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Main goals of this talk

• either you do not know Schnyder woods

I will make you discover the magic world of
Schnyder woods

• or you already encountered Schnyder woods

I will explain how to efficiently compute
Schnyder woods for toroidal triangulations



Some facts about (planar) maps
(”As I have known them”)



Kuratowski theorem (1930) (cfr Wagner’s theorem, 1937)
• G contains neither K5 nor K3,3 as minors (or no
subdivisions of K5 nor K3,3)

Schnyder woods (Walter Schnyder ’89)
• planarity criterion via dimension of partial orders:
dim(G) ≤ 3

• linear-time grid drawing, with O(n)×O(n) resolution
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LG[i, k] ={−AG[i, j]

deg(vi)

Every planar graph with n vertices is
isomorphic to the intersection graph of n
disks in the plane.

Thm (Koebe-Andreev-Thurston)

Thm (Colin de Verdière, 1990) Colin de Verdiere invariant
(multiplicity of λ2 eigenvalue of a generalized laplacian)
• µ(G) ≤ 3

Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits
a convex representation in R2.

K5 is a minor of the Petersen graph
subdivision of K3,3

Let us review some major results on planar graphs



(Planar) Schnyder woods
(definitions and main properties)



Schnyder woods for genus 0 (plane) triangulations: definition

ii) colors and orientations around each inner node must
respect the local Schnyder condition

i) edge are colored and oriented in such a way that each
inner node has exaclty one outgoing edge of each color

A Schnyder wood of a (rooted) planar triangulation is partition of
all inner edges into three sets T0, T1 and T2 such that

V0 V1

V2

V1

V2

V0

iii) inner edges incident to Vi are of color i and oriented
toward Vi

genus 0 triangulation with a
marked root face {v0, v1, v2}

local Schnyder condition

Definition [Schnyder ’90]



Spanning property of Schnyder woods
[Schnyder ’90]Theorem

The three sets T0, T1, T2 are spanning trees of
the inner vertices of T (each rooted at vertex vi)

v1

v0

T2

T1

v2 T0

v0 v1

v2

Ti := digraph defined by directed edges of color i

R2(v)

R1(v)

R0(v)

Mono-chromatic paths
Lemma
For each inner vertex v the three
monochromatic paths P0, P1, P2

directed from v toward each vertex
Vi are vertex disjoint (except at v)
and partition the inner faces into
three sets R0(v), R1(v), R2(v)

vv

each path Pi(v) is chord-free

P0(v) v

z



Schnyder drawings: face counting algorithm
Theorem (Schnyder, Soda ’90)
For a triangulation T having n vertices, we can draw it (with no edge crossings) on a grid of
size (2n− 5)× (2n− 5), by setting x0 = (2n− 5, 0), x1 = (0, 0) and x2 = (0, 2n− 5).

⇒

T endowed with a Schnyder wood

Input: a planar triangulation T

a b
cd

e
f

gh

i Output:
a straight-line planar grid-drawing of T

a=(0, 0) b=(13, 0)



Schnyder drawings: face counting algorithm
Theorem (Schnyder, Soda ’90)
For a triangulation T having n vertices, we can draw it (with no edge crossings) on a grid of
size (2n− 5)× (2n− 5), by setting x0 = (2n− 5, 0), x1 = (0, 0) and x2 = (0, 2n− 5).

a=(0, 0) b=(13, 0)

x1
x0

x2

α1

v
α0

α2

v = α0x0 + α1x1 + α2x2

R2(v)

R1(v)

R0(v)
v

v := |R0(v)|
|F |−1 x0 +

|R1(v)|
|F |−1 x1 +

|R2(v)|
|F |−1 x2

a
b
c
d
e

f
g

h
i

→ (13, 0, 0)

→ (0, 13, 0)

→ (0, 0, 13)

→ (

→ (9, 3, 1)

→ (2, 7, 4)

→ (7, 3, 3)

→ (1, 4, 8)

→ (8, 1, 4)

