

Computation of toroidal Schnyder woods made simple and fast: from theory to practice

april 1st 2025, LIGM (Univ. Gustave Eiffel)

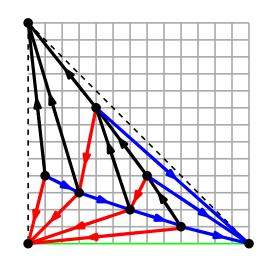
Luca Castelli Aleardi

(LIX, Ecole Polytechnique)

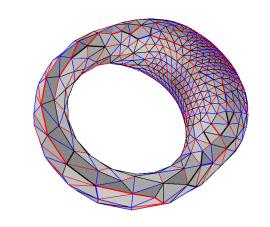
Eric Fusy

(LIGM, Université Gustave Eiffel)

Jyh-Chwen Ko


(LIX, Ecole Polytechnique)

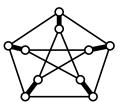
Razvan S. Puscasu

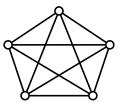

Main goals of this talk

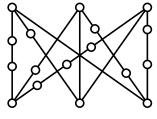
 either you do not know Schnyder woods
 I will make you discover the magic world of Schnyder woods

or you already encountered Schnyder woods

I will explain how to efficiently compute Schnyder woods for toroidal triangulations


Some facts about (planar) maps


("As I have known them")


Let us review some major results on planar graphs

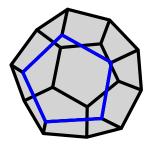
Kuratowski theorem (1930) (cfr Wagner's theorem, 1937)

• G contains neither K_5 nor $K_{3,3}$ as minors (or no subdivisions of K_5 nor $K_{3,3}$)

 K_5 is a minor of the Petersen graph

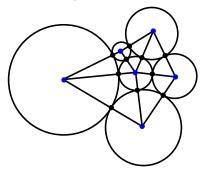
subdivision of $K_{3,3}$

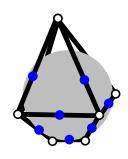

Thm (Colin de Verdière, 1990) Colin de Verdière invariant (multiplicity of λ_2 eigenvalue of a generalized laplacian)


 $\bullet \ \mu(G) \leq 3$

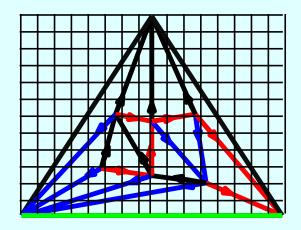
$$L_G[i,k] = \begin{cases} deg(v_i) \\ -A_G[i,j] \end{cases}$$

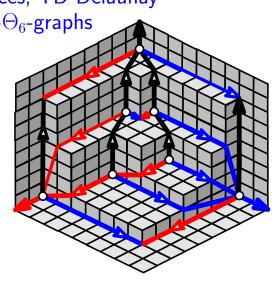
Thm (Tutte barycentric method, 1963)


Every 3-connected planar graph G admits a convex representation in \mathbb{R}^2 .

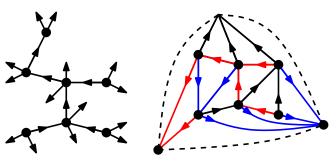


Thm (Koebe-Andreev-Thurston)


Every planar graph with n vertices is isomorphic to the intersection graph of ndisks in the plane.


Schnyder woods (Walter Schnyder '89)

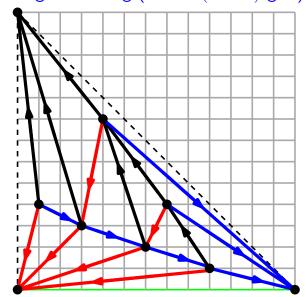
- planarity criterion via dimension of partial orders: dim(G) < 3
- linear-time grid drawing, with $O(n) \times O(n)$ resolution


Schnyder woods: some (classical) applications

[Felsner, Bonichon et al. '10, ...] geodesic embeddings on coplanar orthogonal surfaces, TD-Delaunay graphs and Half- Θ_6 -graphs

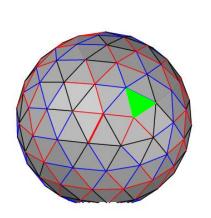
(Chuang, Garg, He, Kao, Lu, Icalp'98) (He, Kao, Lu, 1999) Graph encoding \overline{T}_0 () ((()) () () (()) () () T_2 000000101010101111

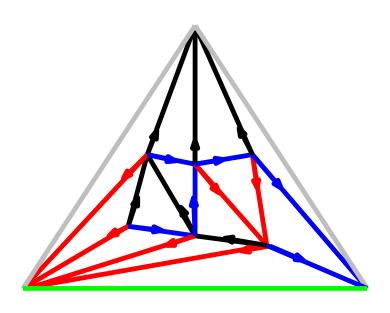
(Poulalhon-Schaeffer, Icalp 03) bijective counting, random generation

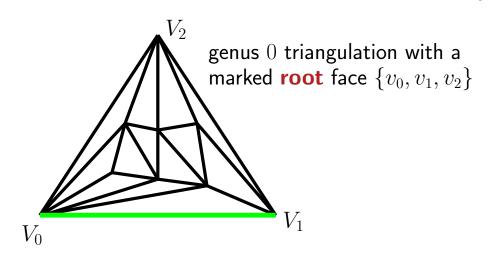


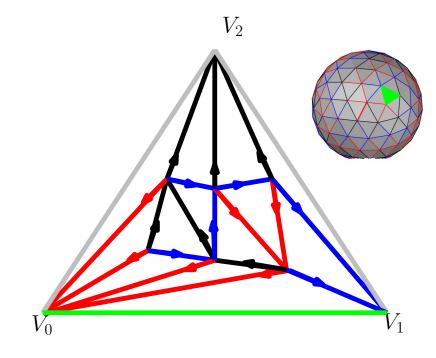
$$c_n = \frac{2(4n+1)!}{(3n+2)!(n+1)!}$$

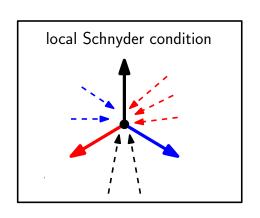
 \Rightarrow optimal encoding ≈ 3.24 bits/vertex


(Schnyder '90)

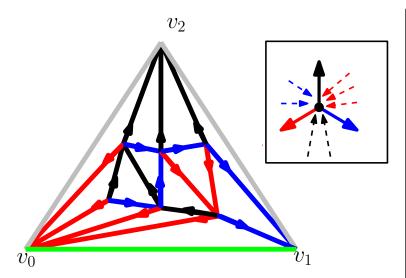

Planar straight-line grid drawing (on a $O(n \times n)$ grid)

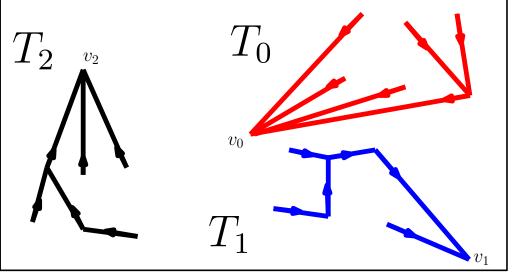

(Planar) Schnyder woods


(definitions and main properties)


Schnyder woods for genus 0 (plane) triangulations: definition

Definition [Schnyder '90]

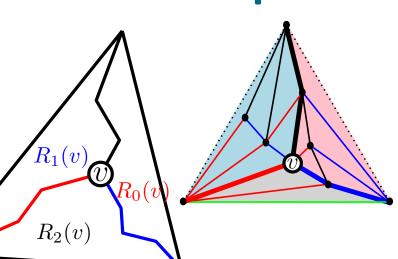

A **Schnyder wood** of a (rooted) planar triangulation is partition of all inner edges into three sets T_0 , T_1 and T_2 such that

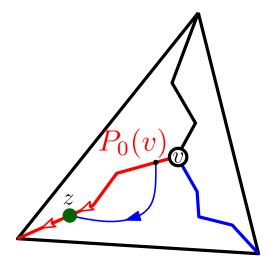


- i) edge are colored and oriented in such a way that each inner node has exaclty one outgoing edge of each color
- ii) colors and orientations around each inner node must respect the local Schnyder condition
- iii) inner edges incident to V_i are of color i and oriented toward V_i

Spanning property of Schnyder woods

Theorem [Schnyder '90] $T_i := \text{digraph defined by directed edges of color } i$ The three sets T_0 , T_1 , T_2 are spanning trees of the inner vertices of \mathcal{T} (each rooted at vertex v_i)





Mono-chromatic paths

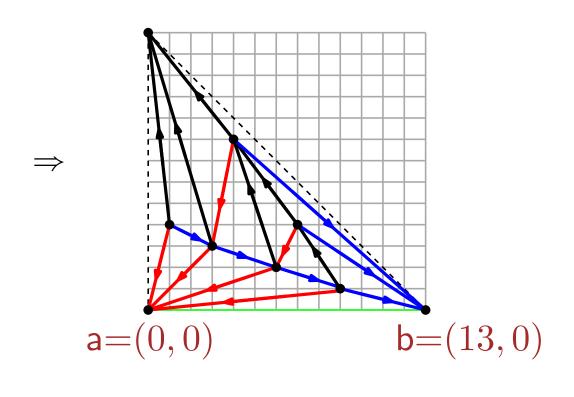
Lemma

For each inner vertex v the three monochromatic paths P_0 , P_1 , P_2 directed from v toward each vertex V_i are vertex disjoint (except at v) and partition the inner faces into three sets $R_0(v)$, $R_1(v)$, $R_2(v)$

each path $P_i(v)$ is chord-free

Schnyder drawings: face counting algorithm

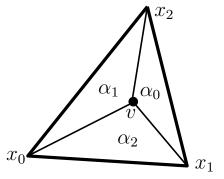
Theorem (Schnyder, Soda '90)


For a triangulation \mathcal{T} having n vertices, we can draw it (with no edge crossings) on a grid of size $(2n-5)\times(2n-5)$, by setting $x_0=(2n-5,0)$, $x_1=(0,0)$ and $x_2=(0,2n-5)$.

