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Abstract

Let V be a left vector space over the division ring D and let dim DV = κ. Let (SubV,∩)
and (SubV,+) denote the meet-semilattice and join-semilattice of the subspaces of V , re-
spectively. We prove that for κ finite (Sub V,∩) embeds into (Sub V, +) if and only if D
embeds into Dop. We show that the similar statement holds for every infinite κ if and
only if it holds for κ = ℵ0. For vector spaces over fields we obtain that (Sub V,∩) always
embeds into (Sub V, +).

1. Introduction

In [1] the following statement is proved (Corollary 4.5): Let V be an
infinite-dimensional vector space over the division ring D. Then there is no

embedding from (Subfin V,+) into (SubV,∩). Here, (Subfin V,+) denotes the
semilattice of finite-codimensional subspaces of V under the operation + and
(SubV,∩) is the meet-semilattice of the subspaces of V under ∩. More gener-

ally it is shown that there is an embedding from (Subfin V,+) into (SubW,∩)

if and only if dimW = (cardD)dim V . The dual of the above problem is asked
(Problem 1): For an infinite-dimensional vector space V does (SubV,∩) have
an embedding into (SubV,+)? In this paper we investigate this question for
both finite- and infinite-dimensional vector spaces. Let V be a left vector
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space over the division ring D and let dim DV = κ. We prove that for κ
finite (SubV,∩) embeds into (SubV,+) if and only if D embeds into Dop.

For κ infinite we show that (SubV,∩) embeds into (SubV,+) if and
only if for every finite-dimensional vector space W over D the semilattice
(SubW,∩) embeds into (SubV,+). This settles the case of vector spaces
over fields: (SubV,∩) embeds into (SubV,+).

Finally, we discuss the general case and give some necessary conditions
for the problem. We show that if there is a vector space V with no such
embedding then there is also such a vector space W of countable dimension
over the same division ring.

2. Vector spaces over fields

In this section, V will denote a vector space of dimension κ over the
field F . Let V ∗ denote the dual of V . Note that dimV ∗ = κ if κ is finite and
dimV ∗ = (cardF )dimV , otherwise. This result is proved in [2] for fields, but
the explanation works for division rings, as well.

Recall the most important properties of the Galois connection between V
and V ∗. For a subspace U 5 V let U ] =

{

f ∈ V ∗ | f(u) = 0 for every u ∈ U
}

.

For a subspace W 5 V ∗ let W [ =
{

v ∈ V | f(v) = 0 for every f ∈W
}

. For

U 5 V we have U ] [ = U and for a subspace U ] = W 5 V ∗ the relationship

W [ ] = W holds. The subspaces of V ∗ of the form U ] are called closed sub-
spaces. Finite-dimensional subspaces are closed.

Denote by SubV the lattice of subspaces of V and by ClSubV ∗ the lattice
of closed subspaces of V ∗. Now, SubV is dually isomorphic to ClSubV ∗, that
is (SubV,+,∩) and (ClSubV ∗,∩,+) are isomorphic as lattices. Hence the

map W →W [ is a semilattice isomorphism from (ClSubV ∗,∩) to (SubV,+).
For a subset X j V , let 〈X〉 denote the subspace of V generated by X.

For an index-set I and vector spaces Vi, i ∈ I let
⊕

i∈I

Vi denote the (discrete)

direct sum and
∏

i∈I

Vi denote the complete direct product of these vector

spaces, moreover, let ιi denote the canonical embedding of Vi into the com-
plete direct product, that is

ιi(v)j =

{

v if j = i

0 if j 6= i

for every i ∈ I.

