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Main goals of this talk

e either you do not know Schnyder woods

| will make you discover the amazing world of
Schnyder woods

e or you already encountered Schnyder woods

| will explain how to efficiently compute
Schnyder woods for toroidal triangulations
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(Planar) Schnyder woods

(definitions and main properties)




Vo

Schnyder woods for genus 0 (plane) triangulations: definition

Vi

input: a genus 0 triangulation 7 with ‘3
a marked root face {V;, V1, Vo} !

Definition [Schnyder '90]
A Schnyder wood of a (rooted) planar
triangulation 7 is partition of all inner edges
into three sets 1, 17 and 1% such that

i) edges are colored and oriented in such a
way that each inner node has exactly one
outgoing edge of each color

ii) colors and orientations around each inner node
must respect the local Schnyder condition

iii) inner edges incident to V; are of color ¢ and
oriented toward V;

[W. Schnyder SoDA’90]

local Schnyder condition
for inner vertices

Theorem [global spanning property]

The three sets 1y, 11, T5 are spanning trees
of the inner vertices of T (each rooted at
vertex v;)

T; := digraph defined by directed edges of color i
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Schnyder woods: some (classical) applications

[Felsner, Bonichon et al. '10, ...]
geodesic embeddings on coplanar orthogonal

surfaces, TD-Delaunay graphs and
Half-Og4-graphs
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(Poulalhon-Schaeffer, Icalp 03)
bijective counting, random generation

Cn

Brt2)(n+1)!

= optimal encoding & 3.24 bits/vertex

(Chuang, Garg, He, Kao, Lu, Icalp’98)
(He, Kao, Lu, 1999)

Ty (u)((&)(u)(u)l)(u)((ul_)?(u)(u)

l
1> 00000101010100110111

Graph encoding

(Schnyder SoDA’90)
Planar straight-line grid drawing (on a O(n x n) grid)




Schnyder grid drawing: face counting algorithm
Theorem (Schnyder, Soda "90)

For a triangulation 7 having n vertices, we can draw it (with no edge crossings) on a grid of
size (2n — b) X (2n — b), by setting xg = (2n — 5,0), x1 = (0,0) and z5 = (0,2n — 5).

V= Qpxg + alxl —+ Qoo
IRl(v>|V 4 By,

‘ 0 TRT- [F[-1
R;(v)| is the number of triangles in R;(v)
|F|—1=2n-5
(number of inner triangles)

a; :=normalized area of (z;_1,2;11,v
(barycentric coordinates of v)

Lemma

For each inner vertex v the three
monochromatic paths Fy, P, P»
directed from v toward each vertex
V; are vertex disjoint (except at v)
and partition the inner faces into
three sets Ry (v), R1(v), Ra(v)




Linear-time computation of (planar) Schnyder woods

use Canonical Orderings [De Fraysseix, Pach, Pollack '89]

Theorem (Brehm, 2000)

A Schnyder wood can be computed in linear-time
(via a sequence of n — 2 vertex shellings)

Remove at each step a vertex v on the boundary 0G/,
(with no incident chordal edges in the gray region)




Schnyder woods for higher genus surfaces

g-Schnyder woods (for genus g surfaces) | Toroidal Schnyder woods (g=1)
[Castelli Aleardi, Fusy, Lewiner, SoCG'08] [Goncalves Lévéque, DCG'14]

Schnyder local rule valid only almost
everywhere (except O(g) vertices)




Toroidal Schnyder woods: definition
[Goncalves Lévéque, DCG'14]

n—e+f=2 e=3n—06 n—e+f=2-2g
e =3n

Def. Planar Schnyder woods Def. Toroidal Schnyder woods

3-orientation + Schnyder local 3-orientation + Schnyder local
rule valid at each inner vertex rule valid at each vertex

Vs A toroidal Schnyder wood
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(in the plane 3-orientations
and Schnyder woods are in
bijection)

In the toroidal case a
3-orientation does not
necessarily yield a valid

3-orientation of T toroidal Schnyder wood




Cycles in Toroidal Schnyder woods
[Goncalves Lévéque, DCG'14]

n—e+f=2 e=3n—6 toroid.al Schnyder woods must
— contain a (mono-chromatic)
cycle in each color

