
THE POSSIBLE NUMBER OF ISLANDS ON THE SEA

PÉTER PÁL PACH, GABRIELLA PLUHÁR, ANDRÁS PONGRÁCZ,
AND CSABA SZABÓ

[1, 2, 4]Eötvös Loránd University, Department of Algebra and Num-
ber Theory, 1117 Budapest, Pázmány Péter sétány 1/c, Hungary
ppp24@cs.elte.hu
plugab@cs.elte.hu
csaba@cs.elte.hu
[3]Central European University, Hungary

pongeee@cs.elte.hu

Abstract. Let a height function f be a real valued function on
R2. A connected subset of R2 is called an island, if there is a water
level such that H is an island in the classical sense. We show that
an island system is always laminar. Among others, in this paper
we prove that the cardinality of a maximal laminar system is either
countable or continuum.
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1. introduction

Let S be a subset of Rn and f a real valued function on S. A subset
H ⊆ S is called an f -island, if there is an open set G containing the
closure of H such that f(x) < inf

H
f for every x ∈ G \ H. For a real

function f , the set of all f -islands is called a system of islands.
For motivation, let us imagine that f is a height function on the real

plane. Then H is an f -island according to our de�nition i� it is a �real
island� in the obvious sense, where the water level is some value of f .
The concept of systems of discrete islands was introduced by G.

Czédli [1]. He considered a rectangular lake whose bottom is divided
into (m + 2) × (n + 2) cells. In other words, we identify the bottom
of the lake with the table {0, 1, . . . ,m + 1} × {0, 1, . . . , n + 1}. For
every square of a rectangular grid a real number aij is given, its height.
The height of the bottom (above sea level) is constant on each cell but
de�nitely less than the height of the lake shore. Now a rectangle R is
called a rectangular island i� there is a possible water level such that
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R is an island of the lake in the usual sense. There are other exam-
ples requiring m × n cells; for example, aij may mean a colour on a
gray-scale (before we convert the picture to black and white), trans-
parency (against X-rays) or melting temperature. His motivation came
from coding theory. Földes and Singhi [3] examined �full segments� of
vectors, which are just rectangular islands of 1 × n tables in our ter-
minology. According to Theorem 4 of [3], 1× n tables A whose entries
form the lexicographic length sequence of some binary maximal instan-
taneous code are characterized by |A| many equations. This makes the
maximum of {|A| : A is an 1× n table} important in coding theory.
For the size of maximal systems of rectangular islands, upper- and

lower bounds were established in [1] and [6]. These results can be
summarized as follows: If H is a maximal system of rectangular islands
on an m by n rectangle, then

m+ n− 1 ≤ |H| ≤ bmn+m+ n− 1c/2,
where both the upper- and the lower bounds are sharp. Several papers
have been published on the subject since, investigating various exten-
sions and generalizations (see G. Pluhár [8], E. K. Horváth, Z. Németh
and G. Pluhár [4] and E. K. Horváth, G. Horváth, Z. Németh and Cs.
Szabó [5]). As a possible continuous generalisation, P. P. Pach and Zs.
Lengvárszky introduced the notion of continuous rectangular islands
[7]. Their main result is that the size of a maximal continuous rectan-
gular system in Rn is either countable or continuum. They explicitly
ask what can be said about islands of di�erent shapes, for example,
circle islands.
In this paper, we examine the maximum of the number of islands of

arbitrary form. We give a general condition for the shape of the islands
with which the size of a maximal system of islands is either countable
or continuum. We show that these properties hold for the circles, and
give an example for a countable maximal circle system of islands. We
prove that all island systems are laminar, but not every laminar system
is a system of islands for some f .