5, 6, 2 )

a

b

c

d

e

f

g

h
i

→ (0, 0)

→ (13, 0)

→ (0, 13)

→ (6,2)

→ (9, 1)

→ (7, 4)

→ (3, 3)

→ (4, 8)

→ (1, 4)

d

d

b=(0, 13)

αi is the normalized area of the
triangle (xi−1, xi+1, v)

|Ri(v)| is the number of triangles in Ri(v)

|F | − 1 = 2n− 5 is the number
of inner triangles



Linear-time computation of (planar) Schnyder woods

Theorem (Brehm, 2000)
A Schnyder wood can be computed in linear-time
(via a sequence of n− 2 vertex shellings)

use Canonical Orderings [De Fraysseix, Pach, Pollack ’89]

V0 V1

→ Gk−1
Gk

vk ∈ ∂Gk
vk

vn−1

V2

Remove at each step a vertex v on the boundary ∂Gk

(with no incident chordal edges in the gray region)

Gn := T

Gn−1 Gn−2 Gn−3

G2G3

vn = V2

V0 V1

vrvl

k > l
k > r



Schnyder woods for higher genus surfaces

0

6

5

4

2

0
2

3

6
7 8

5

4

1

7 8

1

2

0

3
5

4

6

Toroidal Schnyder woods (g=1)
[Goncalves Lévêque, DCG’14]

g-Schnyder woods

[Castelli Aleardi, Fusy, Lewiner, SoCG’08]

Schnyder local rule valid at each vertexSchnyder local rule valid almost
everywhere (except O(g) vertices)



Planarization: from the torus back to the plane

Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three
non-contractible and non-homotopic
cycles that all intersect on one vertex
and that are pairwise disjoint otherwise.
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Planarization: from the torus back to the plane
Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three
non-contractible and non-homotopic
cycles that all intersect on one vertex
and that are pairwise disjoint otherwise.
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G cut-graph
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Γ2

Γ1

Γ1

Γ0

Γ0

split along Γ0, Γ1, Γ2

(two planar quasi-triangulations)

cylindric triangulation: planar triangulation with two boundaries



Toroidal Schnyder woods: definition

e = 3n

Def. Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

3-orientation + Schnyder local rule valid at each vertex

n− e + f = 2− 2g

toroidal Schnyder wood
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Remark: in the toroidal case (g = 1)

[Goncalves Lévêque, DCG’14]



e = 3n

Def. Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

3-orientation + Schnyder local rule valid at each vertex

n− e + f = 2− 2g
Remark: in the toroidal case (g = 1)

Toroidal Schnyder woods vs. 3-orientations
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valid 3-orientation

(the local Schnyder rule cannot
be propagated everywhere)
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not valid toroidal
Schnyder wood

Remark: unlike the planar case, some 3-orientations
do not lead to valid Schnyder woods

[3-orientation]
v0 v1

v2

[Schnyder wood]

(in the plane there is a bijection between
3-orientations and Schnyder woods)



Toroidal Schnyder woods: cycles

toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:
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toroidal Schnyder wood

(there are 3 disjoint
mono-chromatic cycles of color 2)
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e = 3n

Open problem: is it possible to find (at
least) one toroidal Schnyder wood with
connected mono-chromatic componentssome colors may define disconnected components

(true for all triangulations
of size at most n = 11)

mono-chromatic cycles are non-contractibles
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u1

u3

u4

uk

u2

Remark: the inner region of a
contractible mono-chromatic cycle
is a (planar) topological disk

(n edges in each color)



Toroidal Schnyder woods: cycles

toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:
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toroidal Schnyder wood
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e = 3n

all mono-chromatic cycles of the same color are:
homotopic and disjoint (parallel) and oriented in
one direction

mono-chromatic cycles are non-contractibles
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Toroidal Schnyder woods: cycles

toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

0

6

5

4

2

0
2

3

6
7 8

5

4

1

toroidal Schnyder wood

e = 3n

all mono-chromatic cycles of different colors are:
either homotopic and disjoint (parallel) or crossing

mono-chromatic cycles are non-contractibles
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mono-chromatic paths Pi(v) may have incident chords