Vs
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mono-chromatic components are trees:

connected graphs without cycles mono-chromatic cycles are

non-contractibles

G T
T 0 some colors may define
2 disconnected components

Yy
all mono-chromatic cycles of the
same color are:

homotopic and disjoint (parallel)
and oriented in one direction




Crossing cycles: a hierarchy of Schnyder woods
Toroidal Schnyder woods [Goncalves Lévéque, DCG'14]

Toroidal Schnyder woods can be:

® crossing: every monochromatic cycle intersects at least one monochromatic cycle of each color

e only half-crossing: only two mono-chromatic cycles are pairwise crossing

e non-crossing: all mono-chromatic i-cycles are parallel (non crossing)

: half-crossin
crossing Schnyder wood Sehmyder Woi ] non-crossing but at

(required for xy-periodic drawing) least balanced

balanced Schnyder woods
useful for bijective encoding




Toroidal Schnyder (periodic) drawings

[Goncalves and Lévéque, DCG’14]
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xy-periodic grid drawing on a grid
of size O(n?) x O(n?)

R Ry
I e
[
AR AR

ldea: use the face-counting method in
the universal cover to assign (relative)
coordinates

In the toroidal case: regions are unbounded

Warning: regions can be defined if the
Schnyder wood is crossing




Toroidal Schnyder woods: existence

Thm[Goncalves Lévéque, DCG'14] (for general toroidal triangulations and maps)
Any toroidal triangulation admits a toroidal crossing Schnyder wood

\
\

edge contraction

I
1
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I,

I
I ’
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remark: maintaining the crossing
property can require quadratic time

.

one vertex
3 edges (loops)




Toroidal Schnyder woods: existence

Thm[Goncalves Lévéque, DCG'14] (for general toroidal triangulations and maps)
Any toroidal triangulation admits a toroidal crossing Schnyder wood

edge contraction

perform (carefully) a se

proof: (involved) case analysis

y ( )

3 possible choices of coloring

4
4




Toroidal Schnyder woods: existence |l

Thm{[Fijavz, unpublished] [for simple toroidal triangulations]
(no multiple edges, no loops)

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.

Corollary|[Goncalves Lévéque, DCG'14]

Any simple toroidal triangulation admits a toroidal crossing Schnyder wood

(two planar quasi-triangulations)  crossing toroidal Schnyder wood

Split along Fo, Fl, F2
(for simple triangulations)




Open problems

Open problem [Lévéque, 2015]
Is it possible to compute in linear-time crossing
toroidal Schnyder woods via vertex shellings?

Open problem:[Goncalves Lévéque, DCG'14] is it
possible to find (at least) one toroidal Schnyder
wood which is crossing and with connected
mono-chromatic components (one for each color)?

3 disjoint mono-chromatic cycles of color 2
Mono-chromatic cycles of color 0 and 1 are connected

Open problem:[Goncalves Lévéque, DCG'14] is
it possible to find a toroidal Schnyder wood
with connected mono-chromatic components
and such the intersection of the three cycles is a
single vertex (and with connected components)?




Our

Open problem [Lévéque, 2015]

I
1
1
1
s it possible to compute in linear-time crossing | !
1
I
1
1

toroidal Schnyder woods via vertex shellings?

Yes, our implementation can process
more than 1M vertices/second
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Open problem:[Goncalves Lévéque, DCG'14] is it
possible to find (at least) one toroidal Schnyder
wood which is crossing and with connected
mono-chromatic components (one for each color)?

Almost Yes, the connectness is true for
at least two colors

crossing Schnyder wood

Icontrilbutiolns

—g— 00—~

I preprocessing (computation of ')
B vertex shelling procedure

average timings (seconds)

ring 1.53M

ring 715k

ring 311k

02 04 06 08 1

Mono-chromatic cycles of color red and blue are connected

Open problem:[Goncalves Lévéque,
DCG'14] is it possible to find (at least)
one toroidal Schnyder wood with
connected mono-chromatic components
and such the intersection of the three
cycles is a single vertex?