2. Definitions

We start with the general de�nition of an island. Let S ⊆ P(Ω) for
some Ω ⊆ Rn and let f be a real valued function on Ω. We call a subset
H ⊆ Ω an f -island in S if H ∈ S and there exists a(n) (relatively)
open set G ⊆ Ω such that G contains the closure of H and for any
x ∈ G \H we have f(x) < inf

H
f . The set of all f -islands in S for some

function f is called an island system in S.
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One of the most useful properties of a system of rectangular islands
is laminarity. A system of subsets H of a set S is called laminar if for
any two P,Q ∈ H either P ⊆ Q or Q ⊆ P or P ∩ Q = ∅. The case
when Ω = [0, 1]n and S is the set of rectangles (with sides parallel to
the coordinate axes) was examined in [7]. It was proved that a system
of rectangular islands is laminar and that a countable maximal laminar
system of closed intervals is a system of islands. In section 3 we show
that similar propositions hold in general. As in the discrete case, in
the continuous case a system of islands is always laminar.
The n-dimensional open (closed) disc of radius r with center x is the

collection of points of Rn of distance less (less or equal) than r from x.
We denote the open disc with center x and radius r by B(x, r) and the
closed disc with center x and radius r by B(x, r).
For a subset H of Rn we denote the interior of H by intH, the

boundary of H by ∂H and the closure of H by clH.
Finally, let us introduce a notion having central importance in the

discrete case. A system S of subsets of a set H, is called weakly in-

dependent if for any {S, S1, S2, . . . , Sn} ⊆ S and S ⊆
n⋃

i=1

Si we have

S ⊆ Sj for some 1 ≤ j ≤ n. This notion is due to G. Czédli, A. P.
Huhn and E. T. Schmidt and was �rst de�ned in [2]. Later we show
that weakly independence can be transferred to the continuous case,
as well. Furthermore, note that the system S is a chain if for any two
P,Q ∈ S either P ⊆ Q or Q ⊆ P .

3. Properties of island systems

In the discrete case and in the case of continuous rectangular islands
laminarity was one of the most important property of island systems.
We show that in the continuous case a system of islands is laminar, as
well.

Proposition 1. Let Ω ⊆ Rn. Let S ⊆ P(Ω) be a set of connected sets
in Ω. A system of f -islands in S on Ω is laminar.

Proof. Let S1 and S2 be f -islands in S on Ω. According to the is-
land property there exist open sets G1 and G2 such that cl(S1) ⊆ G1,
cl(S2) ⊆ G2 and inf

Si

f > f(x) for any x ∈ Gi\Si (i = 1, 2). Without loss

of generality let us assume that inf
S2

f ≤ inf
S1

f . Now, (G2 \ S2) ∩ S1 = ∅
because for an x in the intersection inf

S2

f > f(x) ≥ inf
S1

f would hold.

Therefore, S1 is the disjoint union of S1 ∩G2 and S1 ∩ (Ω \ clS2), since
S2 ⊆ clS2 ⊆ G2. As S1 is connected, S1∩G2 or S1∩(Ω\clS2) is empty.
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In the �rst case we have S1 ∩ S2 = ∅, and in the second case S1 ⊆ S2.
Since S1 and S2 can be arbitrarily chosen, laminarity is obtained. �

Another important property, weakly independence, plays an impor-
tant role in the discrete case ([1]). A system of discrete islands is always
weakly independent, but in general laminar systems are not. Observe
that a laminar system of closed intervals is always weakly independent.
Indeed, assume that I, I1, I2, . . . , In are intervals in the laminar system

H such that I ⊆
n⋃

i=1

Ii. If I ∩ Ii = ∅ or Ii ( Ij for some j, then we

can omit Ii, and the union of the others still cover I. As I cannot be
covered by �nitely many disjoint proper closed subintervals of I, there
must be some 1 ≤ j ≤ n such that I ⊆ Ij. Note that in the de�nition of
weakly independence the �niteness of the covering system of intervals
is essential. If we allow in�nitely many intervals, a laminar system is
not necessarily weakly independent.

Example 2. Let H =
{

[0, 1
2
− 1

n
] |n ≥ 3

}
∪
{

[1
2
, 1], [0, 1]

}
. Then H is

laminar. [0, 1] ⊆ [1
2
, 1] ∪

∞⋃
n=3

[0, 1
2
− 1

n
] and [0, 1] is not contained in any

of the other intervals.

