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Main goals of this talk

• either you do not know Schnyder woods

I will make you discover the amazing world of
Schnyder woods

• or you already encountered Schnyder woods

I will explain how to efficiently compute
Schnyder woods for toroidal triangulations



(Planar) Schnyder woods
(definitions and main properties)



Schnyder woods for genus 0 (plane) triangulations: definition

ii) colors and orientations around each inner node
must respect the local Schnyder condition

i) edges are colored and oriented in such a
way that each inner node has exactly one
outgoing edge of each color

A Schnyder wood of a (rooted) planar
triangulation T is partition of all inner edges
into three sets T0, T1 and T2 such that

V0 V1

V2

V1

V2

V0

iii) inner edges incident to Vi are of color i and
oriented toward Vi

input: a genus 0 triangulation T with
a marked root face {V0, V1, V2}

local Schnyder condition

Definition [Schnyder ’90]

[W. Schnyder SoDA’90]

Theorem [global spanning property]
The three sets T0, T1, T2 are spanning trees
of the inner vertices of T (each rooted at
vertex vi)

T
for inner vertices

Ti := digraph defined by directed edges of color i

T2

T1

T0
V2

V0

V1



Schnyder woods: some (classical) applications

bijective counting, random generation
(Poulalhon-Schaeffer, Icalp 03)

Graph encoding

(Schnyder SoDA’90)
Planar straight-line grid drawing (on a O(n× n) grid)

cn = 2(4n+1)!
(3n+2)!(n+1)!

⇒ optimal encoding ≈ 3.24 bits/vertex

(Chuang, Garg, He, Kao, Lu, Icalp’98)

(He, Kao, Lu, 1999)
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[Felsner, Bonichon et al. ’10, ...]
geodesic embeddings on coplanar orthogonal
surfaces, TD-Delaunay graphs and
Half-Θ6-graphs



Schnyder grid drawing: face counting algorithm
Theorem (Schnyder, Soda ’90)
For a triangulation T having n vertices, we can draw it (with no edge crossings) on a grid of
size (2n− 5)× (2n− 5), by setting x0 = (2n− 5, 0), x1 = (0, 0) and x2 = (0, 2n− 5).

V0 = (0, 0) V1 = (13, 0)

x1
x0

x2

α1

v
α0

α2

v = α0x0 + α1x1 + α2x2

R2(v)

R1(v)

R0(v)
v

v := |R0(v)|
|F |−1 V0 +

|R1(v)|
|F |−1 V1 +

|R2(v)|
|F |−1 V2

d → (5, 6, 2 )

d → (6,2)

d
d

V2 = (0, 13)

αi :=normalized area of (xi−1, xi+1, v)

|Ri(v)| is the number of triangles in Ri(v)

|F | − 1 = 2n− 5

Lemma
For each inner vertex v the three
monochromatic paths P0, P1, P2

directed from v toward each vertex
Vi are vertex disjoint (except at v)
and partition the inner faces into
three sets R0(v), R1(v), R2(v)

(number of inner triangles)

(barycentric coordinates of v)



Linear-time computation of (planar) Schnyder woods

Theorem (Brehm, 2000)
A Schnyder wood can be computed in linear-time
(via a sequence of n− 2 vertex shellings)

use Canonical Orderings [De Fraysseix, Pach, Pollack ’89]

V0 V1

→ Gk−1
Gk

vk ∈ ∂Gk
vk

vn−1

V2

Remove at each step a vertex v on the boundary ∂Gk

(with no incident chordal edges in the gray region)

Gn := T

Gn−1 Gn−2 Gn−3

G2G3

vn = V2

V0 V1

vrvl

k > l
k > r



Schnyder woods for higher genus surfaces
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Toroidal Schnyder woods (g=1)
[Goncalves Lévêque, DCG’14]

g-Schnyder woods (for genus g surfaces)
[Castelli Aleardi, Fusy, Lewiner, SoCG’08]

Schnyder local rule valid at each vertex

Schnyder local rule valid only almost
everywhere (except O(g) vertices)



Toroidal Schnyder woods: definition

e = 3n

Def. Toroidal Schnyder woods

n− e + f = 2− 2g
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[Goncalves Lévêque, DCG’14]