True for all toroidal triangulations of
size at most n = 11 (experimental)
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# irreducible

triangulations

#triangulations
g=1

10
11

1
4
15
1

1
7
112
2109
37867

triangulations generated using
surftri tool (by T. Sulanke)




Our contribution:

Computing in linear time (crossing) Schnyder woods with
at least two monochromatic connected components

(via vertex shellings)




Algo 1: Toroidal Schnyder woods via (cylindric) canonical orderings

Pre-processing: cut along a non-contractible cycle I'

' is split into two copies: Ceyt and Cy,

Ce:ct

o

input: cylindric triangulation
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Compute a cylindric canonical ordering
[Castelli Aleardi, Fusy, Devillers, GD2012]

o U
Ce:cto

At each step remove a vertex and
color/orient edges

output: cylindric Schnyder wood




QN7

~ Toroidal Schnyder wood

ing Schnyder woods)

toroidal Schnyder wood

not necessarily cross

glue together the two boundaries
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Algo 1: Toroidal (and cylindric) Schnyder woods : properties

(not necessarily crossing Schnyder woods)

cylindric Schnyder wood toroidal Schnyder wood

Toroidal Schnyder wood

AN

Y -

mono-chromatic cycles are never homotopic to I

® edges of ' are either 0 or 1
® ) and 1-paths are oriented downward

° 2_paths are oriented upward 2 N If the Schnyder wood is (at Ieast)

half- ing then the 0-cycl
¢ 0, 1 and 2-paths cross the cycle I alt-crossing then tne U-cycles

and 1-cycles are pairwise crossing




P-constrained (cylindric) Schnyder woods

Input: a cylindric triangulation G and a chord-free path P := {ug,...,u;_1}
the path P must intersect the two boundary cycles only at ug and ;4

Output: a Schnyder wood Sp(G) such that the edges of P are of black
Solution: perform vertex shellings only for (boundary) vertices which are not

adjacent to an inner vertex of P

. Cea:t




Toward half-crossing Schnyder woods
(with one connected mono-chromatic component)




Rivers: definition

Def: a river is a thin cylindric triangulation such that the two boundaries are
disjoint and chordless and such every vertex is incident to a non-trivial chord
(connecting the two boundaries)
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P-constrained right-most traversal of a river
input: a river and a chord-free path P output: a Schnyder wood

assume there some chords at the left of a containing a blue path
' ' P, = {c,vg,v4,v1,a}, starting at ¢
and ending at a

a
P :={a,b,c}

first step: remove c




Right-most traversal of a river

Right-most traversal: remove
at each step the left-most
vertex without chords

Lemma

In cases (A), (B) and (C1),
the blue path P; visits all
vertices on the top boundary
and crosses P either at ug or
at us_1

In case (C5), the blue path P;
may not cover all top boundary
vertices (not crossing P), but
then there exists a ccw-oriented
(contractible) cycle (green
region)




An algorithm for half-crossing Schnyder woods

Algo 2 f-erossing Schnyder woods (with a connected mono-chromatic component)

Data: a simple toroidal triangulation 7, a non-contractible chordless cycle T’
Result: a half-crossing Schnyder wood
// Pre-processing step

cut Talong I': let G be the resulting cylindric triangulation ;
compute a river R and the partition G = Giop U R U Gpottom |
// First pass

compute a Schnyder wood S(Gy,p) of Giop ;

choose an arbitrary non trivial chord e = (2,z) of R ;

P+ {x,z
if z has type (A), (B) or (C1) then
run the right-most P-constrained traversal of (R, P);
r+1:
else
run the left-most P-constrained traversal of (R, P) ;
re—0:
end
compute a Schnyder wood S(Gpottom) of Grottom ;
glue boundary cycles together and let S(7) = S(Gyottom ) U S(R) U S(Giop) :
if the r-cycle and 2-cycles are crossing in S(T) then
return S(7) ;
end
// Run a second pass on R
~2 + any 2-cycle of S(T) // Remark: the r-cycle and 2-cycles are parallel
Py +— v NAR; // restriction of ~» to the river R
u+— FRNP;
if u has type (A), (B) or (C1) then
run the right-most P-constrained traversal of (R, P,);
r+1:
else
run the left-most P-constrained traversal of (R, P,) ;
re—0:
end
// Remark: S(Gpotiom) and S(Giep) are Pry-constrained
glue boundary cycles together and let S(7) = S(Gyottom ) U S(R) U S(Giop) :
return S(T) ;
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cut along I’

