
SCARST: Schnyder Compact and Regularity Sensitive
Triangulation Data Structure

Luca Castelli Aleardi

june 14, Athens (SoCG 2024)

(when theory meets practice)

Olivier Devillers

(let no one ignorant of geometry come under my roof)

(Ecole Polytechnique, Palaiseau) (Loria, Inria, Nancy)

Main goals of this talk

• either you do not know Schnyder woods

I will make you discover the magic world of
Schnyder woods

• or you already encountered Schnyder woods

I will convince you that Schnyder woods
lead to practical and fast implementations
(a C++ implementation is going to be
integrated in CGAL... coming soon)

[many thanks to Andreas Fabri]

Let us review some major results on planar graphs
Kuratowski theorem (1930) (cfr Wagner’s theorem, 1937)
• G contains neither K5 nor K3,3 as minors (or no
subdivisions of K5 nor K3,3)

Schnyder woods (Walter Schnyder ’89)
• planarity criterion via dimension of partial orders:
dim(G) ≤ 3

• linear-time grid drawing, with O(n)×O(n) resolution

4 −1 . . . 0

−1

0

5

. . .

3

. . .

. . .

. . .

. . .

. . .

. . .

LG[i, k] ={−AG[i, j]

deg(vi)

Every planar graph with n vertices is
isomorphic to the intersection graph of n
disks in the plane.

Thm (Koebe-Andreev-Thurston)

Thm (Colin de Verdière, 1990) Colin de Verdiere invariant
(multiplicity of λ2 eigenvalue of a generalized laplacian)
• µ(G) ≤ 3

Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits a convex
representation in R2.

K5 is a minor of the Petersen graph
subdivision of K3,3

Schnyder woods: some (classical) applications

bijective counting, random generation
(Poulalhon-Schaeffer, Icalp 03)

Graph encoding

(Schnyder ’90)
Planar straight-line grid drawing (on a O(n× n) grid)

cn = 2(4n+1)!
(3n+2)!(n+1)!

⇒ optimal encoding ≈ 3.24 bits/vertex

(Chuang, Garg, He, Kao, Lu, Icalp’98)

(He, Kao, Lu, 1999)

2
3

45

6

7
8

9

10

11

() ((()) () ()) () (()) () ()T 0

00000101010100110111T 2

[Felsner, Bonichon et al. ’10, ...]

Schnyder woods, TD-Delaunay graphs, orthogonal surfaces
and Half-Θ6-graphs

Schnyder woods: definition
(for genus 0 triangulations)

Schnyder woods genus 0 (plane) triangulations: definition

n nodes

ii) colors and orientations around each inner node must
respect the local Schnyder condition

i) edge are colored and oriented in such a way that each
inner node has exaclty one outgoing edge of each color

A Schnyder wood of a (rooted)
planar triangulation is partition of all
inner edges into three sets T0, T1 and
T2 such that

[Schnyder ’90]

rooted triangulation on

V0 V1

V2

V1

V2

V0

iii) inner edges incident to Vi are of color i and oriented
toward Vi

(genus 0 triangulation
with a marked face)

local Schnyder condition

Schnyder woods: global spanning property
[Schnyder ’90]Theorem

The three sets T0, T1, T2 are spanning trees of
the inner vertices of T (each rooted at vertex Vi)

T2 T1

T0

V1

V2

V0

V2

V1V0

Minimal (maximal) Schnyder woods: no cw (ccw) oriented circuit

Flip:= to

[Ossona de Mendez’94, Felsner’03]

The min is the unique S ∈ S(T) with no clockwise circuit

Thm:
The set S(T) of all distinct Schnyder woods of a given triangulation T is a partial order set with
respect to the flip operation (a lattice): for every pair of Schnyder woods of T there is an unique
supremum and infinum.

maximal Schnyder wood
(no directed cycles in cw direction)(no oriented cycles in ccw direction)

reversal of directed cycles
(cycles could bound several faces)

minimal Schnyder wood:
ccw-oriented faces are forbidden

minimal Schnyder wood:
ccw-oriented faces are forbidden

Data structures for (triangle) surface meshes

Let us review some (well known) edge-based data structures

opposite(e)

class Halfedge{

Halfedge next, opposite;

Vertex v;

}

class Vertex{

Halfedge e;

Point p;