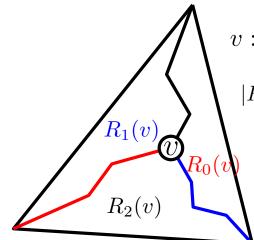
Input: a planar triangulation ${\mathcal T}$

Output:

a straight-line planar grid-drawing of ${\mathcal T}$


 ${\mathcal T}$ endowed with a Schnyder wood

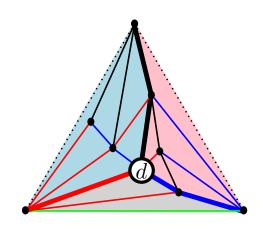
Schnyder drawings: face counting algorithm


Theorem (Schnyder, Soda '90)

For a triangulation \mathcal{T} having n vertices, we can draw it (with no edge crossings) on a grid of size $(2n-5)\times(2n-5)$, by setting $x_0=(2n-5,0)$, $x_1=(0,0)$ and $x_2=(0,2n-5)$.

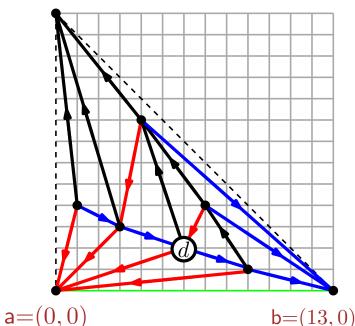
$$v = \alpha_0 x_0 + \alpha_1 x_1 + \alpha_2 x_2$$

 α_i is the normalized area of the triangle (x_{i-1}, x_{i+1}, v)


 $i \to (0, 13)$

$$v := \frac{|R_0(v)|}{|F|-1}x_0 + \frac{|R_1(v)|}{|F|-1}x_1 + \frac{|R_2(v)|}{|F|-1}x_2$$

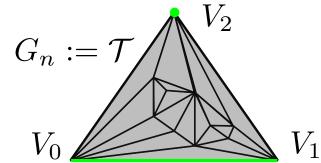
 $|R_i(v)|$ is the number of triangles in $R_i(v)$

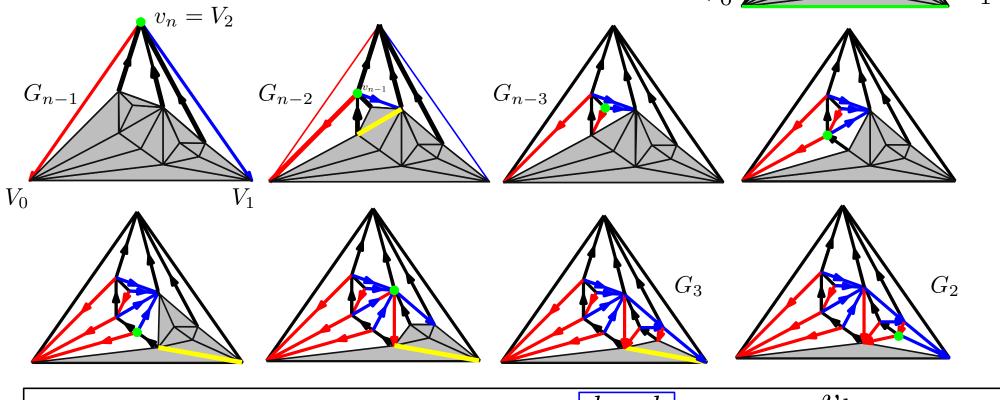

|F|-1=2n-5 is the number of inner triangles

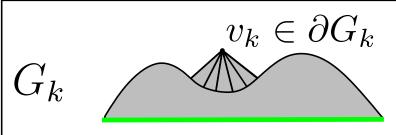
$$b = (0, 13)$$

$$\begin{array}{lll} \mathbf{a} & \to (13,0,0) & \mathbf{a} & \to (0,0) \\ \mathbf{b} & \to (0,13,0) & \mathbf{b} & \to (13,0) \\ \mathbf{c} & \to (9,3,1) & \mathbf{c} & \to (9,1) \\ \mathbf{d} & \to (5,6,2) & \mathbf{d} & \to (6,2) \\ \mathbf{e} & \to (2,7,4) & \mathbf{e} & \to (7,4) \\ \mathbf{f} & \to (7,3,3) & \mathbf{e} & \to (7,4) \\ \mathbf{f} & \to (3,3) & \mathbf{f} & \to (3,3) \\ \mathbf{g} & \to (1,4,8) & \mathbf{f} & \to (3,3) \\ \mathbf{h} & \to (8,1,4) & \mathbf{g} & \to (4,8) \\ \mathbf{h} & \to (1,4) & \mathbf{h} & \to (1,4) \end{array}$$

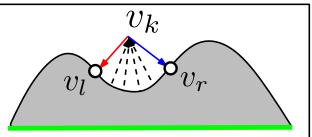
 $i \to (0, 0, 13)$


Linear-time computation of (planar) Schnyder woods

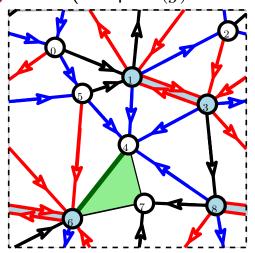

use Canonical Orderings [De Fraysseix, Pach, Pollack '89]


Theorem (Brehm, 2000)

A Schnyder wood can be computed in linear-time (via a sequence of n-2 vertex shellings)


Remove at each step a vertex v on the boundary ∂G_k (with no incident chordal edges in the gray region)

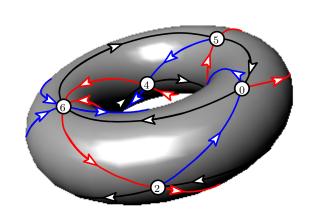
 G_{k-1}

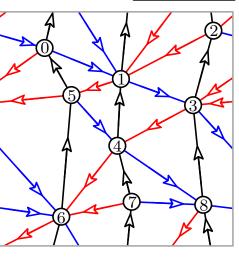

Schnyder woods for higher genus surfaces

g-Schnyder woods

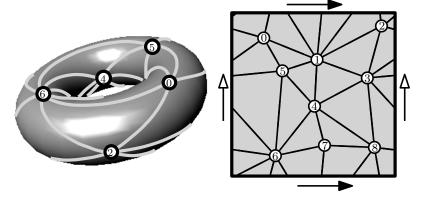
[Castelli Aleardi, Fusy, Lewiner, SoCG'08]

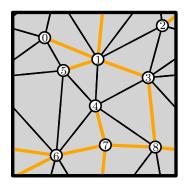
Schnyder local rule valid almost


everywhere (except O(g) vertices)

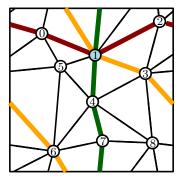


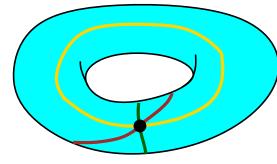
Toroidal Schnyder woods (g=1)


[Goncalves Lévêque, DCG'14]