I' o
0]
o

Gtop

R compute a river R

Gbot

Gtop

compute a Schnyder wood for G,

choose an arbitrary chordal
edge in the river and take a
path of length 1:

P ={x, z}




An algorithm for half-crossing Schnyder woods

Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component)

Data: a simple toroidal triangulation T, a non-contractible chordless cycle T’
Result: a half-crossing Schnyder wood

// Pre-processing step

cut Talong I': let GG be the resulting cylindric triangulation ;

compute a river R and the partition G = Giop U R U Grottom ;

// First pass

compute a Schnyder wood S(Gtop) of Giop

choose an arbitrary non trivial chord e = (2, 2) of R ;

P+ {x, 2}

if z has type (A), (B) or (C1) then
run the right-most P-constrained traversal of (R, P);
re1;

else
run the left-most P-constrained traversal of (R, P) ;
ra—0;

end

compute a Schnyder wood S({Ghottom) Of Grottom ;
glue boundary cycles together and let S(7) = S(Grottom ) J S(R) U S(Grop) :
if the r-cycle and 2-cycles are crossing in S(T) then
return S(7T) ;
end

// Run a second pass on IR
g 4 any Q*(‘:‘\_-'Cli‘. of S(T} // Remark: the r-cycle and Z-cycles are parallel
Py« v NR; // restriction of -, to the river R
uwi FRNPs
if u has type (A), (B) or (C1) then
run the right-most P-constrained traversal of (R, Pa);
ra—1:
else
run the left-most P-constrained traversal of (R, P) ;
r+e0;
end
// Remark: S(Gpottom) and S(Gy,,) are Pr-constrained
glue boundary cycles together and let S(7) = S(Grottom) U S(R) U S(Grop) :
return S(T) ;

Gbot

compute a P-constrained
rightmost traversal of the river

compute S(Gpor)

blue and black cycles are crossing
there is one connected blue cycle

return the Schnyder wood

One pass suffices!




An algorithm for half-crossing Schnyder woods

Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component)

Data: a simple toroidal triangulation 7, a non-contractible chordless cycle T’
Result: a half-crossing Schunyder wood

// Pre-processing step

cut Talong I': let G be the resulting cylindric triangulation ;

compute a river I? and the partition G = Giop U R U Ghotiom ;

// First pass

compute a Schnyder wood S(Gtop) of Grop ¢

choose an arbitrary non trivial chord e = (x,2) of R ;

P {r z};

if z has type (A), (B) or (C1) then
run the right-most P-constrained traversal of (R, P);
re1;
else
run the left-most P-constrained traversal of (R, P) ;
e 0
end
compute a Schnyder wood S(Gpottom) 0Of Grottom ;
glue boundary cycles together and let S(7) = S(Ghottom) U S(R) U S(Grop) :

if the r-cycle and 2-cycles are crossing in S(T) then
return S(7) ;
end
// Run a second pass on R
~g ¢ any 2-cycle of S(T); // Remark: the r-cycle and 2-cycles are parallel
Py« ~9MNR; // restriction of 7, to the river R
wi FRNP
if u has type (A), (B) or (C1) then
run the right-most P-constrained traversal of (R, Ps);
r+e1;
else
run the left-most P-constrained traversal of (R, Ps) ;
re 0
end
// Remark: S(Guosom) and S(Giap) are Php-constrained
glue boundary cycles together and let S(7) = S(Gpottom) U S(R) U S(Giop) :
return S(7) ;

compute S(Gpot)