Theorem 1. Let V be a vector space over a field. Then there is an
embedding of (SubV,∩) into (SubV,+).
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Proof. For finite-dimensional vector spaces the statement follows from
V ∗ ∼= V and ClSubV ∗ = SubV ∗. For the infinite-dimensional case the
embedding will be constructed in several steps. According to the above
mentioned Galois-connection, it is enough to construct an embedding into
(ClSubV ∗,∩), instead of (SubV,+). For this we show an embedding from
(SubV,∩) into (SubV ∗,∩), such that each subspace in V corresponds to a
closed subspace of V ∗. Denote by (vi)i∈I a basis of V and by v∗i ∈ V ∗ the
projection to the i-th coordinate, that is v∗i (

∑

j αjvj) = αi. Note that V ∗ =
∏

〈v∗i 〉. For each λ j I let Vλ = 〈vi | i ∈ λ〉 5 V , and Vλ∗ =
∏

i∈λ

〈v∗i 〉 5 V ∗.

Denote by P the set of finite subsets of I, that is P =
{

λ ⊂ I | |λ| <∞
}

.

Now, using our notations, for every λ j I and i ∈ I we have that

vj
∗ ∈ Vλ

] if and only if j /∈ λ and vi ∈ Vλ∗
[ if and only if i /∈ λ. Hence

(Vλ∗)[ = 〈vi | i ∈ I \ λ〉 and (Vλ)] =
∏

i∈I\λ

〈v∗i 〉 for any λ ⊂ I and so

(1) V = Vλ ⊕ (Vλ∗)[ and V ∗ = Vλ∗ ⊕ (Vλ)].

Let V =
∏

λ∈P

Vλ, and for every λ ∈ P and i ∈ λ let v(i,λ) = ιλ(vi). Moreover,

let B = {v(i,λ) | λ ∈ P, i ∈ λ}, the disjoint union of the bases of the subspaces

ιλ(Vλ). The cardinality of B is equal to the cardinality of I, therefore there is
a bijection f : B → {v∗i | i ∈ I}. This f extends naturally to an isomorphism

ζ : V → V ∗. Note that dimV = dimV ∗ = (cardF )|I| = (cardF )dim V . For a

λ ∈ P define λ′ = {j ∈ I | v∗j = f(v(i,λ)), i ∈ λ}.

The map ζ provides an internal complete direct product structure on V ∗.
By the definition of λ′ we have ζ

(

ιλ(Vλ)
)

= Vλ′∗ for every λ ∈ P, hence

V ∗ =
∏

λ∈P

Vλ′∗ . The linear map ζ induces an isomorphism ζ between the

semilattices (SubV ,∩) and (SubV ∗,∩).
From (1) we can obtain the following two decompositions:

(2) x = xλ + (x− xλ) where xλ ∈ Vλ′ , and x− xλ ∈ (Vλ′∗)[

for every x ∈ V , and

(3) w = wλ + (w − wλ) where wλ ∈ Vλ′∗ , and w − wλ ∈ (Vλ′)]

for every w ∈ V ∗. Moreover, wλ(x) = wλ

(

xλ + (x− xλ)
)

= wλ(xλ) =
(

wλ +

(w − wλ)
)

(xλ) = w(xλ), hence

(4) wλ(x) = w(xλ)
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holds for every x ∈ V and w ∈ V ∗.
For a subspace U 5 V , let ψ(U) =

∏

λ∈P

(U ∩Vλ). Now, ψ(U) is a subspace

of V , thus ζ
(

ψ(U)
)

is a subspace of V ∗.

Claim. For any U 5 V the subspace ζ
(

ψ(U)
)

is closed.

Proof of Claim. We show that if Uλ 5 Vλ′∗ for λ ∈ P then we have
∏

λ

Uλ = (
⋂

λ

U [
λ)

]
.

For every w ∈
∏

λ

Uλ and v ∈
⋂

U [
λ, we shall prove that w(v) = 0. Now, v

can be written as a sum, v =
∑

vλ with vλ ∈ Vλ′ . Then w(v) =
∑

w(vλ) =
∑

wλ(v), according to (4). Since Uλ is finite dimensional, wλ ∈ Uλ = (U [
λ)

]

holds, therefore wλ(v) = 0 and so
∑

wλ(v) = w(v) = 0, as well.