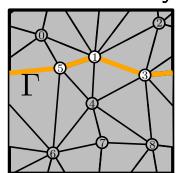

Schnyder local rule valid at each vertex

Planarization: from the torus back to the plane

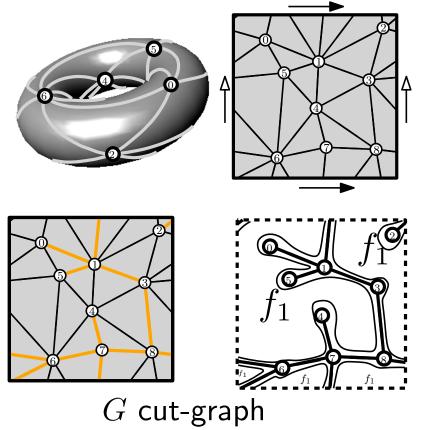




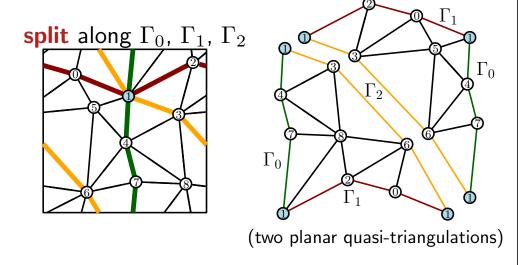
G cut-graph

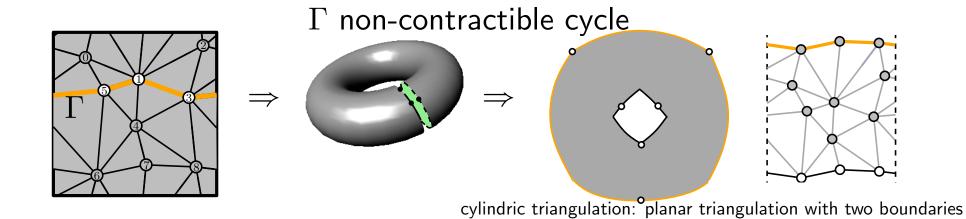

Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible and non-homotopic cycles that all intersect on one vertex and that are pairwise disjoint otherwise.



 Γ non-contractible cycle

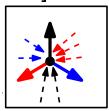


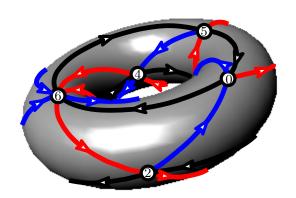

Planarization: from the torus back to the plane

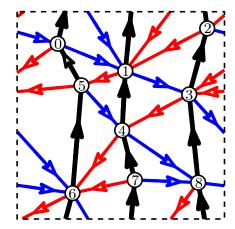
Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible and non-homotopic cycles that all intersect on one vertex and that are pairwise disjoint otherwise.

Toroidal Schnyder woods: definition


[Goncalves Lévêque, DCG'14]

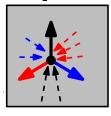

Remark: in the toroidal case (g = 1)n - e + f = 2 - 2g


$$e = 3n$$

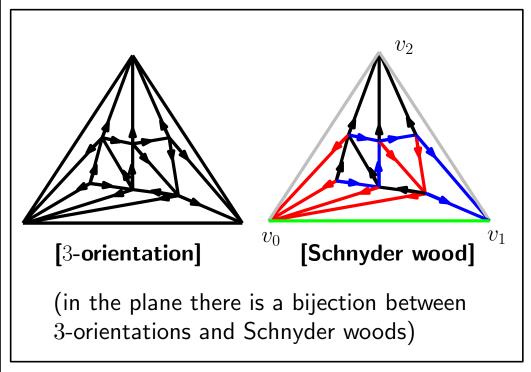
Def. Toroidal Schnyder woods [Goncalves Lévêque, DCG'14]

• 3-orientation + Schnyder local rule valid at each vertex

toroidal Schnyder wood

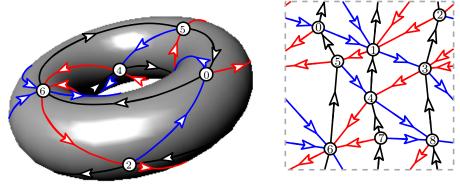

Toroidal Schnyder woods vs. 3-orientations

Remark: in the toroidal case (g = 1)n - e + f = 2 - 2g

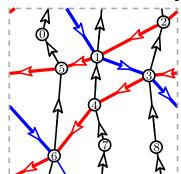

$$e = 3n$$

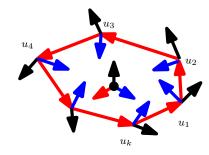

Def. Toroidal Schnyder woods [Goncalves Lévêque, DCG'14]

• 3-orientation + Schnyder local rule valid at each vertex



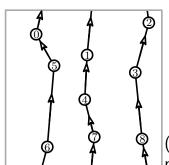
Remark: unlike the planar case, some 3-orientations do not lead to valid Schnyder woods


Toroidal Schnyder woods: cycles



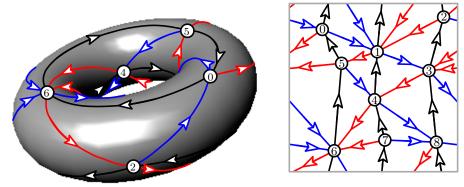
toroidal Schnyder wood

- ullet toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color: e=3n
 - (n edges in each color)


mono-chromatic cycles are non-contractibles

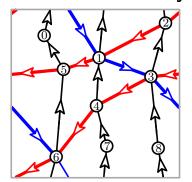
Remark: the inner region of a contractible mono-chromatic cycle is a (planar) topological disk

some colors may define disconnected components

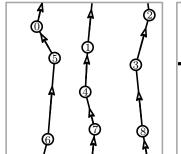

(there are 3 disjoint mono-chromatic cycles of color 2)

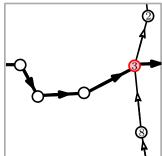
Open problem: is it possible to find (at least) one toroidal Schnyder wood with connected mono-chromatic components

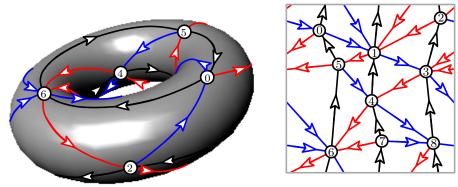
	n	# irreducible	#triangulations
		triangulations	(g = 1)
	7	1	1
	8	4	7
	9	15	112
1	10	1	2109
1	11	_	37867


(true for all triangulations of size at most n = 11)

Toroidal Schnyder woods: cycles

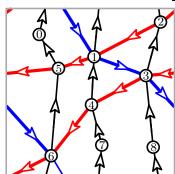

toroidal Schnyder wood

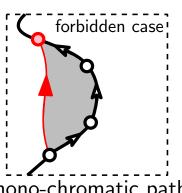

- ullet toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color: e=3n
- mono-chromatic cycles are non-contractibles

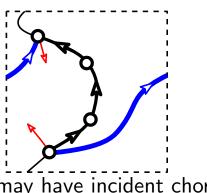

all mono-chromatic cycles of the same color are: homotopic and disjoint (parallel) and oriented in

one direction

Toroidal Schnyder woods: cycles

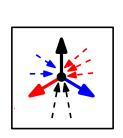


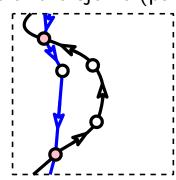

toroidal Schnyder wood

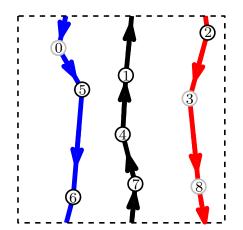

• toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

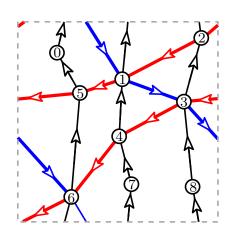
$$e = 3n$$

• mono-chromatic cycles are non-contractibles

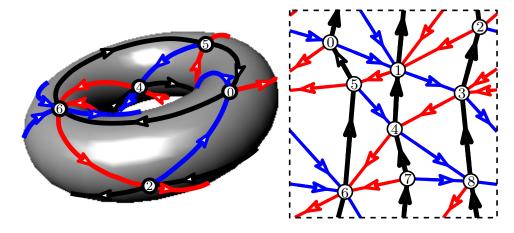




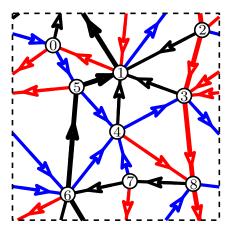



mono-chromatic paths $P_i(v)$ may have incident chords

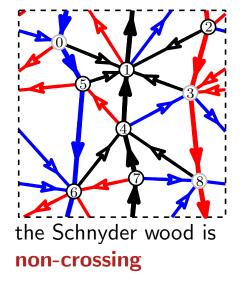
all mono-chromatic cycles of different colors are: either homotopic and disjoint (parallel) or crossing

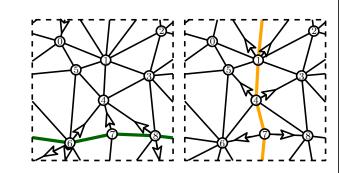


Crossing cycles: a hierarchy of Schnyder woods

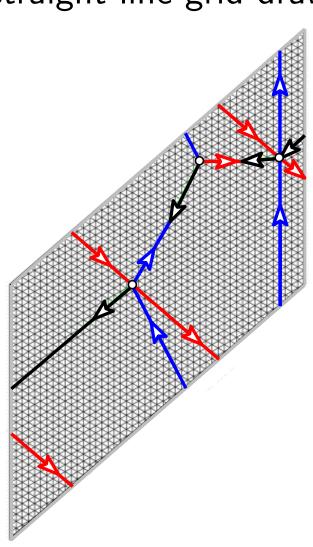

Toroidal Schnyder woods [Goncalves Lévêque, DCG'14]