}

combinatorial
information

vertex(e)

enext(e)

memory cost

for triangulation e = 3n− 6 (Euler formula)rpv:= references per vertex

3× (2e) + n = 18n + n rpv
Half-edge

u

v

w

z

0 ≤ v ≤ n− 1

0 ≤ e ≤ (3n− 6)− 1

=source(e)

=target(e)

e = (u, v)

L
e
f
t
B
a
c
k

RightBack

LeftFront

R
i
g
h
t
F
r
o
n
t

memory cost
6× (e) + n = 18n + n rpv
Winged-edge (Baumgart, 1972)

class Wingededge{

Wingededge LeftFront, RightFront;

Wingededge LeftBack, RightBack;

Vertex source, target;

}

class Vertex{

Wingededge e;

Point p;

}

vertexDegree(Flag f) {

int j=0;

Flag g=f;

do {

++j;

g=g.ei().fi();

} while (g!=f);

return j;

}

u =source(f)

vi

fi
ei

Flag representation

class Flag{

Flag ei, fi, vi;

Vertex u;

}

class Vertex{

Flag f;

Point p;

}

memory cost
(3 + 1)× (4e) + n = 49n + n rpv

Problem: how to represent huge 3D meshes?

Geometric v.s combinatorial information

Geometry

between 30 et 96 bits/vertex

”Connectivity”: combinatorial information underlying triangulation

19n log n 608n bits

vertex coordinates

(incidence relations between triangles, vertices, edges)

or

David statue (Stanford’s Digital
Michelangelo Project, 2000)

2 billions polygons

32 Giga bytes (without compression)

e

opposite(e)

prev(e)

next(e)

source(e)

3× h+ n = 19n references

Half-edgeh = 3e ≈ 6n

(19n references)

Memory efficient mesh representations
(standard) data structures

Succinct representations (supporting queries in O(1) time)

3.2451n +O(log log nlog n) = 3.2451n + o(n) bits/vertex

asymptotic optimal bound

(Castelli Aleardi, Devillers, Schaeffer 2005, 2006)

i-th tiny triangulation

. . .

. . .

log log n bits pointers

log n bits pointers

in the Word-Ram model

e

opposite(e)

prev(e)

next(e)

source(e)

3× h+ n = 19n references

Half-edgeh = 3e ≈ 6n

= 608n bits19n references

Memory efficient mesh representations
(standard) data structures

Succinct representations (supporting queries in O(1) time) Practical compact data structures (fast implementations)

3.2451n +O(log log nlog n) = 3.2451n + o(n) bits/vertex

asymptotic optimal bound

(Castelli Aleardi, Devillers, Schaeffer 2005, 2006)

i-th tiny triangulation

. . .

. . .

log log n bits pointers

log n bits pointers

6
7
8
9

0
1
2
3

5

4
1

2

9 9

2

1

3 0

8

3

8

1

3

1

3

4
5

6

7 8

9

0

1

2

4n references

(Castelli Aleardi, Devillers 2011)in the Word-Ram model 1.2 - 1.9 times slower than
standard data structures

e

opposite(e)

prev(e)

next(e)

source(e)

3× h+ n = 19n references

Half-edgeh = 3e ≈ 6n

= 608n bits

D. Knuth (Bordeaux, dec. 2007)
”Dear Luca and Jeremy, if you want you that your

algorithm and data structures will appear in my books,

first please provide an implementation and check its

performance.” (D. Knuth)

19n references

Practical mesh data structures: related works

Half-edge, Winged-edge, Quad-edge
(19n)

Triangle DS, Corner Table, Directed edge
(13n)

2D Catalogs
(7.67n)

(7n)
Star-Vertices

SOT
(6n)

Castelli Devillers
(4n)

ESQ,
(4.8n)

LR
(≈ 2.18n)

Data size (references/vertex) navigation time preserves
structure lower average upper navigation target vertex

bound (regular meshes) bound between edges operator ordering
Half-edge/Winged-edge/Quad-edge 19 19 19 O(1) O(1) yes

Triangle DS (CGAL)/Corner Table [Rossignac] 13 13 13 O(1) O(1) yes
Directed edge [Campagna et al. ’99] 13 13 13 O(1) O(1) yes

2D catalogs [Castelli,Devillers,Mebarki ’06] - - 7.67 O(1) O(1) yes
Star vertices [Kallmann et al. ’02] 7 7 7 O(d◦) O(1) yes

sorted TRIPOD [Snoeyink, Speckmann, ’99] 6 6 6 O(1) O(d◦) yes
SOT [Gurung Rossignac ’09] 6 6 6 O(1) O(d◦) yes