It is natural to ask whether every maximal laminar system H is a
system of islands. In many special cases one can easily construct a real
valued function f such that H is the system of f -islands. However,
this is not always the case. We present an example for an uncountable
maximal laminar system which is not a system of islands for any f .
Then we show that for every countable maximal laminar system there
exists such a function.

Proposition 3. Let H be a maximal laminar system of closed intervals
on [0, 1]. Assume that there exists a subset of at least two disjoint
intervals, J ⊂ H such that

(1) cl(
⋃
J ) = [0, 1],

(2) for any two intervals I1, I2 ∈ J there is a J ∈ J between I1
and I2,

(3) r is the right endpoint of an interval in H for every r /∈
⋃
J .

Then H is not a system of islands.

Proof. Assume that there exists a real valued function f such that H
is the system of f -islands. As every interval contains a rational point,
|J | is countable. Let J = {Jk | k ∈ N}, where Jk = [xk, yk]. By the
island property for every Jk there is an εk such that f |(xk−εk,xk) < inf

Jk

f .
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We may assume that εk → 0. Now, we de�ne a sequence of intervals,
[uk, vk], such that [u0, v0] = [0, 1] and for i ≥ 1

(i) [ui+1, vi+1] ⊂ [ui, vi],
(ii) |[ui, vi]| < εi,
(iii) [ui, vi] ∩ Ji = ∅,
(iv) ui is the right endpoint of some interval of J ,
(v) vi is the left endpoint of some interval of J .
Suppose that [uk−1, vk−1] is already de�ned. Let Jt ∈ J be a subin-

terval of [uk−1, vk−1]. By assumption (2) such a Jt = [xt, yt] exists.
Let ε = min{εt, εk, xt − uk−1}. Now, by (1) and (2) and the choice of
ε, there exist uk, vk ∈ [xt − ε, xt] such that [uk, vk] satis�es conditions
(i)-(v). Let

⋂
[uk, vk] = c. By the choice of ε we have f(c) < f(vk) for

every k ∈ N. By (iii) c is not contained in any interval Jk. Thus by (3)
c is the right endpoint of an island. Hence, there is a δ > 0 such that
f(c) > f(a) for every a ∈ [c, c + δ). As lim vk = c, there is an n such
that vn ∈ [c, c+ δ). Then f(c) > f(vn), which is a contradiction.

�

Now, we give an example of a set of intervals satisfying the conditions
of Proposition 3.

Example 4. Let G be the set of the closures of the intervals omitted at
the construction of the Cantor set, and let H = G

⋃
{[0, r] | r /∈

⋃
G}.

Moreover, let HC be a maximal laminar system containing H. Clearly,
HC satis�es conditions (1)-(3) of Proprosition 3, hence it is not a system
of islands.

Now, we consider the countable case.

Proposition 5. Let Ω ⊆ Rn. Let S ⊆ P(Ω) be a set of bounded
connected sets in Ω. A countable maximal laminar system H in S is a
system of islands if and only if the distance of any two disjoint sets in
H is positive.

Proof. Let us prove the �only if� direction, �rst. Assume that we have
two disjoint sets H1, H2 ∈ H such that d(H1, H2) = 0. If H is the
system of f -islands, then there exist open sets G1 and G2 such that
cl(H1) ⊆ G1, cl(H2) ⊆ G2 and inf

Hi

f = hi > f(x) for any x ∈ Gi \ Hi

(i = 1, 2). By the boundedness of H1 and H2 there is a point p ∈
cl(H1)∩ cl(H2). Thus H1∩G2 6= ∅ and H2∩G1 6= ∅. Let x1 ∈ H1∩G2

and x2 ∈ H2 ∩ G1. Then f(x1) ≥ h1 > f(x2) and f(x2) ≥ h2 > f(x1)
a contradiction.
For the other direction let H = {Hn |n ∈ N} be a maximal laminar

system in S such that the distance of any two disjoint sets in H is
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positive. We show that these are the islands corresponding to the
height function:

f(x) =
∞∑

n=1

1

3n
χHn(x),

where χHn(x) is the characteristic function of Hn. According to Propo-
sition 1 a system of islands is laminar, hence it is enough to prove that
each Hk is an f -island. For all n ∈ N with Hn∩Hk = ∅ the distance of
Hk and Hn is positive. Let εk = min {d(Hk, Hn) |n < k,Hk ∩Hn = ∅}.