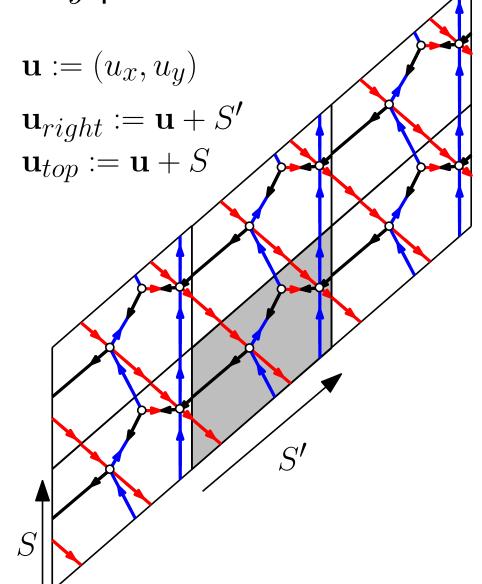
Toroidal Schnyder woods can be:

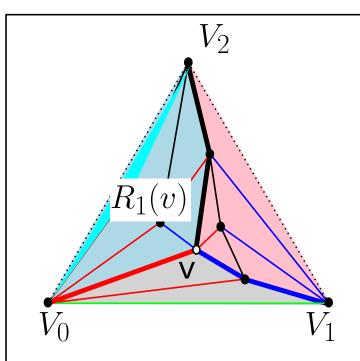

- crossing: every monochromatic cycle intersects at least one monochromatic cycle of each color
- only half-crossing: only two mono-chromatic cycles are pairwise crossing
- non-crossing: all mono-chromatic i-cycles are parallel (non crossing)


crossing Schnyder wood

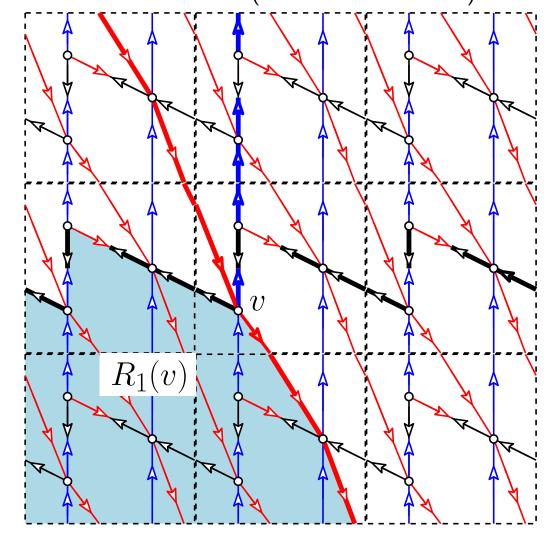
half-crossing
Schnyder wood




the Schnyder wood is **balanced**


Crossing Schnyder woods are relevant for defining toroidal Schnyder (periodic) drawings

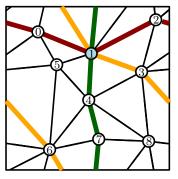
Goal: try to generalize the region counting method to obtain a straight-line grid drawing which is xy-periodic

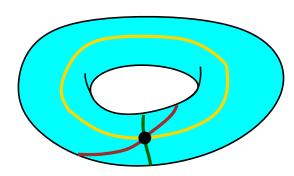

Regions are defined by crossing cycles

region $R_i(v)$ is defined by two (crossing) paths outgoing from vertex v

$$v =: \frac{|R_0(v)|}{|F|-1}V_0 + \frac{|R_1(v)|}{|F|-1}V_1 + \frac{|R_2(v)|}{|F|-1}V_2$$

In the toroidal case: regions are unbounded (in the universal cover)

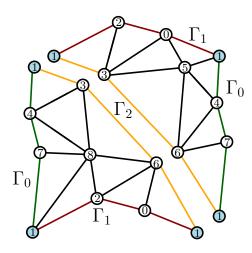



Regions are defined if cycles are crossing

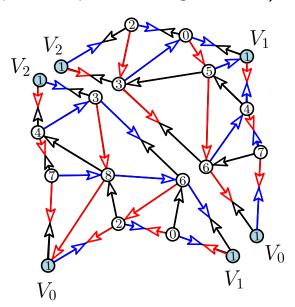
Toroidal Schnyder woods: existence I

Thm[Fijavz, unpublished]

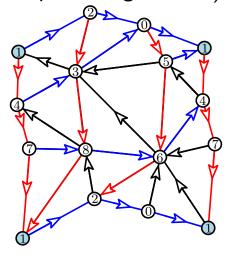
A simple toroidal triangulation contains three non-contractible and non-homotopic cycles that all intersect on one vertex and that are pairwise disjoint otherwise.


[for simple toroidal triangulations]

(no multiple edges, no loops)

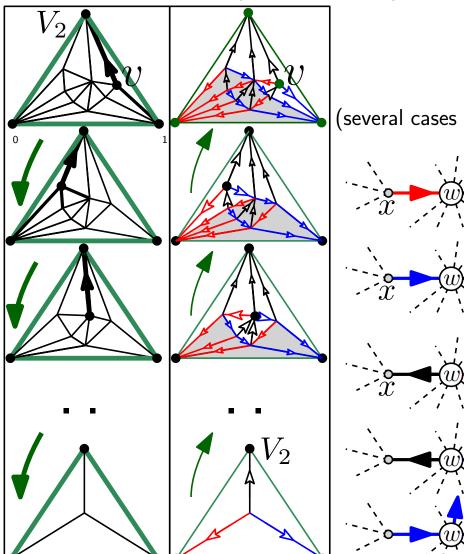

Corollary [Goncalves Lévêque, DCG'14]

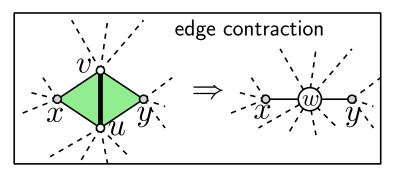
Any simple toroidal triangulation admits a toroidal crossing Schnyder wood


split along Γ_0 , Γ_1 , Γ_2

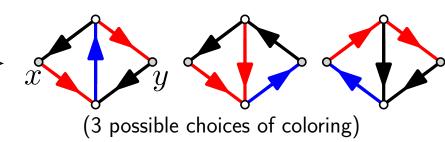
(two planar quasi-triangulations)

crossing toroidal Schnyder wood (for simple triangulations)


Toroidal Schnyder woods: existence II

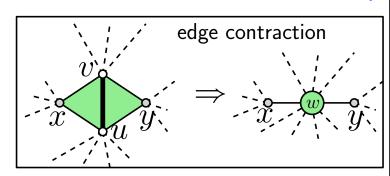

Thm[Goncalves Lévêque, DCG'14] (for general toroidal triangulations and maps)

Any toroidal triangulation admits a toroidal crossing Schnyder wood

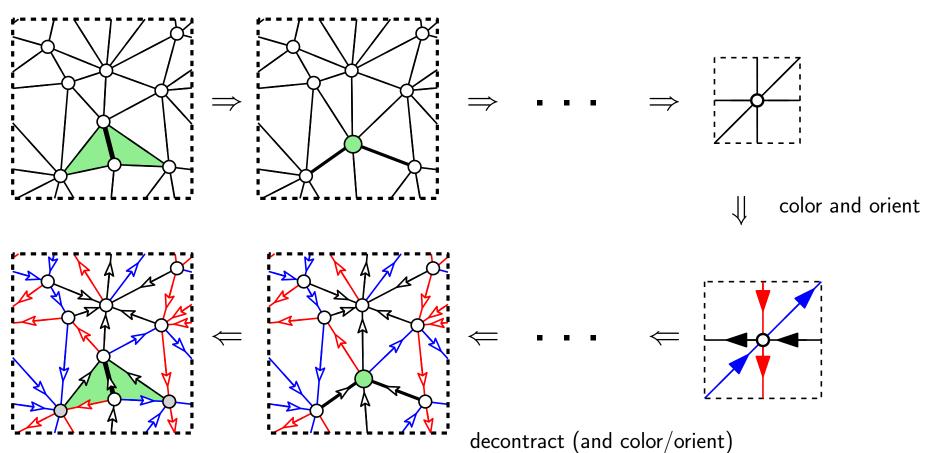

computation of (planar) Schnyder woods

first phase: perform edge contractions second phase: perform edge expansion+edge coloring

(several cases to distinguish during the decontraction)