3-orientation + Schnyder local
rule valid at each vertex

e = 3n− 6n− e + f = 2

Def. Planar Schnyder woods

V0 V1

V2

3-orientation + Schnyder local
rule valid at each inner vertex

toroidal Schnyder wood

3-orientation of T

(in the plane 3-orientations
and Schnyder woods are in
bijection)
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1In the toroidal case a
3-orientation does not
necessarily yield a valid
toroidal Schnyder wood



Cycles in Toroidal Schnyder woods

e = 3n
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[Goncalves Lévêque, DCG’14]

e = 3n− 6n− e + f = 2

V0 V1

V2

mono-chromatic components are trees:
connected graphs without cycles

T2

T1

T0
V2

V0

V1
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toroidal Schnyder woods must
contain a (mono-chromatic)
cycle in each color

mono-chromatic cycles are
non-contractibles

some colors may define
disconnected components

all mono-chromatic cycles of the
same color are:
homotopic and disjoint (parallel)
and oriented in one direction



Crossing cycles: a hierarchy of Schnyder woods
Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

crossing: every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods can be:

crossing Schnyder wood
the Schnyder wood is
non-crossing but at

least balanced
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half-crossing
Schnyder wood

only half-crossing: only two mono-chromatic cycles are pairwise crossing

non-crossing: all mono-chromatic i-cycles are parallel (non crossing)
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(required for xy-periodic drawing)

useful for bijective encoding

balanced Schnyder woods

[Despré, Goncalves, Lévêque DCG’17]



Toroidal Schnyder (periodic) drawings

Idea: use the face-counting method in
the universal cover to assign (relative)
coordinates

[Goncalves and Lévêque, DCG’14]

R1(v)

d

In the toroidal case: regions are unbounded

Warning: regions are defined if the
Schnyder wood is crossing

Warning: regions can be defined if the
Schnyder wood is crossing

xy-periodic grid drawing on a grid
of size O(n2)×O(n2)



Toroidal Schnyder woods: existence
(for general toroidal triangulations and maps)Thm[Goncalves Lévêque, DCG’14]

Any toroidal triangulation admits a toroidal crossing Schnyder wood

x y

v

u
⇒

x y

⇒

perform (carefully) a sequence of n− 1 edge contractions

decontract (and color/orient)

color and orient

. . .

w

edge contraction

⇒

⇐

⇒

⇐ . . .⇐

⇒

remark: maintaining the crossing
property can require quadratic time

one vertex
3 edges (loops)



Toroidal Schnyder woods: existence
(for general toroidal triangulations and maps)Thm[Goncalves Lévêque, DCG’14]

Any toroidal triangulation admits a toroidal crossing Schnyder wood

x y

v

u
⇒

x y

⇒

perform (carefully) a sequence of n− 1 edge contractions

decontract (and color/orient)

color and orient

. . .

w

edge contraction

⇒

⇐

⇒

⇐ . . .⇐

⇒

proof: (involved) case analysis

x y

x y

x y

w

w

w

w

w

x y⇒
(3 possible choices of coloring)



Toroidal Schnyder woods: existence II
[for simple toroidal triangulations]Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.
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V0

V1V2
V2

V0
V1

Γ2

Γ1

Γ1

Γ0

Γ0

crossing toroidal Schnyder woodsplit along Γ0, Γ1, Γ2
(for simple triangulations)

(two planar quasi-triangulations)

Corollary[Goncalves Lévêque, DCG’14]
Any simple toroidal triangulation admits a toroidal crossing Schnyder wood

(no multiple edges, no loops)



Open problems
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Open problem:[Goncalves Lévêque, DCG’14] is
it possible to find a toroidal Schnyder wood
with connected mono-chromatic components
and such the intersection of the three cycles is a
single vertex (and with connected components)?

Open problem [Lévêque, 2015]
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Open problem:[Goncalves Lévêque, DCG’14] is it
possible to find (at least) one toroidal Schnyder
wood which is crossing and with connected
mono-chromatic components (one for each color)?
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3 disjoint mono-chromatic cycles of color 2
Mono-chromatic cycles of color 0 and 1 are connected

Is it possible to compute in linear-time crossing
toroidal Schnyder woods via vertex shellings?



Our contributions

Open problem:[Goncalves Lévêque,
DCG’14] is it possible to find (at least)
one toroidal Schnyder wood with
connected mono-chromatic components
and such the intersection of the three
cycles is a single vertex?