Crossing cycles: a hierarchy of Schnyder woods
Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

crossing: every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods can be:

crossing Schnyder wood
the Schnyder wood is
non-crossing
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half-crossing
Schnyder wood

only half-crossing: only two mono-chromatic cycles are pairwise crossing

non-crossing: all mono-chromatic i-cycles are parallel (non crossing)
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is balanced
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Crossing Schnyder woods are relevant for
defining toroidal Schnyder (periodic) drawings
Goal: try to generalize the region counting method to obtain
a straight-line grid drawing which is xy-periodic

S′

S

u := (ux, uy)

uright := u + S′

utop := u + S



Regions are defined by crossing cycles

v

v

region Ri(v) is defined by two
(crossing) paths outgoing from
vertex v

v =: |R0(v)|
|F |−1 V0 +

|R1(v)|
|F |−1 V1 +

|R2(v)|
|F |−1 V2

V0 V1

V2

In the toroidal case: regions are unbounded

R1(v)

R1(v)

Regions are defined if cycles are crossing

(in the universal cover)



Toroidal Schnyder woods: existence I
[for simple toroidal triangulations]Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.
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V2

V0
V1

Γ2

Γ1

Γ1

Γ0

Γ0

crossing toroidal Schnyder woodsplit along Γ0, Γ1, Γ2
(for simple triangulations)

(two planar quasi-triangulations)

Corollary[Goncalves Lévêque, DCG’14]
Any simple toroidal triangulation admits a toroidal crossing Schnyder wood

(no multiple edges, no loops)



Toroidal Schnyder woods: existence I
(for simple toroidal triangulations)Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.
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crossing toroidal Schnyder woodsplit along Γ0, Γ1, Γ2
(for simple triangulations)

(two planar quasi-triangulations)

Corollary[Goncalves Lévêque, DCG’14]
Any simple toroidal triangulation admits a toroidal crossing Schnyder wood



Toroidal Schnyder woods: existence II
(for general toroidal triangulations)Thm[Goncalves Lévêque, DCG’14]

Any toroidal triangulation admits a toroidal crossing Schnyder wood

v

0 1

v

. . . . . .

computation of (planar) Schnyder woods

first phase: perform edge contractions
second phase: perform edge expansion+edge coloring

V2

V2

x y

v

u

⇒
x y

w

x y
w

x y
⇒

(3 possible choices of coloring)

x y
w

x y
w

(5 cases to distinguish)



Toroidal Schnyder woods: existence II
(for general toroidal triangulations)Thm[Goncalves Lévêque, DCG’14]

Any toroidal triangulation admits a toroidal crossing Schnyder wood

v

0 1

v

. . .

computation of (planar) Schnyder woods

first phase: perform edge contractions
second phase: perform edge expansion+edge coloring

V2

V2

x y

v

u

⇒
x y

w

⇒

0
2

3

6
7 8

5

4

1

perform a sequence of n− 1

edge contractions

⇒ ⇒

decontract (and color/orient)

color and orient

. . .
. . .



Open problems
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1 Open problem: is it possible to find (at
least) one toroidal Schnyder wood with
connected mono-chromatic components
and such the intersection of the three
cycles is a single vertex?

Open problem[Lévêque, 2015]
Is it possible to compute crossing toroidal Schnyder woods via vertex shellings?
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Open problem:[Goncalves Lévêque, DCG’14] is it
possible to find (at least) one toroidal Schnyder
wood which is crossing and with connected
mono-chromatic components (one for each color)?
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3 disjoint mono-chromatic cycles of color 2
Mono-chromatic cycles of color 0 and 1 are connected



Our contribution:
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Computing in linear time (crossing) Schnyder woods with
at least two monochromatic connected components

(via vertex shellings)



Toroidal Schnyder woods via (cylindric) canonical orderings

(not necessarily crossing Schnyder woods)

