]+1). Hence, for
di�erent tuples (Ck−2(w0), Ck−2(w1), . . . , Ck−2(w[n/2]+1)) we get di�er-
ent sets Ck(w), thus for di�erent tuples of words from F (Vk−2) we

obtain di�erent words in F (Vk). Therefore, fk(n) ≥ f
[n/2]+2
k−2 (dn/2e)

and

(1) log fk(n) ≥ n

2
log fk−2(dn/2e).

Let w be a word. The word w is separated into t−1 (possibly empty)
parts by the letters of w′:

w = y1u1y2u2 . . . ut−1yt

We claim that w′ and Ck−2(u1), . . . , Ck−2(ut−1) determine Ck(w). Let
a1, a2, . . . , as ∈ c(w) and a = a1a2 . . . as be a word of length s ≤ k.
Let yp be the �rst occurence of a1 in w and yq the �nal occurence of
as in w. If p > q, then a /∈ Ck(w). Now suppose that p ≤ q. As
a1 /∈ c(y1u1y2 . . . yp−1up−1) and as /∈ c(uqyq+1uq+1 . . . yt), the word a
is in Ck(w) if and only if a2 . . . as−1 ∈ Ck−2(upyp+1up+1 . . . yq−1uq−1).
This happens if and only if a2 . . . as−1 can be written as a product
v1v2 . . . v2q−2p−1, where v1, v2, . . . , v2q−2p−1 are the (possibly empty) sub-
words of up, yp+1, up+1, . . . , uq−1, respectively. Here the yi-s are con-
sidered as a 1-letter words. Since each of them has at most k − 2
letters, the sets Ck−2(u1), Ck−2(u2), . . . , Ck−2(ut−1) determine Ck(w).
Therefore fk(n) ≤ (n+ 1)2n · f 2n−1

k−2 (n) and

(2) log fk(n) ≤ 2n log(n+ 1) + (2n− 1) log fk−2(n).

Using inequalities (1) and (2) and induction on k, the proposition
holds.

�

Note that from the previous proof it follows that if k is even, then
1

3k2
nk log n < log fk(n) < 3knk log n and if k is odd, then 1

3k2
nk <

log fk(n) < 3knk.
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