Open problem [Lévêque, 2015]

Open problem:[Goncalves Lévêque, DCG’14] is it
possible to find (at least) one toroidal Schnyder
wood which is crossing and with connected
mono-chromatic components (one for each color)?

0
2

7

4

1

7

4

0
2

1
1

1
5

6
8

3

crossing Schnyder wood
Mono-chromatic cycles of color red and blue are connected

Is it possible to compute in linear-time crossing
toroidal Schnyder woods via vertex shellings?
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Yes, our implementation can process
more than 1M vertices/second

Almost Yes, the connectness is true for
at least two colors

True for all toroidal triangulations of
size at most n = 11 (experimental) triangulations generated using

surftri tool (by T. Sulanke)



Our contribution:
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Computing in linear time (crossing) Schnyder woods with
at least two monochromatic connected components

(via vertex shellings)



⇒

input: cylindric triangulation

output: cylindric Schnyder wood

Algo 1: Toroidal Schnyder woods via (cylindric) canonical orderings

Pre-processing: cut along a non-contractible cycle Γ

⇒

v

At each step remove a vertex and
color/orient edges

v
Cext

Compute a cylindric canonical ordering
[Castelli Aleardi, Fusy, Devillers, GD2012]

≈

Γ is split into two copies: Cext and Cin

Cin

Cext

Cin

Cext

Cin

Γ
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(not necessarily crossing Schnyder woods)

Γin

v

v
vr

vl

vr
vl

local invariant

⇒ ⇒

glue together the two boundaries

(the local Schnyder woods remains satisfied on Γ)
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Toroidal Schnyder wood

Algo 1: Toroidal Schnyder woods via (cylindric) canonical orderings
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cylindric Schnyder wood toroidal Schnyder wood

Γ



(not necessarily crossing Schnyder woods)

Γ

⇒
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Toroidal Schnyder wood
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cylindric Schnyder wood toroidal Schnyder wood

Algo 1: Toroidal (and cylindric) Schnyder woods : properties

0 and 1-paths are oriented downward

2-paths are oriented upward

0, 1 and 2-paths cross the cycle Γ

edges of Γ are either 0 or 1
mono-chromatic cycles are never homotopic to Γ
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1 If the Schnyder wood is (at least)
half-crossing then the 0-cycles
and 1-cycles are pairwise crossing



P -constrained (cylindric) Schnyder woods

G

Cext

Cin

9 98 98
7

98
7

6

P

98
7

6
5
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6
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4

98
7

6
5

4

3

98
7

6
5

4

3

2

98
7

6
5

4

3

2
1

S(G)

8

ut−1

u0

ut−1

u0

Input: a cylindric triangulation G and a chord-free path P := {u0, . . . , ut−1}

Output: a Schnyder wood SP (G) such that the edges of P are of black
Solution: perform vertex shellings only for (boundary) vertices which are not
adjacent to an inner vertex of P

the path P must intersect the two boundary cycles only at u0 and ut−1

7



Toward half-crossing Schnyder woods
(with one connected mono-chromatic component)



Rivers: definition

u0

ut−1 = z0
z1

z2

z1
z2

u0 x1 x2

z0

Def: a river is a thin cylindric triangulation such that the two boundaries are
disjoint and chordless and such every vertex is incident to a non-trivial chord
(connecting the two boundaries)

Cext

Cin



P -constrained right-most traversal of a river
input: a river and a chord-free path P

c

a

b

5

46

3

2
1

assume there some chords at the left of a

P := {a, b, c}

c

containing a blue path
P1 = {c, v6, v4, v1, a}, starting at c
and ending at a

output: a Schnyder wood

remove vertices without chords in right-most manner (at the right of P )
v6

c

a

v4

first step: remove c

3

2 1

5

a

c



Right-most traversal of a river

case A

case C2

case B

case C1

ut−1

xcu0

1

7 65 2

4

3

P := {u0, ut−1 = v2}
ut−1

u0

3

4 251

P := {u0, ut−1 = v5}

c

5

a

46

3

2
1

P := {u0, v3, ut−1 = v7}

ut−1

u0

P := {u0, v6, ut−1 = v8}

Lemma
In cases (A), (B) and (C1),
the blue path P1 visits all
vertices on the top boundary
and crosses P either at u0 or
at ut−1