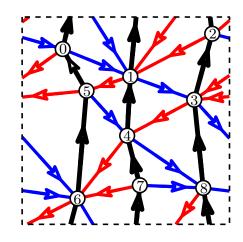
Toroidal Schnyder woods: existence II


Thm[Goncalves Lévêque, DCG'14] (for general toroidal triangulations and maps)

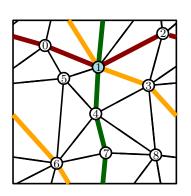
Any toroidal triangulation admits a toroidal crossing Schnyder wood

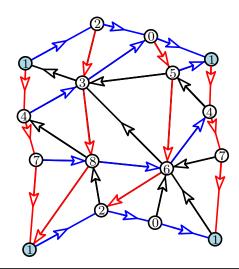
remark: maintaining the crossing property can require quadratic time

perform (carefully) a sequence of n-1 edge contractions



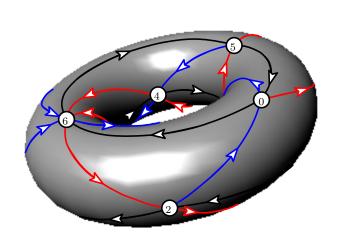
Open problems

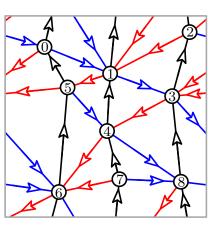

Open problem[Lévêque, 2015]

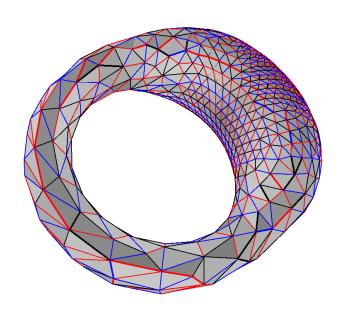

Is it possible to compute crossing toroidal Schnyder woods via vertex shellings?

Open problem: [Goncalves Lévêque, DCG'14] is it possible to find (at least) one toroidal Schnyder wood which is crossing and with connected mono-chromatic components (one for each color)?

3 disjoint mono-chromatic cycles of color 2 Mono-chromatic cycles of color 0 and 1 are connected

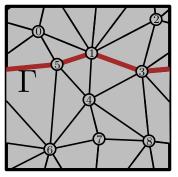





Open problem: is it possible to find (at least) one toroidal Schnyder wood with connected mono-chromatic components and such the intersection of the three cycles is a single vertex?

Our contribution:

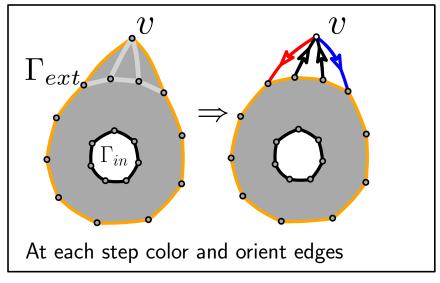
Computing in linear time (crossing) Schnyder woods with at least two monochromatic connected components (via vertex shellings)



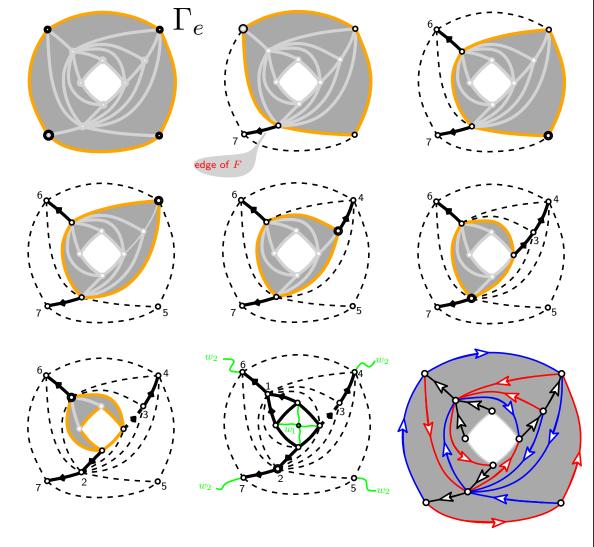
Toroidal Schnyder woods via (cylindric) canonical orderings (not necessarily crossing Schnyder woods)

First step: compute a (chord-free)

non-contractible cycle Γ


Cut along the cycle Γ

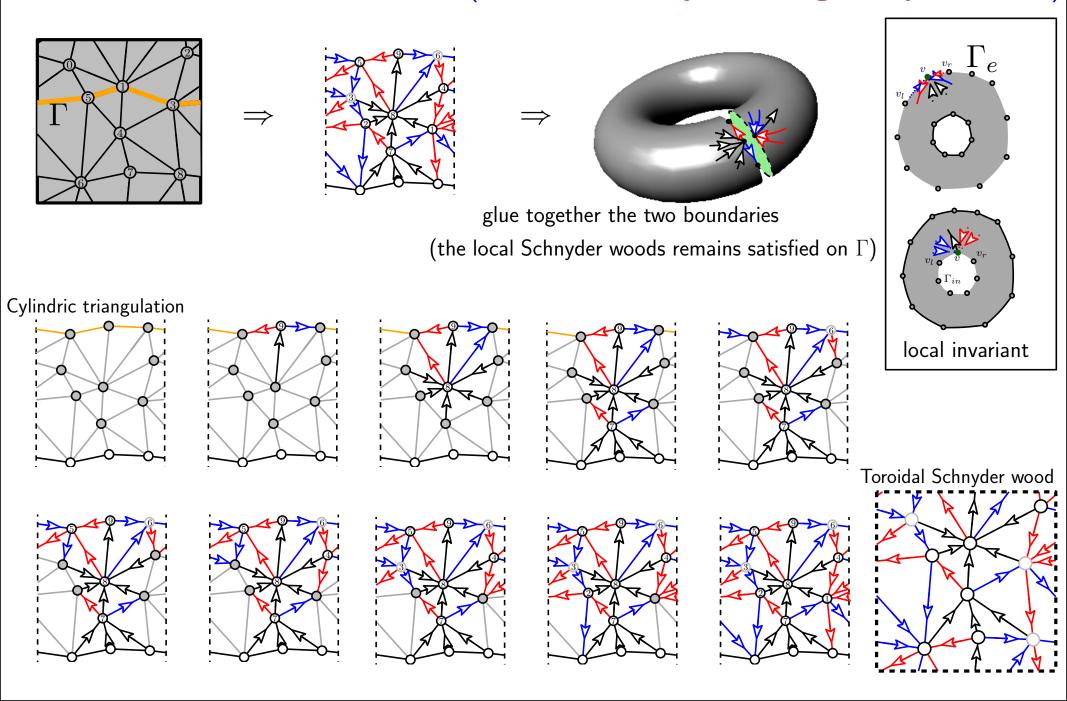
(cylindric triangulation)



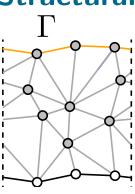
 Γ is split into two copies: Γ_{ext} and Γ_{in}

Compute a **cylindric canonical ordering** [Castelli Aleardi, Fusy, Devillers, GD2012]

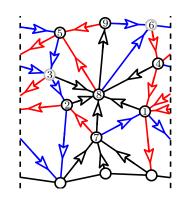
Perform an incremental vertex shelling, starting from Γ_{ext}

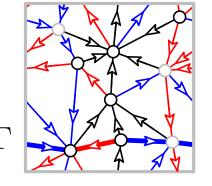


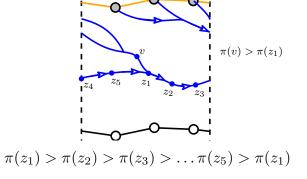
Corollary


Any simple toroidal triangulation admits a toroidal (not necessarily crossing) Schnyder wood

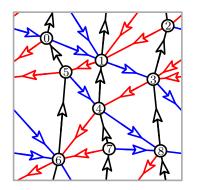
Algo 1: Toroidal Schnyder woods via (cylindric) canonical orderings


(not necessarily crossing Schnyder woods)