For the other direction assume that w ∈ (
⋂

λ∈P

U [
λ)

]
. Now, Uλ 5 Vλ′∗ for

each λ ∈ P, hence (Vλ′∗)[ 5 (Uλ)[, and so (x− xλ) ∈ (Uλ)[ for any x ∈ V and

λ ∈ P. Thus xλ = x− (x− xλ) ∈ (Uλ)[ for every x ∈ (Uλ)[. Moreover, xλ ∈

Vλ′ 5
⋂

α∈P, α6=λ

(Vα′∗)[ 5
⋂

α∈P, α6=λ

U [
α, hence xλ ∈

⋂

α∈P

U [
α for every λ ∈ P and

x ∈ (Uλ)[. Since w ∈ (
⋂

α∈P

U [
α)

]
, for any λ ∈ P and x ∈ (Uλ)[ we have that

w(xλ) = 0. Hence by (4) we obtain that wλ(x) = 0. Thus for every λ ∈ P

we have wλ ∈ (U [
λ)

]
. As Uλ is finite dimensional, wλ ∈ Uλ, hence w ∈

∏

λ∈P

Uλ,

and this is what we wanted to prove.
The mapping that takes U to ζ

(

ψ(U)
)

is an embedding that preserves

intersections. Since ζ
(

ψ(U)
)

=
∏

λ

ζ
(

ψ(U) ∩ Vλ

)

, is closed by the claim, the

map ζ ◦ ψ is a semilattice-embedding from (SubV,∩) to (ClSubV ∗,∩). �

3. Vector spaces over division rings

We use the notation DV for a vector space V over a division ring D
(the elements of D are left multipliers). Our aim is to characterize those
finite-dimensional vector spaces such that the semilattice (SubV,∩) is em-
beddable into the semilattice (SubV,+). The question will be answered a
bit more generally as we will characterize those pairs of vector spaces FA
and GB of the same finite dimension such that (SubA,∩) is embeddable into
(SubB,+). For this we start with a few definitions. Let FA and GB be vec-
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tor spaces over the division rings F and G. A duality is a one-to-one and
order-reversing mapping from SubA to SubB, a projectivity is a one-to-one
and order-preserving mapping from SubA to SubB. For the moment, we
will consider only finite-dimensional vector spaces, now. Both a duality and
a projectivity can exist only if dimA = dimB. A projectivity preserves the
dimension of a subspace, while a duality “reverses” it, meaning that if δ is a
duality and U 5 A with dimU = k and dimA = n then dim (δU) = n− k.
For a vector space DV we denote by L(V ) the space of linear forms over V .
The right vector space L(V )D is called the adjoint space of DV . As we com-
mitted ourselves to use left vector spaces we have to convert the adjoint space
into a left vector space. We denote by DopV ∗ the canonical dual space of DV .
Here V ∗ = L(V ) and (D, ∗) = Dop with the multiplication f, g ∈ Dop and
a ∈ V ∗: f ∗ g = gf and f ∗ a := af . In [2] (Chapter IV.1) the following is
proved: If dim DV is finite then there is a duality from DV to DopV ∗. Hence
the construction of Theorem 1 is unattainable in the non-commutative case,
as the vector spaces that we use in the proof are over distinct division rings.
Or, if we copy the arguments we embed (Sub FA,∩) into (SubA∗

F ,+). We
show a way of clarifying the situation.

Theorem 2. Let FA and GB be left vector spaces of equal finite dimen-
sion at least 3. Then the following are equivalent:

(1) there is a meet-semilattice embedding from (Sub FA,∩) into
(Sub GB,∩).

(2) there is a lattice embedding from Sub FA into Sub GB.

(3) there exists a join-semilattice embedding from (Sub FA,+) into
(Sub GB,+).