Note that εk > 0. Let Gk = Ω ∩

( ⋃
s∈cl(Hk)

B(s, εk)

)
. Then Gk is

open, it contains cl(Hk) and for all n < k with Hk ∩Hn = ∅ we have
Gk ∩ Hn = ∅. If x ∈ Hk, then f(x) ≥

∑
{n |Hk⊆Hn}

1
3n . If x ∈ Gk \ Hk,

then

f(x) ≤
∑

{n |Hk(Hn}

1

3n
+

∞∑
n=k+1

1

3n
<

∑
{n |Hk(Hn}

1

3n
+

1

3k
=

∑
{n |Hk⊆Hn}

1

3n
,

hence Hk is an f -island. �

4. Maximal laminar systems

In this section we construct maximal laminar systems. At �rst, the
countable case is described. Then a few properties of maximal laminar
systems are described, and �nally we manage to answer the question
of Zs. Lengvárszky and P. P. Pach. We present a countable maximal
set of islands consisting of closed discs.

Theorem 6. Let A be a system of subsets of Rn with �nite Lebesgue-
measure such that A satis�es the following conditions:

(1) int(A) 6= ∅ for every A ∈ A,
(2) if A,B ∈ A and A * B, then λ(A \B) > 0,
(3) if C ⊆ A and C is a chain, then

⋂
C ∈ A or λ(

⋂
C) = 0.

The cardinality of a maximal laminar system in A is countable or con-
tinuum.

Proof. LetH be a maximal laminar system inA. At �rst, we prove that
every C ⊆ H maximal chain is countable or has cardinality continuum.
Let us consider the set R = λ(C) = {λ(C) |C ∈ C} ⊆ R. We prove
that if x is a right limit point of R, then x ∈ R or x = 0. Suppose that
x is a right limit point and x > 0. Let us denote the set of elements of
C with Lebesgue-measure greater than x by Cx. As λ(

⋂
Cx) = x > 0,

(3) implies that
⋂
Cx ∈ A, so x ∈ R. Let clR be the closure of R and
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x ∈ clR \ R. Then either x is a left-, but not right limit point of R or
x = 0. For every x which is not a right limit point of R there exists a
y > x rational number such that (x, y) ∩ R = ∅. Clearly, for distinct
left (but not right) limit points the corresponding rational number y
is di�erent, therefore the cardinality of the set of left-, but not right
limit points is countable. It follows that clR \ R is countable. It is
well-known that the cardinality of a closed set in R is either countable
or continuum, hence |R| ≤ ℵ0 or |R| = 2ℵ0 . As C is a chain, by (2)
we get λ(C1) 6= λ(C2) for any C1 6= C2. Therefore, |C| = |R|, so the
cardinality of a maximal chain in H is either countable or continuum.
For an r ∈ Rn let Cr denote the set of elements of H that contain r.

Note that Cr is a chain. By (1), every element of H contains a rational
point, thus H =

⋃
a∈Qn

Ca. Every chain is a subset of a maximal chain.

Hence, H is the union of countably many maximal chains. Thus if
there is a maximal chain of length continuum, then |H| has cardinality
continuum, and |H| is countable, otherwise. �

Note that condition (1) can substituted by

(1') λ(A) > 0 for every A ∈ A,
but the proof would be too technical.
Moreover, we can omit the �nitenes of the Lebesgue-measure. The

proof is essentially the same, except that the role of λ(C) will be sub-
stituted by γ(C), where γ(C) is de�ned in the following way: let Rn

be the disjoint union of A1, A2, . . . , where all Ai are subsets of Rn of
Lebesgue-measure 1, and let γ(C) =

∑
λ(Ai ∩ C)/2i.