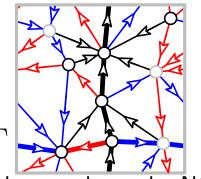

Structural properties of Schnyder woods computed by Algo 1



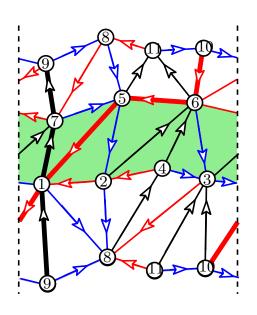
- ullet edges of Γ are either 0 or 1
- 0 and 1-paths are oriented downward
- 2-paths are oriented upward
- ullet 0, 1 and 2-paths cross the cycle Γ



ullet 0, 1 and 2-cycles are never homotopic to Γ

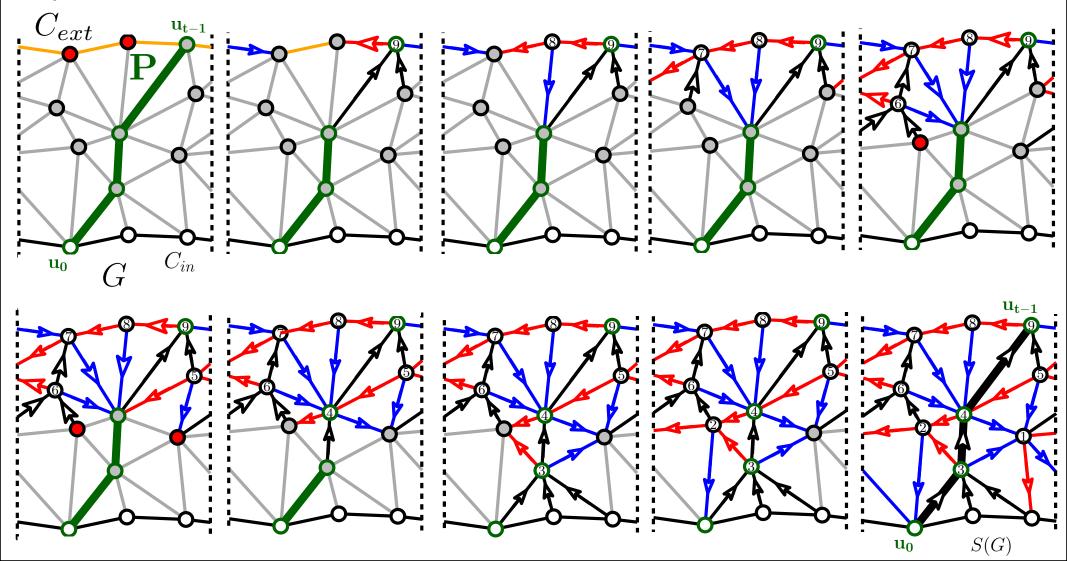


• If the Schnyder wood is (at least) half-crossing then the 0-cycles and 1-cycles are pairwise crossing

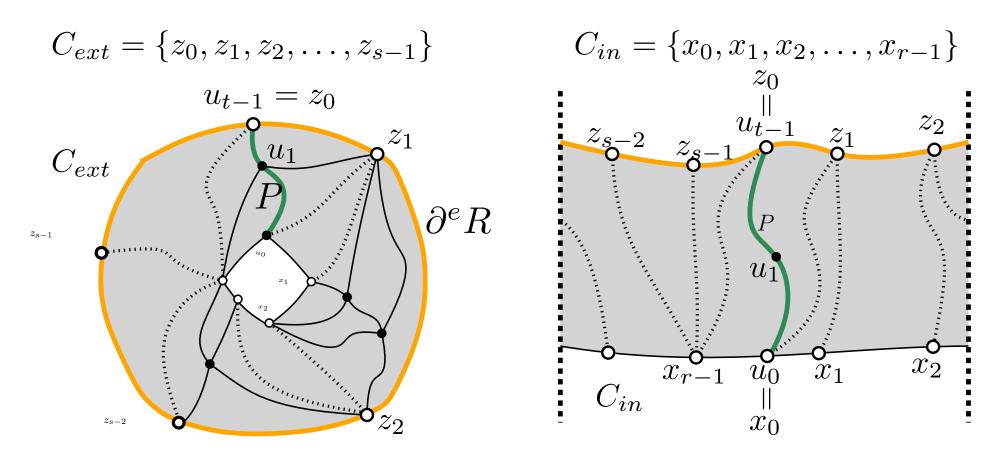

crossing Schnyder wood

edges on $\boldsymbol{\Gamma}$ are either blue or red

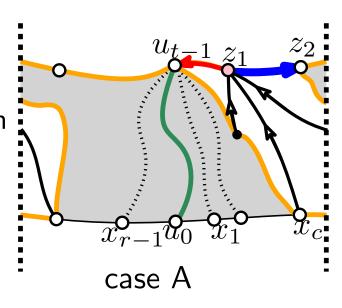
the Schnyder wood may be NOT crossing but it is at least **balanced**

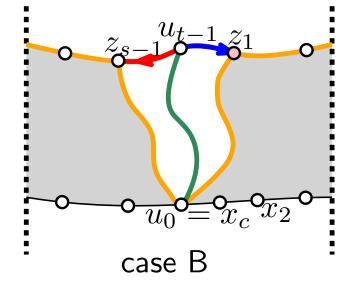

Toward half-crossing Schnyder woods (with one connected mono-chromatic component)

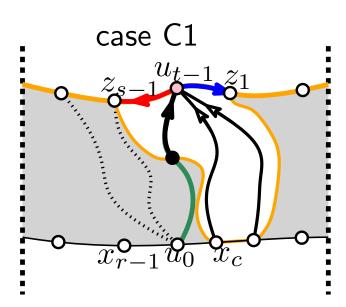
P-constrained (cylindric) Schnyder woods


Input: a cylindric triangulation G and a chord-free path $P:=\{u_0,\ldots,u_{t-1}\}$ the path P must intersect the two boundary cycles only at u_0 and u_{t-1}

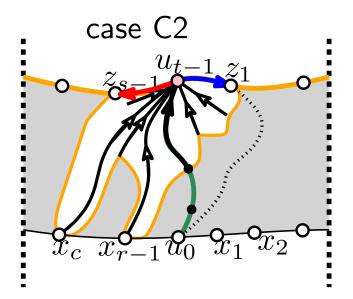
Output: a Schnyder wood $S_P(G)$ such that the edges of P are of color 2 Solution: perform vertex shellings only for (boundary) vertices which are not adjacent to an inner vertex of P


Definition of a river


Def: a **river** is a cylindric triangulation such that the two boundaries are disjoint and chordless and such every vertex is incident to a non-trivial chord (connecting the two boundaries)


Right-most traversal of a river

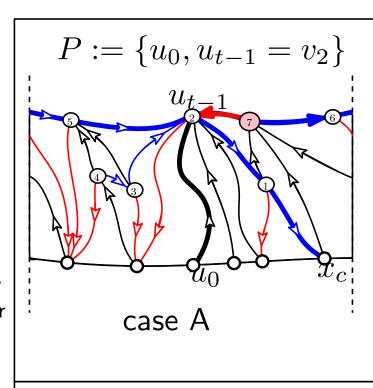
 u_{t-1} has chords both at the left and the right of P

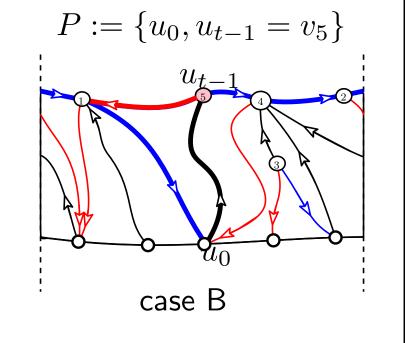


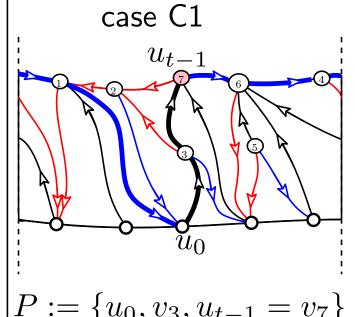
 u_{t-1} has no chords other than (u_0,u_{t-1})

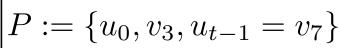
no chord (u_{t-1}, \bar{x}) at the left of P

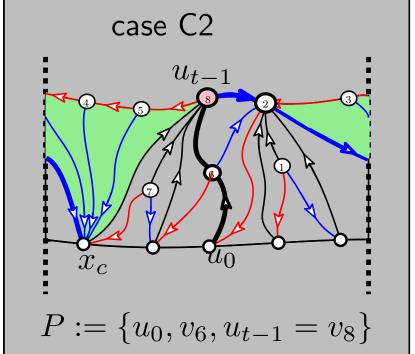
no chord (u_{t-1}, \bar{x}) at the right of P

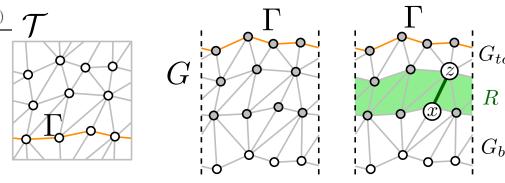

Right-most traversal of a river

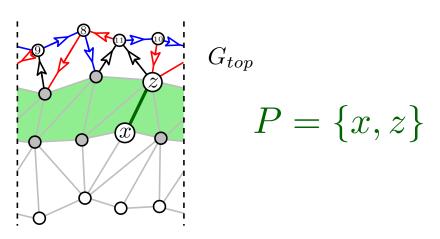

Right-most traversal: remove at each step the left-most vertex without chords


Lemma


In cases (A), (B) and (C_1) , the blue path P_1 visits all vertices on the top boundary and crosses P either at u_0 or at u_{t-1}