Corollary
Any simple toroidal triangulation admits a toroidal (not necessarily crossing) Schnyder wood
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1

w1

w2 w2

w2
w2

edge of F

First step: compute a (chord-free)
non-contractible cycle Γ

Compute a cylindric canonical ordering

Γext

Γ

⇒

v

At each step color and orient edges

v
Γext

Perform an incremental vertex shelling, starting from Γext

Γ is split into two copies: Γext and Γin

Γin

[Castelli Aleardi, Fusy, Devillers, GD2012]

(cylindric triangulation)

Cut along the cycle Γ



(not necessarily crossing Schnyder woods)
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Γin

v

v
vr

vl

vr
vl

Γext

Γ

local invariant

⇒ ⇒

glue together the two boundaries

(the local Schnyder woods remains satisfied on Γ)
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Cylindric triangulation

Toroidal Schnyder wood

Algo 1: Toroidal Schnyder woods via (cylindric) canonical orderings
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Structural properties of Schnyder woods computed by Algo 1

0 and 1-paths are oriented downward

0
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6
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1

crossing Schnyder wood the Schnyder wood may be NOT crossing

Γ

2-paths are oriented upward

3
4

1
2

7

9
5

6

8

0, 1 and 2-paths cross the cycle Γ

0, 1 and 2-cycles are never homotopic to Γ

Γ

If the Schnyder wood is (at least) half-crossing then the 0-cycles and 1-cycles are pairwise crossing

z1
z2 z3

z4
z5

v π(v) > π(z1)

π(z1) > π(z2) > π(z3) > . . . π(z5) > π(z1)

edges of Γ are either 0 or 1

but it is at least balanced

Γ

edges on Γ are either blue or red



Toward half-crossing Schnyder woods
(with one connected mono-chromatic component)



P -constrained (cylindric) Schnyder woods

G

Cext

Cin

9 98 98
7

98
7

6

P

98
7

6
5

9
7

6
5

4

98
7

6
5

4

3

98
7

6
5

4

3

2

98
7

6
5

4

3

2
1

S(G)

8

ut−1

u0

ut−1

u0

Input: a cylindric triangulation G and a chord-free path P := {u0, . . . , ut−1}

Output: a Schnyder wood SP (G) such that the edges of P are of color 2
Solution: perform vertex shellings only for (boundary) vertices which are not
adjacent to an inner vertex of P

the path P must intersect the two boundary cycles only at u0 and ut−1



Definition of a river

u0

ut−1 = z0
z1

z2

zs−1

zs−2

x1

x2

ut−1

z0=
z1

z2zs−2

u0

x0

= x1 x2xr−1

zs−1

P

u1

u1

∂eR
P

Def: a river is a cylindric triangulation such that the two boundaries are
disjoint and chordless and such every vertex is incident to a non-trivial chord
(connecting the two boundaries)

Cext

Cext = {z0, z1, z2, . . . , zs−1} Cin = {x0, x1, x2, . . . , xr−1}

Cin



Right-most traversal of a river

no chord (ut−1, x̄) at the
right of P

ut−1 z1

u0

z2

case A

case C2

xc

ut−1 z1

u0 = xc x2

zs−1

case B

ut−1 z1

case C1

zs−1

u0 xc u0 x1 x2

ut−1 z1zs−1

xc

ut−1 has
chords both
at the left
and the

right of P

ut−1 has no
chords other

than
(u0, ut−1)

no chord (ut−1, x̄) at
the left of P

x1xr−1

xr−1 xr−1



Right-most traversal of a river

case A

case C2

case B

case C1

ut−1

xcu0

1

7 65 2

4

3

P := {u0, ut−1 = v2}
ut−1

u0

3

4 251

P := {u0, ut−1 = v5}

ut−1

5

u0

47 6

3

2
1

P := {u0, v3, ut−1 = v7}

ut−1

u0

P := {u0, v6, ut−1 = v8}

Lemma
In cases (A), (B) and (C1),
the blue path P1 visits all
vertices on the top boundary
and crosses P either at u0 or
at ut−1