Corollary 7. A maximal laminar system of bounded closed convex sets
(in Rn) with nonempty interior is countable or continuum.

Proof. We show that the system A of closed convex sets with nonempty
interior satis�es the conditions of Theorem 6. The elements of A are
Lebesgue-measurable, and (1) is satis�ed by the conditions. Suppose
that A,B ∈ H and A * B. Let x ∈ A \ B. As B is a closed set
not containing x, there exists some r > 0 such that B(x, r) ∩ B = ∅.
The set A is convex with nonempty interior. As x ∈ A, we have
int(A ∩ B(x, r)) 6= ∅, and A ∩ B(x, r) ⊆ A \ B. As λ(A ∩ B(x, r)) is
positive, we obtain that condition (2) holds. Finally, the intersection
of closed convex sets is a closed convex set. Thus either its interior is
nonempty or has Lebesgue-measure 0, as needed in (3). �

Proposition 8. The cardinality of a maximal laminar system of closed
discs in Rn is either ℵ0 or continuum.
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Proof. Clearly the cardinality of a maximal laminar system of closed
discs is at least ℵ0. We apply Theorem 6 for A = {closed discs}. The
closed discs are Lebesgue-measurable and the conditions (1) and (2) are
satis�ed. We have to prove that A satis�es (3), that is, the intersection
of a chain C of closed discs is a closed disc or has Lebesgue-measure
0. Let r(C) and x(C) be the radius and the center of the disc C,
respectively. Let r = inf

C∈C
r(C). If r = 0, then

⋂
C has Lebesgue-

measure 0. Suppose that r > 0. If inf
C∈C

r(C) = r(C0) for some C0 ∈ C,
then

⋂
C = C0 ∈ C. Suppose that r(C) > r for all C ∈ C. For all n ∈ N

we can choose a Cn ∈ C such that r(Cn) < r + 1/n. The sequence
x(Cn) is bounded, so it has a convergent subsequence. We may assume
that x(Cn) itself is convergent. Let x(Cn) → x. Let B = B(x, r) be
the closed disc with center x and radius r. We prove that B =

⋂
C.

For every ε > 0 there exists an n ∈ N such that r(Cn) < r + ε and
d(x(Cn), x) < ε. Then Cn ⊆ B(x, r+ 2ε), hence

⋂
C ⊆ B(x, r+ 2ε) for

every ε > 0 and so
⋂
C ⊆ B. Let us assume indirectly that B *

⋂
C.

Then there exists a C ∈ C such that B \C 6= ∅. Then B(x, r) \C 6= ∅,
either, so we can choose a y /∈ C such that d(x, y) < r. There exists a
k ∈ N such that r(Ck) < r(C) and d(x(Ck), x) < r − d(x, y). For this
k we have that y ∈ Ck. As C is a chain and r(Ck) ≤ r(C), we obtain
that Ck ⊆ C. Now, y ∈ Ck ⊆ C, which is a contradiction. �

Proposition 9. There exists a countable maximal laminar system of
closed discs in R2.

Proof. Let Ta be the equilateral triangular grid having side length a
such that the origin (0,0) and (a, 0) are neighbouring vertices in Ta.

Ta = {i(a, 0) + j(a/2,
√

3a/2) | i, j ∈ Z}

If a = bc for some c ∈ N, then Tb is a re�nement of Ta (a and b do not
have to be integers). Let Sa be the system of closed discs with center
in Ta and radius 4a/9. The elements of Sa are pairwise disjoint and
satisfy the following property:

(1) If C1, C2, C3 ∈ Sa such that their centers form a triangle of Ta,
then the convex hull of the union of any two intersects the third
one. If C1, C2, C3 and C form a laminar system for some disc
C, and C contains C1 and C2, then it contains C3, as well.