ESQ [Castelli,Devillers,Rossignac ’12] 4 - 4.8 O(1) O(d◦) yes
SQUAD [Gurung et al. ’10] 4 4.1 6 O(1) O(d◦) yes

LR (Laced Ring) [Gurung et al. ’11] 2 2.16 ? O(1) O(1) no
Thm 2 in [Castelli,Devillers ’11] (no vertex reordering) 6 6 6 O(1) O(d◦) yes
Thm 4 in [Castelli,Devillers ’11] (no vertex reordering) 5 5 5 O(1) O(d◦) yes
Thm 5 in [Castelli,Devillers ’11] (with vertex reordering) 4 4 4 O(1) O(d◦) no

Our Thm 5 (no vertex reordering) 3 3 3 O(dM + d◦) O(d◦) yes
Our Cor 7 (no vertex reordering) 3 3.38 5 O(1) O(d◦) yes

Our Cor ?? (with vertex reordering) 2 2 2 O(dM + d◦) O(d◦) no
Our Cor ?? (with vertex reordering) 2 2.29 3.67 O(1) O(d◦) no
Our Cor ?? (with vertex reordering) 3 3.03 3.33 O(1) O(d◦) no

non compact

compact

dynamic

dynamic

dynamic

dynamic

dynamic

SQUAD

LR (Gurung, Luffel, Lindstrom, Rossignac - 2011)

Castelli Aleardi and Devillers (Isaac ’11)

space performances in practice (results reported from original papers)

LR: Laced Ring data structure LR (Gurung et al. 2011)

Castelli Aleardi and Devillers (Isaac ’11, JoCG’18)

rpv (references per vertex)

Ring-expander
triangle classification

size(LR) := 2vr + vi + 6|T0|+ 3|T i
1 + T i

2|
isolated vertices

space performances in practice (results reported from original papers)

LR (Gurung, Luffel, Lindstrom, Rossignac - 2011)

LR: Laced Ring data structure
LR (Gurung et al. 2011)

meshes are sorted according to % of degree 6 vertices

triangle classification

size(LR) := 2vr + vi + 6|T0|+ 3|T i
1 + T i

2|
isolated vertices

Castelli Aleardi and Devillers (Isaac ’11)

rpv (references per vertex)

LR (Gurung et al. 2011)

85% 25%81% 38%

Egea

input testested datasets: 3d
meshes from aim@shape
repository (with our
implementation)

Bunny

Are Delaunay triangulations bad for LR?
rpv (references per vertex)

81%85% 38%

Castelli Aleardi and Devillers (Isaac ’11)
delaunay

28%

delaunay

delaunay of random points
(in unit circle)

Are random triangulations the worst case for LR?

rpv

25%

(references per vertex)

81% 38%85%
random
11%

Planar random triangulation
(sampled according to uniform distribution)

(Poulalhon-Schaeffer sampler)

(FR91 force-directed layout)

random triangulation

Castelli Aleardi and Devillers (Isaac ’11)

LR: Laced Ring data structure
rpv

25%

(references per vertex)

81% 38%

Castelli Aleardi and Devillers (Isaac ’11)

85%

Stack
11%

random stack triangulations

(force-directed layout,
picture by J. Bettinelli)

random stack triangulation

Let us try to devise better data structures
(with better storage bounds for real-world graphs)

Compact data storage cost (rpv) navigation time preserves
structure best average (tested meshes) worst edge/face target vertex

case 3D meshes Delaunay random case navigation operator ordering
2D catalogs [Castelli Devillers Mebarki ’06] - - - - 7.67 O(1) O(1) yes
Star vertices[Kallmann, Thalmann 2001] 7 7 7 7 7 O(d◦) O(1) yes

sorted TRIPOD Snoeyink, Speckmann ’99 6 6 6 6 6 O(1) O(d◦) yes
SOT [Gurung Rossignac ’09] 6 6 6 6 6 O(1) O(d◦) yes

ESQ [Castelli et al. ’12] 4 - - - 4.8 O(1) O(d◦) yes
SQUAD [Gurung Laney, Lindstrom, Rossignac ’10] 4 4.14 4.31 4.59 6 O(1) O(d◦) yes

LR[Gurung et al. ’11] 2 2.27 3.04 6.15 > 12 O(1) O(1) no
Thm 2 in Castelli Devillers ’11 6 6 6 6 6 O(1) O(d◦) yes
Thm 4 in [Castelli Devillers ’11] 5 5 5 5 5 O(1) O(d◦) yes
Thm 5 [Castelli Devillers ’11] 4 4 4 4 4 O(1) O(d◦) no