(4) there is an embedding from F into G.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3). Let us assume that we have a meet-
semilattice embedding α. It is an order-preserving map, hence it preserves
the height of an element. Thus for every U1, U2 5 A we have dimα(U1) =

dimU1, dimα(U2) = dimU2 and dim
(

α(U1) ∩ α(U2)
)

= dimα(U1 ∩ U2) =

dim (U1 ∩ U2). Thus dim
(

α(U1) + α(U2)
)

= dim (U1 + U2). The embed-

ding is order-preserving, hence α(U1) + α(U2) 5 α(U1 +U2). The dimension
of these two subspaces are equal, so α(U1) + α(U2) = α(U1 + U2). Thus a
meet-semilattice embedding is always a lattice embedding. Similarly, a join-
semilattice embedding is always a lattice embedding, hence (1) and (2) and
(3) are equivalent.

(4) =⇒ (1). Let F 5 G and A = F n. Then, B = Gn. Let U 5 A be
a subspace of A. The set of vectors U is naturally a subset of B. Let
f(U) = 〈U〉B, the subspace generated by U j B of B. We claim that f is a
meet-semilattice embedding. The rank of a system of vectors does not depend
on the field. Thus for u, v1, v2, . . . , vn ∈ A it is obvious that u ∈ 〈v1, . . . , vn〉A
is equivalent to u ∈ 〈v1, . . . , vn〉B. Also the independence of the system of
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vectors {v1, . . . , vn} over A is equivalent to the independence of this sys-
tem over B. Thus f(U ⊕ V ) = f(U) ⊕ f(V ). Let U1, U2 5 A, U1 ∩ U2 = W ,

U1 = W ⊕ Ũ1, U2 = W ⊕ Ũ2. Ũ1 ∩ Ũ2 = W ∩ Ũ1 = W ∩ Ũ2 = {0}, hence

f(Ũ1)∩f(Ũ2) = f(W )∩f(Ũ1) = f(W )∩f(Ũ2) = {0}. Thus f(U1)∩f(U2) =
(

f(W ) ⊕ f(Ũ1)
)

∩
(

f(W ) ⊕ f(Ũ2)
)

= f(W ) = f(U1 ∩ U2), so f is indeed a
meet-semilattice embedding.

(2) =⇒ (4). By the Projective Structure Theorem in [2] (Chapter III.1)
we have that in the case of dim FA = dim GB = 3 there is a lattice isomor-
phism (projectivity) from FA to GB if and only if F and G are isomorphic
division rings. Now we consider this theorem with the following approach:
if we use any process of coordinatization of a projective plane, the resulting
division ring of the coordinates is uniquely determined up to isomorphism.
There are several ways to construct the division ring (see e.g. [3]). We will use
the following one, because it is based on the lattice of the projective plane:
Take four geometrically independent points, two of them will be 0 and 1.
Geometrical independence is a property that we can check using purely the
lattice of the projective plane, and it depends only on the sublattice gener-
ated by the four points. We can define an addition and a multiplication on
the points of the line through 0 and 1 using only lattice operations.

Let f : FA→ GB be a lattice embedding. Now consider four arbitrary
independent points in FA and take the images of these four points at f . The
latter will form an independent quadruple of points in SubB, because the
sublattice they generate is isomorphic to the one, generated by the original
four points of FA. At first, we construct the coordinates for the image of
FA in GB. We obtain F , of course (up to isomorphism), as a subset of a
line in B. When we proceed for the division ring for the whole line of B,
we obtain the division ring G. The coordinates of the points corresponding
to F remain unchanged. Hence F will be a sub-division ring of G. By the
Projective Structure Theorem both F and G are uniquely determined, hence
F is embeddable into G.