Sometimes two passes

P are required

R

P=A{x,z}

compute a P-constrained
rightmost traversal of R

the blue cycle and black
cycles are NOT crossing

red cycles cross black cycles but
have 2 components

bad news: we need more work

good news: black cycles are chord-free,
we can run a second pass




An algorithm for half-crossing Schnyder woods

Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component

Data: a simple toroidal triangulation 7, a non-contractible chordless cycle T’
Result: a half-crossing Schnyder wood

// Pre-processing step

cut Talong I': let & be the resulting cylindric triangulation ;
compute a river R and the partition G = Giop U R U Ghottom ;
// First pass

compute a Schnyder wood S(Gigp) of Gigp

choose an arbitrary non trivial chord e = (x,z) of R ;

P« {x,z

if z has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, P);
r+e1;

else

run the left-most P-constrained traversal of (R, P) ;

e 0

end
compute a Schnyder wood S(Gpotrom) of Grottom ;
glue boundary cycles together and let S(7) = S(Grottom ) U S(R) U S(Giop) ;
if the r-cycle and 2-cycles are crossing in S(T) then
return S(7) ;
end

// Run a second pass on h
9 4+ any 2-cvcle of S[T) // Remark: the r-cycle and 2-cycles are parallel

Py, — vwNR;|// restriction of -2 to the river R

wi— RN

if u has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, P);
re1;

else

run the left-most P-constrained traversal of (R, Py) ;
re0;

end

// Remark: S(Gpoteom) and S(Gi.,) are Ph-constrained

glue boundary cycles together and let S(7) = S(Ghottom ) U S(R) U S(Giop) ;
return S(7) ;

, Run the second pass

oo

O o
5 ©o

o)

o O

72 is chord-free

choose P, = {y,w} = NR

w has type C5

compute a constrained
leftmost traversal of R

there is only one
connected red cycle

the red cycle and the
black cycle are crossing

return the Schnyder wood




Toward crossing Schnyder woods
(with two connected mono-chromatic components)




An algorithm for crossing Schnyder woods
I’
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compute two non overlapping rivers

the 2-cycles and the
1-cycle are NOT
crossing

half-crossing before reversing crossing after reversing
an oriented cycle in Ry, to be reversed




Experimental results




Fast linear-time implementation

I preprocessing (computation of I')
B vertex shelling procedure

ring 1.53M

ring 715k
ring 311k

average timings (seconds)

02 04 06 08 1 12 14

(with Java 1.8, on a Dell Laptop,
Intel core i7 2.6GHz, 8GB RAM)

Koch Penrose
snowfla. triangl




Conjectures on toroidal Schyder woods: experimental confirmation

Open problem: is it possible
to find (at least) one toroidal
Schnyder wood with
connected mono-chromatic
components and such the
intersection of the three cycles
is a single vertex?

(true for all triangulations
of size at most n = 11)

# irreducible | #triangulations
triangulations (g=1)

1 1

4 7

15 112

1 2109

— 37867

e generated with surftri software [Sulanke, 2006]




Schyder woods for g > 2

Thm (3-orientations for graphs on surfaces, of arbitrary genus) e
[Albar Goncalves Knauer, 2014] AN Wikipedia picture
Any triangulation of a surface (the sphere and the projective '

plane) admits a '3-orientation’: orientation without sinks

s.t. every vertex has outdegree divisible by three

Open problem [Goncalves Knauer Lévéque, 2016]
Existence of Schnyder woods for higher genus triangulations

Experimental confirmation (g = 2)
Multiple local Schnyder condition:

the outdegree of every vertex is a
positive multiple of 3.

exaustive generation of all 3-orientations
for all triangulations with g =2, n < 11

All simple triangulations of genus g =2

(there are no sinks) . )
and size < 11 admit Schnyder woods

# irreducible | #triangulations
Thm [Suagee’ 2021] triangulations (g = 2)

Simple triangulations of genus g > 1 having 7 —
"large” edgewidth do admit Schnyder woods 8 —

9
edgewidth > 40(29 — 1) 10 865

1 26276 113506
surftri software [Sulanke, 2006]

(size of the smallest non contractible cycle)