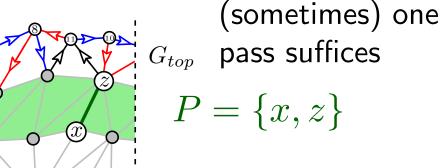

In case (C_2) , the blue path P_1 may not cover all top boundary vertices (not crossing P), but then there exists a ccw-oriented (contractible) cycle (green region)

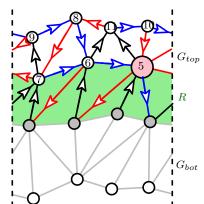




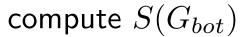
Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component)

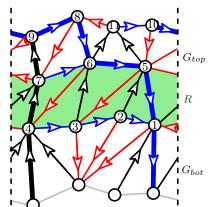
Data: a simple toroidal triangulation \mathcal{T} , a non-contractible chordless cycle Γ **Result:** a half-crossing Schnyder wood


```
// Pre-processing step
cut \mathcal{T}along \Gamma: let G be the resulting cylindric triangulation;
compute a river R and the partition G = G_{top} \cup R \cup G_{bottom};
// First pass
compute a Schnyder wood S(G_{top}) of G_{top};
choose an arbitrary non trivial chord e = (x, z) of R;
P \leftarrow \{x, z\};
if z has type (A), (B) or (C1) then
   run the right-most P-constrained traversal of (R, P);
   r \leftarrow 1;
else
   run the left-most P-constrained traversal of (R, P);
   r \leftarrow 0;
end
compute a Schnyder wood S(G_{bottom}) of G_{bottom};
glue boundary cycles together and let S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top});
if the r-cycle and 2-cycles are crossing in S(\mathcal{T}) then
   return S(\mathcal{T});
end
// Run a second pass on R
\gamma_2 \leftarrow \text{any 2-cycle of } S(\mathcal{T}); // Remark: the r-cycle and 2-cycles are parallel
P_2 \leftarrow \gamma_2 \cap R; // restriction of \gamma_2 to the river R
u \leftarrow \partial^e R \cap P_2;
if u has type (A), (B) or (C1) then
   run the right-most P-constrained traversal of (R, P_2);
   r \leftarrow 1;
else
   run the left-most P-constrained traversal of (R, P_2);
   r \leftarrow 0;
end
// Remark: S(G_{bottom}) and S(G_{top}) are P_2-constrained
glue boundary cycles together and let S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top});
return S(\mathcal{T}):
```



compute $S(G_{top})$

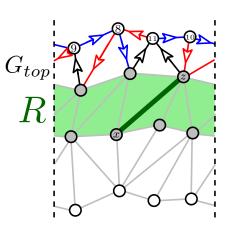
```
Half-crossing Schnyder woods (with a connected mono-chromatic component)
Algo 2
Data: a simple toroidal triangulation \mathcal{T}, a non-contractible chordless cycle \Gamma
Result: a half-crossing Schnyder wood
// Pre-processing step
cut \mathcal{T}along \Gamma: let G be the resulting cylindric triangulation;
compute a river R and the partition G = G_{top} \cup R \cup G_{bottom};
// First pass
compute a Schnyder wood S(G_{top}) of G_{top};
choose an arbitrary non trivial chord e = (x, z) of R;
P \leftarrow \{x, z\};
if z has type (A), (B) or (C1) then
    run the right-most P-constrained traversal of (R, P);
   r \leftarrow 1;
else
   run the left-most P-constrained traversal of (R, P);
   r \leftarrow 0;
end
compute a Schnyder wood S(G_{bottom}) of G_{bottom};
glue boundary cycles together and let S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top});
if the r-cycle and 2-cycles are crossing in S(\mathcal{T}) then
   return S(\mathcal{T});
end
// Run a second pass on R
\gamma_2 \leftarrow \text{any 2-cycle of } S(\mathcal{T}); // Remark: the r-cycle and 2-cycles are parallel
P_2 \leftarrow \gamma_2 \cap R; // restriction of \gamma_2 to the river R
u \leftarrow \partial^e R \cap P_2;
if u has type (A), (B) or (C1) then
   run the right-most P-constrained traversal of (R, P_2);
   r \leftarrow 1;
else
    run the left-most P-constrained traversal of (R, P_2);
   r \leftarrow 0;
end
// Remark: S(G_{bottom}) and S(G_{top}) are P_2-constrained
glue boundary cycles together and let S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top});
return S(\mathcal{T}):
```




pass suffices

compute a constrained rightmost traversal of R

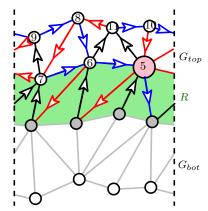
z has type A



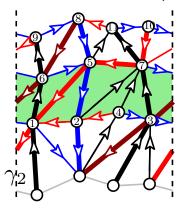
There is one connected (blue) 1-cycle, crossing the 2-cycles

return the Schnyder wood

Half-crossing Schnyder woods (with a connected mono-chromatic component) Algo 2 **Data:** a simple toroidal triangulation \mathcal{T} , a non-contractible chordless cycle Γ Result: a half-crossing Schnyder wood // Pre-processing step cut \mathcal{T} along Γ : let G be the resulting cylindric triangulation; compute a river R and the partition $G = G_{top} \cup R \cup G_{bottom}$; // First pass compute a Schnyder wood $S(G_{top})$ of G_{top} ; choose an arbitrary non trivial chord e = (x, z) of R; $P \leftarrow \{x, z\}$; if z has type (A), (B) or (C1) then run the right-most P-constrained traversal of (R, P); $r \leftarrow 1$; else run the left-most P-constrained traversal of (R, P); $r \leftarrow 0$; endcompute a Schnyder wood $S(G_{bottom})$ of G_{bottom} ; glue boundary cycles together and let $S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top})$; if the r-cycle and 2-cycles are crossing in $S(\mathcal{T})$ then return $S(\mathcal{T})$; end // Run a second pass on R $\gamma_2 \leftarrow \text{any 2-cycle of } S(\mathcal{T}); \text{ // Remark: the } r\text{-cycle and 2-cycles are parallel}$ $P_2 \leftarrow \gamma_2 \cap R$; // restriction of γ_2 to the river R $u \leftarrow \partial^e R \cap P_2$; if u has type (A), (B) or (C1) then run the right-most P-constrained traversal of (R, P_2) ; $r \leftarrow 1$; else run the left-most P-constrained traversal of (R, P_2) ; $r \leftarrow 0$; end // Remark: $S(G_{bottom})$ and $S(G_{top})$ are P_2 -constrained glue boundary cycles together and let $S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top})$;


return $S(\mathcal{T})$:

(sometimes) two passes are required

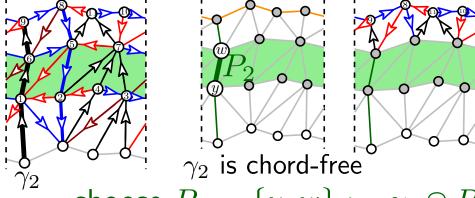

$$P = \{x, z\}$$

compute a constrained rightmost traversal of ${\it R}$

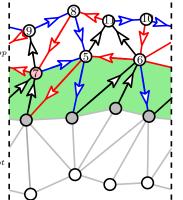
z has type C_1

compute $S(G_{bot})$

there is one connected 1-cycle

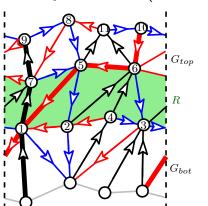

the (blue) 1-cycle and (black) 2-cycles are NOT crossing (red) 0-cycles cross (black) 2-cycles but have 2 components

we need a second pass (black) 2-cycles are chord-free


Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component)