If dim FA = dim GB > 3, then let A′ 5 A be a subspace of dimension 3.
The image of A′ is B′. Since f is order-preserving it also preserves the di-
mension of a subspace, hence dimA′ = dimB′ = 3. An order-preserving map
is restrictable to a subspace, hence f |A′ is a lattice embedding from Sub FA

′

into Sub GB
′. Thus F 5 G holds, again. �

Now we can easily characterize the finite-dimensional vector spaces A
over a division ring F with the property that (Sub FA,∩) is embeddable into
(Sub FA,+).

Theorem 3. Let FA be a finite-dimensional vector space over a division
ring F . There exists an embedding from (Sub FA,∩) into (Sub FA,+) if and
only if dim FA 5 2 or dim FA > 2 and there is an embedding from F into
F op.
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Proof. If dim FA = 1 then the lattice is the two element lattice, so the
statement is true. If dim FA = 2 then Sub FA 'M|F |, the lattice of height 2,

where there are |F | elements in the middle.
Finally, let dim FA = 3. Let f denote an embedding of (Sub FA,∩) into

(Sub FA,+) and δ be a projectivity from FA to F opA∗. The map δf is an
embedding of FA to F opA∗. Hence, by Theorem 2, F 5 F op holds.

If F 5 F op, then by Theorem 2 FA embeds to F opA∗. �

Hence, in order to show a finite-dimensional vector space that has the
lattice of subspaces not embeddable into the dual of the lattice it is enough
to construct a division ring not embeddable into its opposite. These division
rings are well-studied. For a detailed account on this and other questions on
division rings see [4] (Chapter 2.5). Here we recall a construction for such
division rings. Consider a Galois extension F |Q with cyclic Galois group Zn.
Let 3 5 n and denote by σ a generator of Zn. Let q ∈ Q be a nonzero ele-
ment. The division ring D is generated by F and an element y satisfying the
following relations: yn = q and for any x ∈ F xy = yσ(x). This division ring
is a finite-dimensional vector space over Q, hence an embedding from D into
Dop is always an isomorphism. Note that in the Brauer group the class of G
is the inverse of the class of Gop for a division ring G. Hence if G is isomor-
phic to Gop then the order of the class of G in the Brauer group is 2. The
order of the class of D in the Brauer group is n, hence D and Dop are not
isomorphic. Thus D is not embeddable into Dop.

It is worth mentioning the following corollary of Theorems 2 and 3.

Corollary 4. Let FA and GB be vector spaces of equal finite dimension
at least 3. There is an embedding from (Sub FA,+) into (Sub GB,∩) if and
only if there is an embedding from F into Gop.

Finally, we consider infinite dimensional vector spaces.

Theorem 5. Let D be a division ring and let U be a left D-vector space
with countable infinite dimension.

(1) There is an embedding of (SubV,∩) into (SubV,+) for every V over
D if and only if D 5 Dop.

(2) There is an embedding of (SubV,∩) into (SubV,+) for every infinite-
dimensional vector space V over D if and only if (SubU,∩) embeds
into (SubU,+).

(3) There is an embedding of (SubU,∩) into (SubU,+) if and only if
(SubV,∩) embeds into (SubU,+) for every finite-dimensional V .

Proof. For item 1 first let D 5 Dop. Then (Sub DV,+) 5 (Sub DopV,+)
and the construction of Theorem 1 combined with this embedding gives the
desired result. For the other direction, by Theorem 3 the embedding of the
3-dimensional case implies that D 5 Dop.

For items 2 and 3 if (SubU,∩) embeds to (SubU,+), then for every finite-
dimensional vector space V the semilattice (SubV,∩) embeds to (SubU,+),
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as well. Replacing Vλ by U with an embedded copy of Vλ, copying the proof
of Theorem 1 gives the desired result. �

Although the original question of [1] remains open, by the following con-
sequence of item 2 of Theorem 5 we got closer to the answer.

Corollary 6. Let dim DU = ℵ0. If there is no embedding of (SubV,∩)
into (SubV,+) for some infinite-dimensional vector space V over D, then
(SubU,∩) does not embed into (SubU,+), either.
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