In case (C2), the blue path P1

may not cover all top boundary
vertices (not crossing P ), but
then there exists a ccw-oriented
(contractible) cycle (green
region)

7

6

xc

5
4

1

2 38

Right-most traversal: remove
at each step the left-most
vertex without chords



An algorithm for half-crossing Schnyder woods
Algo 2

G
Γ

Γ

R

Gtop

Gbot

T

11 10

9

8

z

x
P = {x, z}

choose an arbitrary chordal
edge in the river and take a
path of length 1:

⇒
cut along Γ

compute a river R

11 10

9

8

Gtop

compute a Schnyder wood for Gtop



An algorithm for half-crossing Schnyder woods
Algo 2

11 10

9

8

P = {x, z}z

x

Gtop

R

Gbot

11 10
9

8

7

6

R

Gtop

11 10
9

8

7

6 5

4 1
2

3

compute S(Gbot)

blue and black cycles are crossing

return the Schnyder wood

there is one connected blue cycle

compute a P -constrained
rightmost traversal of the river

5

Gtop

One pass suffices!



An algorithm for half-crossing Schnyder woods
Algo 2

P = {x, z}

Gtop

Gtop

Gbot

11 10
9

8

7

6 5

compute S(Gbot)

the blue cycle and black
cycles are NOT crossing

bad news: we need more work

Sometimes two passes
are required

R

11 10

9

8

z

x

11 10
9

8

6

5 7

4
321

red cycles cross black cycles but
have 2 components

good news: black cycles are chord-free,
we can run a second pass

compute a P -constrained
rightmost traversal of RR



An algorithm for half-crossing Schnyder woods
Algo 2

w has type C2

compute S(Gbot)

the red cycle and the
black cycle are crossing

there is only one
connected red cycle

Run the second pass

R

Gtop

Gbot

11 10
9

8

7
65

P2

11 10

9

8

w

y

R

Gtop

Gbot

11 10
9

8
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65
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321

compute a constrained
leftmost traversal of R

choose P2 = {y, w} := γ2 ∩R
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321

γ2
γ2 is chord-free

return the Schnyder wood



Toward crossing Schnyder woods
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(with two connected mono-chromatic components)



An algorithm for crossing Schnyder woods

the 2-cycles and the
1-cycle are NOT
crossing

Γ
Γ

Gtop

Rtop

Rbot

Gmid

Gbot

Γ

6

2
1

5 4
3

1110

8
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9

12

Pt(C1)

Pb(C1)

decomposition into 5 components

half-crossing before reversing

Γ

6

2
1

5 4
3

1110

8

7

9

12

crossing after reversing
an oriented cycle in Rbot to be reversed

compute two non overlapping rivers



Experimental results



Fast linear-time implementation

n = 360
Penrose

triangle

ring

n = 605

Koch

snowflake

n = 120

(with Java 1.8, on a Dell Laptop,
Intel core i7 2.6GHz, 8GB RAM)



Conjectures on toroidal Schyder woods: experimental confirmation

Open problem: is it possible
to find (at least) one toroidal
Schnyder wood with
connected mono-chromatic
components and such the
intersection of the three cycles
is a single vertex?

(true for all triangulations
of size at most n = 11)
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triangulations are generated with surftri software [Sulanke, 2006]



Schyder woods for g ≥ 2
Thm (3-orientations for graphs on surfaces, of arbitrary genus)

Any triangulation of a surface (the sphere and the projective
plane) admits a ’3-orientation’: orientation without sinks
s.t. every vertex has outdegree divisible by three

Open problem [Goncalves Knauer Lévêque, 2016]

Wikipedia picture[Albar Goncalves Knauer, 2014]

Thm [Suagee, 2021]

Simple triangulations of genus g ≥ 1 having
”large” edgewidth do admit Schnyder woods

Multiple local Schnyder condition:
the outdegree of every vertex is a
positive multiple of 3.

(there are no sinks)

edgewidth ≥ 40(2g − 1)

surftri software [Sulanke, 2006]

exaustive generation of all 3-orientations
for all triangulations with g = 2, n ≤ 11

Experimental confirmation (g = 2)

All simple triangulations of genus g = 2

and size ≤ 11 admit Schnyder woods

(size of the smallest non contractible cycle)

Existence of Schnyder woods for higher genus triangulations