ScarstOS 3 3 3 3 3 O(dM+d◦) O(d◦) yes
ScarstOT 3 3.34 3.71 3.93 5 O(1) O(d◦) yes
ScarstRS 2 2 2 2 2 O(dM+d◦) O(d◦) no
ScarstRT 2 2.26 2.54 2.65 3.67 O(1) O(d◦) no
ScarstWC 3 3.03 3.08 3.04 3.33 O(1) O(d◦) no

u = e/3

(w,v)=T[2e]

e := (u, v)

{ (e + 1)%3

T [T [e]]

(T [e] + 2)%3

(z, v) = T [2e + 1]

0 ≤ u ≤ n− 1
0 ≤ e < 3n

Warmup: a simple compact DS (size 6n)

case 1

case 2

case 3

(w, u) :=

color(e) = e%3

6

7

8

9

0

1

2

3

5

4

67

8

9

0

12

3

4

6

7

8

9

0

1

2

3

97

8

0

9

2

3

4

6

7

8

9

0

12

34

6 6

0

8

1

2

3

4

8

1

3

4

1

1

1 2 3

Cleft
red [j] = true

Cright
red [j] = false

T right
red [j]

Ired[j] = false

T left
red [j]

3

4

5

6

7

8

9

0
1

2

{
6 ∗ n entries

(Thm 2 in Castelli Aleardi, Devillers 2011)

(6n integers on 32 bits)

u=source(e)

e = (u, v)

L
e
f
t
B
a
c
k

RightBack

LeftFront

R
i
g
h
t
F
r
o
n
t

Challenge: simulate
Winged-edge, while storing
only 2 references per edge

Main goal: retrieve missing neighboring
edges (w, u) and (u, z) (in O(1) time)

solution: simple case analysis

e := (u, color)
e := 3 · u + color

color ∈ {0, 1, 2}

z

w

u

v

e

(Sorted) TRIPOD (Snoeyink, Speckmann, ’99)

w

u

z

v

Idea of the solution:

• use Schnyder woods

• re-order edges
according to the
(input) vertex
ordering

v v v v

u u u u

w w w w
z z z z

T

Implementation 1: Implementation 2 (faster):

one table T (of size 6n)six tables: T right
red [.]T left

red [.]

T right
blue [.]T left

blue[.] T right
black[.]T left

black[.]

(w, u) = (T left
color[u], ce)

if(Cleft
color[u] == true) ce = color

else ce = (color+ 1)%3

Adaptive compact data structures

Goal: devise a mesh data structures with provable
storage bounds that takes into account graph regularity

Can we exploit the regularity of the triangulation
to improve the previous existing bounds of 4 rpv?

(preserving original vertex ordering)
SCART-OS (size 3n): amortized O(1) time navigation

6

7

8

9

0

1

2

3

5

4

1

2

9

0

8

3

1

Use only one reference (column) per color

z
w

u

v

ccw triangles are forbidden

e := (u, v)

Idea 1: use minimal Schnyder woods

Red navigation turn cw around v until (v, w) is reached

Black navigation turn ccw around v
until (v, a) is
reached

v v v

u u u

w w wz z z

3 ∗ n entries
(6n integers on 32 bits)

T

v

w

u

v v

w w

u u

(v, a)=RightFront(RightFront(RightFront(RightFront(u, v))))

a

a

(w, v)=LeftBack(a, v)

a

iterate RightFront at most deg(v) times

Drawback: it takes more than constant time

(for high degree vertices)

ccw triangles are forbidden

v

w

u

a

(w, v) cannot be blue
(w, v) must be red

Towards worst-case O(1) time navigation

z
w

u

v

forbidden cases (no ccw triangles)

Navigation for (black) high degree vertices

u1
u2

u3
u4

u5
u6

u7

u8

Idea 2: use only one reference for low degree
vertices. Use (skip) extra references for high
degree references, for red, blue and black edges.

u0

u3

u6

Low degree vertices

use only 1 reference

1 reference to the right for every black edge

1 extra reference to the left for ⌊dk⌋ black edges

v

u5

(navigate as before)

Remark: in a (planar) graph the number of
high degree vertices is small

indegree(v) = 9

indegree(v) < 4

access extra references
via address indirection

For k = 3 the number of extra reference (in each color) is at most n
3

v

u

w z

(still preserving original vertex ordering)

SCART-OT (memory cost: between 3n and 5n references)

v

u0

use minimal Schnyder woodsIdea 1: use minimal Schnyder woods

SCARST-RT (memory cost at most 3.67n in worst-case)

Navigation for (black) high degree vertices

u0

u1
u2

u3
u4

u5
u6

u7

u8

Idea 2 (as before): use only one reference
for low degree vertices. Use extra references
only for high degree references, for red, blue
and black edges.