For every integer n > 0 we de�ne a set of closed discsAn in the following
way: let A1 = S1. In A1 the minimal distance of two discs is 1/9. Let
A2 be the set of all discs in T1/90 that do not intersect the border of
any element of A1. Let us assume that we have already de�ned Ak for
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k < n such that Ak consists of all elements of S1/rk
for some integer rk

that do not intersect the border of any element of
k−1⋃
i=1

Ai.

At �rst we choose rn such that

• rk divides rn for every k < n, hence T1/rk
is a re�nement of

T1/rk−1

• 1/rk is much smaller than the distance of any two circles in
k−1⋃
i=1

Ai, so small enough to ��ll in the space� between any to

circles from
k−1⋃
i=1

Ai.

For this let δk = inf{d(∂C1, ∂C2) |C1, C2 ∈
k−1⋃
n=0

An, C1 6= C2} and

rk = rk−1

[
10

δk

]
,

where ∂C is the boundary of the disc C and [a] denotes the integer part

of a. Note that δk is positive because the set
k−1⋃
n=0

S1/rn is invariant under

the translations by the vectors (1, 0) and (0,
√

3/2). Let Ak consist of

all discs of S1/rk
that do not intersect the border of any discs in

k−1⋃
i=1

Ai,

Ak = {D ∈ S1/rk
| ∀C ∈

k−1⋃
n=0

An ∂D ∩ ∂C = ∅}.

Finally, let

A =
∞⋃

n=0

An.

By the de�nition of Ak the circles in {∂C |C ∈
k⋃

n=0

An} are pairwise

disjoint. Thus
k⋃

n=0

An is laminar and so A =
∞⋃

n=0

An is laminar, as well.

By the construction A is countable. We prove that A is a maximal
laminar system of closed discs. Suppose indirectly that D /∈ A and
A ∪ {D} is laminar.
At �rst consider the case when D *

⋃
A. Then D and

⋃
A are dis-

joint. For a su�ciently large n there exist two elements of An contained
inD such that their centers are neighbours in T1/rn . IfD1, D2, D3 ∈ An,
D1, D2 ⊆ D and the centers of D1, D2, D3 form a triangle in T1/rn , then
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laminarity implies thatD3 ⊆ D. By repeatedly using this argument, we

get that every element of the set {F ∈ An |F *
⋃ n−1⋃

i=0

Ai} is contained

in D, since the radius of discs in S1/rn is smaller than d(∂D1, ∂D2)/10

for any D1, D2 ∈
n−1⋃
i=0

Ai. This set is not bounded, this is a contradic-

tion.
Now we consider the case when D ⊆

⋃
A. Let Dk ∈ Ak, D ⊆ Dk,

k is maximal. For su�ciently large n there exist two elements of An

contained by D such that their centers are neighbours in T1/rn and
there exist D′ ∈ An such that D′ ⊆ (Dk \D) 6= ∅. Similarly to the �rst
case we get that (

⋃
An) ∩Dk ⊆ D, contradiction.

�

In [7] it was asked whether there exists a countable maximal laminar
system of closed discs. The following theorem answers what cardinality
a maximal laminar system of closed discs can have.

Theorem 10. The size of a maximal laminar system of closed discs
in R2 is either countable or continuum, and both cases can occur.

Proof. The cardinality is trivially at least ℵ0. The system {B(0, r) | r >
0} is a maximal laminar system of closed discs and has cardinality
continuum. In Propositions 8 and 9 it is proved that the cardinality of
a maximal laminar system can be ℵ0 as well, but no other cardinality
can occur. �

In Proposition 3 we give an example of a maximal laminar system
that is not a system of islands. Hence, the following problem arises
naturally.

Problem 1. What conditions are necessary for a laminar system in
order to be a system of islands?

Our techniques work only for maximal island systems, however it
would be interesting to know what happens in the general situation.

Problem 2. Is it true that for every cardinality ℵ0 < κ < 2ℵ0 there is
a (not necessarily maximal) system of islands?
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