In case (C2), the blue path P1

may not cover all top boundary
vertices (not crossing P ), but
then there exists a ccw-oriented
(contractible) cycle (green
region)

7

6

xc

5
4

1

2 38

Right-most traversal: remove
at each step the left-most
vertex without chords



An algorithm for half-crossing Schnyder woods
Algo 2

G

Γ

Γ Γ

R

Gtop

Gbot

T
z

x

11 10

9

8

compute S(Gtop)

P = {x, z}
z

x

Gtop



An algorithm for half-crossing Schnyder woods
Algo 2

11 10

9

8

compute a constrained rightmost traversal of R

P = {x, z}
z

x

Gtop

z has type AR

Gtop

Gbot

11 10
9

8

7

6 5

R

Gtop

Gbot

11 10
9

8

7

6 5

4 1
2

3

compute S(Gbot)
1-cycles and 2-cycles
are crossing

return the Schnyder wood

there is one connected
1-cycle

One pass suffices



An algorithm for half-crossing Schnyder woods
Algo 2

compute a constrained rightmost traversal of R

P = {x, z}

Gtop

z has type C1
R

Gtop

Gbot

11 10
9

8

7

6 5

compute S(Gbot)

(blue) 1-cycles and (black)
2-cycles are NOT crossing

we need a second pass

there is one connected 1-cycle

Two passes are required

R

11 10

9

8

z

x

11 10
9

8

6

5 7

4
321

(red) 0-cycles cross (black)
2-cycles but have 2 components

(black) 2-cycles are chord-freeγ2



An algorithm for half-crossing Schnyder woods
Algo 2

w has type C2

compute S(Gbot)

the 0-cycle(s) and the
2-cycle are crossing

we need a second pass

there is only one
connected 0-cycle

Run the second pass

R

Gtop

Gbot

11 10
9

8

7
65

P2

11 10

9

8

w

y

R

Gtop

Gbot

11 10
9

8

7
65

4
321

compute a constrained
leftmost traversal of R
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Toward crossing Schnyder woods
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An algorithm for crossing Schnyder woods

the 2-cycles and the
1-cycle are NOT
crossing
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decomposition into 5 components

half-crossing before reversing
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crossing after reversing
an oriented cycle in Rbot to be reversed

compute two non overlapping rivers



Experimental results



Fast linear-time implementation

n = 360
Penrose

triangle

ring

n = 605

Koch

snowflake

n = 120

(with Java 1.8, on a Dell Laptop,
Intel core i7 2.6GHz, 8GB RAM)



Conjectures on toroidal Schyder woods: experimental confirmation

Open problem: is it possible
to find (at least) one toroidal
Schnyder wood with
connected mono-chromatic
components and such the
intersection of the three cycles
is a single vertex?

(true for all triangulations
of size at most n = 11)
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triangulations are generated with surftri software [Sulanke, 2006]



Schyder woods for g ≥ 2
Thm (3-orientations for graphs on surfaces, of arbitrary genus)

Any triangulation of a surface (the sphere and the projective
plane) admits a ’3-orientation’: orientation without sinks
s.t. every vertex has outdegree divisible by three

Open problem [Goncalves Knauer Lévêque, 2016]

Wikipedia picture[Albar Goncalves Knauer, 2014]

Thm [Suagee, 2021]

Simple triangulations of genus g ≥ 1 having
”large” edgewidth do admit Schnyder woods

Multiple local Schnyder condition:
the outdegree of every vertex is a
positive multiple of 3.

(there are no sinks)

edgewidth ≥ 40(2g − 1)

surftri software [Sulanke, 2006]

exaustive generation of all 3-orientations
for all triangulations with g = 2, n ≤ 11

Experimental confirmation (g = 2)

All simple triangulations of genus g = 2

and size ≤ 11 admit Schnyder woods

(size of the smallest non contractible cycle)

Existence of Schnyder woods for higher genus triangulations



Concluding remarks