Low degree vertices

1 reference to the right for every black edge

1 extra reference only for the right-most red edge

Idea 3: re-order vertices according
to a BFS traversal of the red tree T0

indegree(v) < 4

DO NOT use
any reference

LeftFront(e) = 3(u5 + 1) + 0

e := (u5, v)

LeftFront(e) = RightFront(3u8 + 1)

RightFront(e) = 3(u5 − 1) + 0

indegree(v) ≥ 4

v

u

w z

0 1

2
34

5

6

7
8

Idea 1 (as before): use minimal Schnyder woods

z
w

u

v

forbidden cases (no ccw triangles)

w
v

edge e = (u8, w) must be blue

ccw triangles are forbidden:

LeftFront(e) = RightFront(LeftBack(u8))
or equivalently

(worst-case O(1) time navigation)

u

v

w z

Navigation for (red) high degree vertices

v

u0

u1
u2

u3
u4

u5
u6

u7

u8

Idea: use only one reference for low degree
vertices. Use extra references only for high
degree references, for red, blue and black edges.

Low degree vertices

1 extra reference only for the right-most red edge, and only in some (rare) cases

Remark: re-order vertices according to a
BFS traversal

indegree(v) ≥ 4
indegree(v) < 4

DO NOT use
any reference

LeftFront(e) = 3(u0 + 1) + 0e := (u0, v)
RightFront(e) =?

v

u0

u1
u2

u3
u4

u5
u6

u7

u8

DO NOT use any extra reference use 1 extra reference for u0
just jump to u1 or u2

Good news: the number of
bad situations is ”small”

SCARST-RT (memory cost at most 3.67n in worst-case)
(worst-case O(1) time navigation)

u

v

w z

Navigation for (red) high degree vertices

v

u0

u1
u2

u3
u4

u5
u6

u7

u8

Idea: use only one reference for low degree
vertices. Use extra references only for high
degree references, for red, blue and black edges.

Low degree vertices

1 extra reference only for the right-most red edge, and only in some (rare) cases

Remark: re-order vertices according to a
BFS traversal

indegree(v) ≥ 4
indegree(v) < 4

DO NOT use
any reference

LeftFront(e) = 3(u0 + 1) + 0e := (u0, v)
RightFront(e) =?

v

u0

u1
u2

u3
u4

u5
u6

u7

u8

DO NOT use any extra reference use 1 extra reference for u0
just jump to u1 or u2

2

2

22

2

L(T):= number of leaves in a rooted tree T
N≥d(T):= number of nodes with indegree at least d

let Kr
d:= number of vertices w such that

Idea: choose T2 (black tree) with the minimal number of
leaves (permute the colors if needed)

indegreer(w) ≥ d+ 1

at least d children are not a leaf of T2

v

u0

u1
u2

u3
u4

u5
u6

u7

u8

2

Theorem [Castelli,Devillers ’24] The above data
structure supports O(1) time navigation and uses
at most 3.67n references (take d = 3,see below)

3.67n = 2n+ 2 · (n3 + n
3 + n

2d)

black

SCARST-RT (memory cost at most 3.67n in worst-case)
(worst-case O(1) time navigation)

Adaptive behaviour: storage cost evaluation

Lampan Hack
Delaunay

Egea
regular

sphere

Fast navigation (betweem 1.5 and 3.8 times slower than Winged-edge)

Delaunay (1M vertices)

3D meshes

Concluding remarks

Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

3-orientation + Schnyder local rule valid at each vertex

0

6

5

4

2

0
2

3

6
7 8

5

4

1

toroidal Schnyder wood

Topological extensions

Efficient decompression from compressed
format (with no additional memory)

2
3

45

6

7
8

9

10

11
T2

10 10

T 0 () ((()) () ()) () (()) () ()T 0

00000101010100110111T 2

6
7
8
9

0
1
2
3

5

4
1

2

9

0

8

3

1

4n bits

3n references

