Adaptive analysis of compact representations for surface meshes: empirical evaluations and theoretical guarantees

sept. 9, GCCR2019 (Paris Diderot, Irif)

Luca Castelli Aleardi (joint work with Olivier Devillers, Loria)

Planar and surface meshes (from computational geometry to computer graphics, geometric processing, ...)

Delaunay triangulation

GIS Technology

geometric modeling

mesh parameterization

3D reconstruction

David statue (Stanford's Digital Michelangelo Project, 2000)

force-directed layout of the 4elt graph

What is a surface mesh?

informally: a set of vertices, edges and faces (polygons) defining a polyhedral surface embedded in 3D (discrete approximation of a shape)

for us this is equivalent to

combinatorial map: a graph + a combinatorial embedding (on a surface)

geometric realization in 2D or 3D

incidence relations between triangles, vertices

genus $0\ {\rm polyhedral}\ {\rm mesh}$

planar map

 \approx

Planar and surface meshes (from computational geometry to computer graphics, geometric processing, ...)

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons

32 Giga bytes (without compression)

Geometric v.s combinatorial information

Geometry

vertex coordinates

between 30 et 96 bits/vertex

incidence relations between triangles, vertices

between 13 and 19 references/vertex $(13 \log n \text{ and } 19 \log n \text{ bits/vertex})$

in practice between 416 and 608 bits/vertex

combinatorial map: a graph + a combinatorial embedding (on a surface)

we do not mind about the geometric realization in 2D or 3D

Mesh encoding (worst case analysis)

Mesh encoding (worst case analysis)

Mesh encoding: real-world vs. pathological and random graphs

perfectly balanced

well balanced str

strongly unbalanced

practical results (regular meshes): $\approx 2.2n$ references

Some facts about planar graphs ("As I have known them") (genus 0 meshes)

Major results on planar graphs

Kuratowski theorem (1930) (cfr Wagner's theorem, 1937)

• G contains neither K_5 nor $K_{3,3}$ as minors

Thm (Tutte barycentric method, 1963) Every 3-connected planar graph G admits a convex representation in R^2 .

Thm (Colin de Verdière, 1990) Colin de Verdiere invariant (multiplicity of λ_2 eigenvalue of a generalized laplacian) • $\mu(G) \leq 3$

Schnyder woods ('89)

- planarity criterion via dimension of partial orders: $dim(G) \leq 3$
- \bullet linear-time grid drawing, with $O(n) \times O(n)$ resolution

Thm (Koebe-Andreev-Thurston) Every planar graph with n vertices is isomorphic to the intersection graph of ndisks in the plane.

Schnyder woods (overview)

Compact (practical) mesh data structures

	Data Structure	size	navigation time	vertex access	dynamic
(non compact) data structures	Half-edge/Winged-edge/Quad-edge	18n + n	O(1)	O(1)	yes
	Triangle based DS / Corner Table	12n+n	O(1)	O(1)	yes
compact data structures	Directed edge (Campagna et al. '99)	12n+n	O(1)	O(1)	yes
	2D Catalogs (Castelli Aleardi et al., '06)	7.67n	O(1)	O(1)	yes
	Star vertices (Kallmann et al. '02)	7n	O(d)	O(1)	no
	TRIPOD (Snoeyink, Speckmann, '99)	6n	O(1)	O(d)	no
\wedge	SOT (Gurung et al. 2010)	6n	O(1)	O(d)	no
	SQUAD (Gurung et al. 2011)	$(4+\varepsilon)n$	O(1)	O(d)	no
	ε between 0.09 and 0.3 ESQ (Castelli Aleardi, Devillers, Rossignac'12)	4.8n	O(1)	O(d)	yes
	Castelli Aleardi and Devillers (Isaac '11, JoCG'18)	4n (or $5n$)	O(1)	O(d) (or $O(1)$)	no
	LR (Gurung et al. 2011)	$(2+\delta)n$	O(1)	O(1)	no
	δ between 0.2 and 0.3				

LR: Laced Ring data structure LR (Gurung et al. 2011)

triangle classification

Ring-expander

c = s; // start at the seed	corner s
c.n.v.m = c.p.v.m = true; // mark vertices as	visited
do {	
<pre>if (!c.v.m) c.v.m = c.t.m = true; // in</pre>	wade c.t
<pre>else if (!c.t.m) c = c.o; // go back one</pre>	triangle
<pre>c = c.r; // advance to next ring edge on t</pre>	he right
<pre>} while (c != s.o); // until back at the b</pre>	eginning

LR: Laced Ring data structure LR (Gurung et al. 2011)

triangle classification

Ring-expander

LR (Gurung et al. 2011)

meshes sorted according to % of degree 6 vertices

triangle classification

Ring-expander

(references per vertex) LR: Laced Ring data structure LR (Gurung et al. 2011)

rnv

Ring-expander

LR: Laced Ring data structure

isolated vertices

(Gurung et al. 2011) LR vs. adaptive CDT

triangle classification

vertex degree distribution $(p_3, p_4, \dots, p_{n-1})$

(Castelli Devillers, 20xx)

$$size(n) = 3n + min(\frac{1}{6}, 2 \cdot \sum_{i=7}^{n-1} p_i)$$

provable upper bound practical performances

Ring-expander

$$size(LR) := 2v_r + v_i + 6|T_0| + 3|T_1^i + T_2^i$$

Winged Edge DS (size 19n) (Baumgart, 1972)

Our first simple Compact DS (size 6n) (Castelli Aleardi, Devillers, 2011) e := (u, v) $0 \le v \le n-1$

More compact DS (size 5n): use maximal Schnyder woods

(less redundant and "more difficult to implement")

 $\mathbf{2}$

remove one blue column

More compact DS (size 4n): use maximal Schnyder woods (reorder vertices according to a BFS traversal of T_0)

More compact DS: size < 4n? (can we exploit the regularity of the triangulation?)

Adaptive compact DS (size $\approx 3n$) (allow slightly slower navigation) ("more difficult to implement?")

we have a problem: impossible to reach w going to the left is more difficult

remove all red columns

forbidden case

Adaptive compact DS (size $\approx 3n$) (allow slightly slower navigation) ("more difficult to implement?")

remove all red columns

forbidden case

Adaptive compact DS (size $\approx 3n$) (allow slightly slower navigation) ("more difficult to implement?")

remove all red columns

forbidden case

use the closest black edge (not useful for right navigation)

Adaptive compact DS (size $\approx 3n$) (allow slightly slower navigation) ("more difficult to implement?")

remove all red columns

forbidden case

use the closest black edge (not useful for right navigation)

Adaptive compact DS (size $\approx 3n$) (allow slightly slower navigation) ("more difficult to implement?")

remove all red columns

if the black edge is too far store an additional reference

 \mathcal{Z}

Adaptive compact DS (size $\approx 3n$)

remove all red columns

(allow slower navigation) ("more difficult to implement?")

fix a small value \boldsymbol{k}

upper bound depending of vertex degree distribution

$$size(n) = 3n + 2(\sum_{i=k+3}^{n-1} p_i)$$

for
$$k = 4$$

 $size(n) = 3n + 2(\sum_{i=7}^{n-1} p_i)$