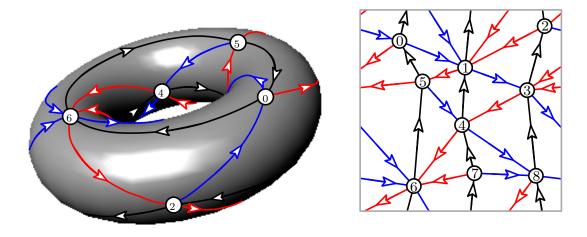
```
Data: a simple toroidal triangulation \mathcal{T}, a non-contractible chordless cycle \Gamma
Result: a half-crossing Schnyder wood
// Pre-processing step
cut \mathcal{T}along \Gamma: let G be the resulting cylindric triangulation;
compute a river R and the partition G = G_{top} \cup R \cup G_{bottom};
// First pass
compute a Schnyder wood S(G_{top}) of G_{top};
choose an arbitrary non trivial chord e = (x, z) of R;
P \leftarrow \{x, z\};
if z has type (A), (B) or (C1) then
    run the right-most P-constrained traversal of (R, P);
   r \leftarrow 1;
else
    run the left-most P-constrained traversal of (R, P);
   r \leftarrow 0;
end
compute a Schnyder wood S(G_{bottom}) of G_{bottom};
glue boundary cycles together and let S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top});
if the r-cycle and 2-cycles are crossing in S(\mathcal{T}) then
    return S(\mathcal{T});
                                                                                            G_{bot}
end
// Run a second pass on R
\gamma_2 \leftarrow \text{any } 2\text{-cycle of } S(\mathcal{T}); // Remark: the r-cycle and 2-cycles are parallel
P_2 \leftarrow \gamma_2 \cap R; // restriction of \gamma_2 to the river R
u \leftarrow \partial^e R \cap P_2;
if u has type (A), (B) or (C1) then
   run the right-most P-constrained traversal of (R, P_2);
   r \leftarrow 1;
else
    run the left-most P-constrained traversal of (R, P_2);
   r \leftarrow 0;
end
// Remark: S(G_{bottom}) and S(G_{top}) are P_2-constrained
glue boundary cycles together and let S(\mathcal{T}) = S(G_{bottom}) \cup S(R) \cup S(G_{top});
return S(\mathcal{T}):
```

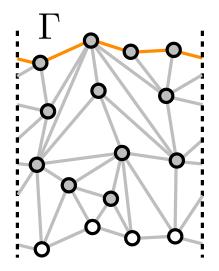
Run the second pass

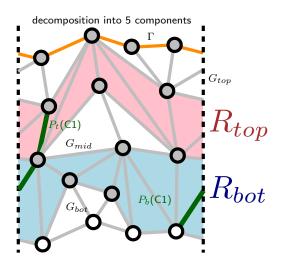


choose $P_2 = \{y, w\} := \gamma_2 \cap R$

w has type C_2 compute a constrained leftmost traversal of R

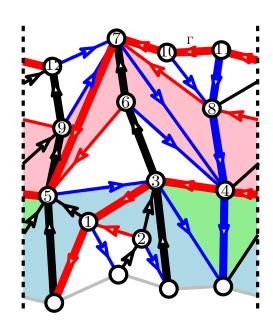

compute $S(G_{bot})$ we need a second pass

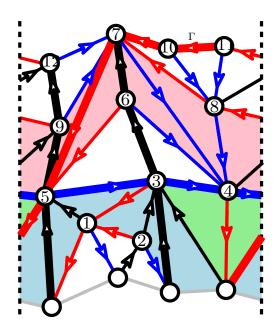



there is only one connected 0-cycle

the 0-cycle(s) and the 2-cycle are crossing

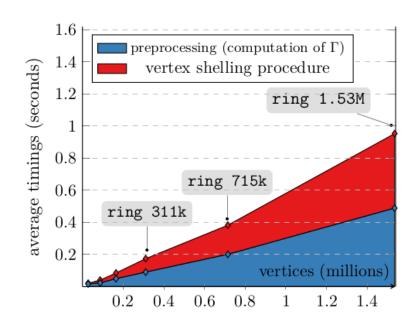
Toward crossing Schnyder woods (with two connected mono-chromatic components)

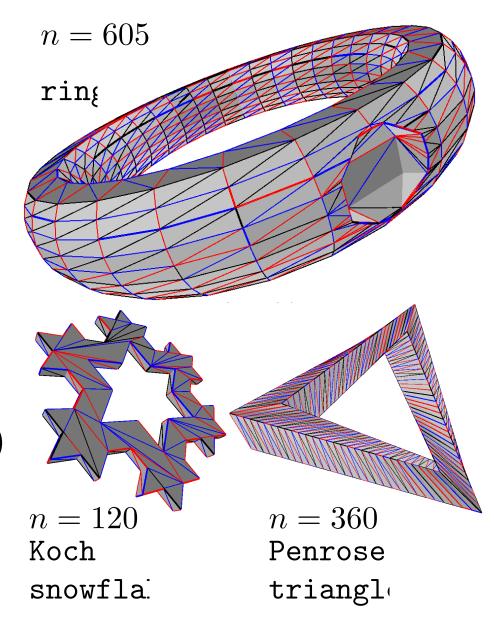




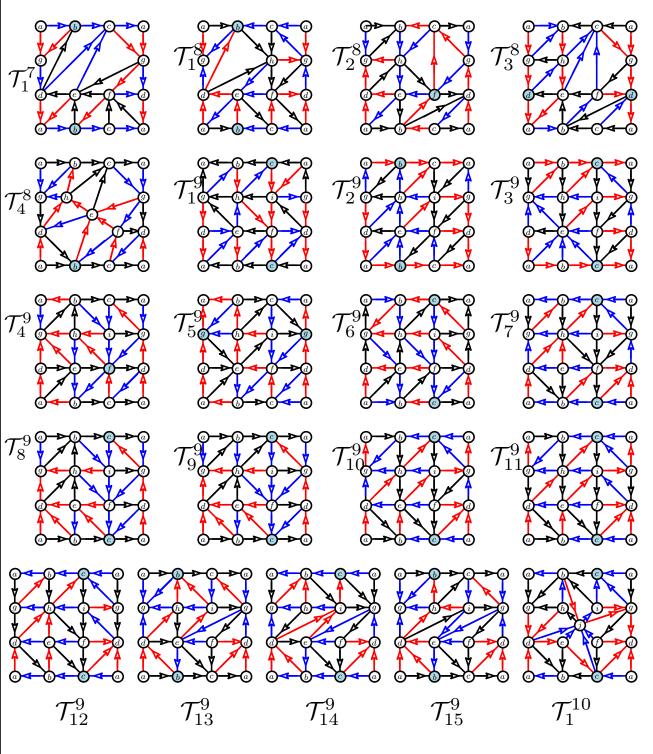
compute two non overlapping rivers

the 2-cycles and the 1-cycle are NOT crossing


half-crossing before reversing an oriented cycle in R_{bot} to be reversed


crossing after reversing

Experimental results


Fast linear-time implementation

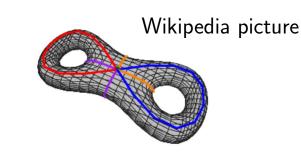
(with Java 1.8, on a Dell Laptop, Intel core i7 2.6GHz, 8GB RAM)

Conjectures on toroidal Schyder woods: experimental confirmation

Open problem: is it possible to find (at least) one toroidal Schnyder wood with connected mono-chromatic components and such the intersection of the three cycles is a single vertex?

(true for all triangulations of size at most n = 11)

n	# irreducible	#triangulations
	triangulations	(g = 1)
7	1	1
8	4	7
9	15	112
10	1	2109
11	_	37867

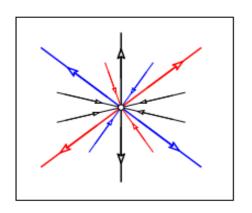

triangulations are generated with surftri software [Sulanke, 2006]

Concluding remarks

Schyder woods for $g \ge 2$

Thm (3-orientations for graphs on surfaces, of arbitrary genus) [Albar Goncalves Knauer, 2014]

Any triangulation of a surface (the sphere and the projective plane) admits a '3-orientation': orientation without sinks s.t. every vertex has outdegree divisible by three



Open problem [Goncalves Knauer Lévêque, 2016]

Existence of Schnyder woods for higher genus triangulations

Multiple local Schnyder condition: the outdegree of every vertex is a **positive** multiple of 3.

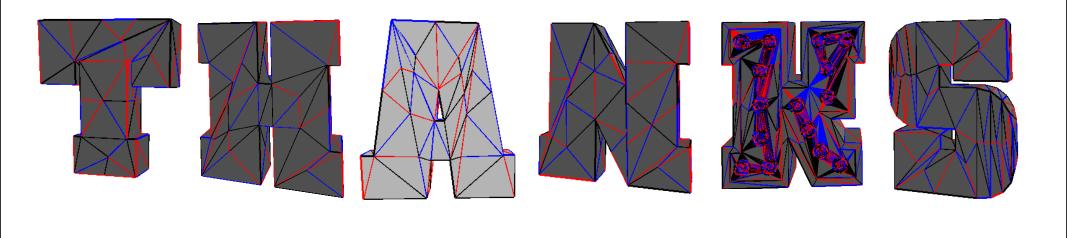
(there are no sinks)

Thm [Suagee, 2021]

Simple triangulations of genus $g \ge 1$ having "large" **edgewidth** do admit Schnyder woods

edgewidth
$$\geq 40(2^g - 1)$$

(size of the smallest non contractible cycle)


Experimental confirmation (g = 2)

exaustive generation of all 3-orientations for all triangulations with g=2, $n\leq 11$

All simple triangulations of genus g=2 and size ≤ 11 admit Schnyder woods

n	# irreducible	#triangulations
	triangulations	(g = 2)
7	_	_
8	_	_
9	_	_
10	865	865
11	26276	113506

surftri software [Sulanke, 2006]

