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Main goals of this talk

e either you do not know Schnyder woods

| will make you discover the magic world of
Schnyder woods

e or you already encountered Schnyder woods

| will explain how to efficiently compute
Schnyder woods for toroidal triangulations
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Some facts about (planar) maps

(" As | have known them")




Let us review some major results on planar graphs

Kuratowski theorem (1930) (cfr Wagner's theorem, 1937
y : : ( ) ( 5 ) Thm (Koebe-Andreev-Thurston)
e (G contains neither K5 nor K33 as minors (or no | h with . .
subdivisions of s nor 3.3 !Every P a.nar grap . with n Yertlces Is
isomorphic to the intersection graph of n

disks in the plane.

K5 is a minor of the Petersen graph

subdivision of K3 3

Thm (Colin de Verdiere, 1990) Colin de Verdiere invariant
(multiplicity of A, eigenvalue of a generalized laplacian)

o u(G) <3
[ 4 -1 O_
15 Lofi.] { deg(vs) Schnyder woods (Walter Schnyder '89)
~Acli.J] e planarity criterion via dimension of partial orders:
dim(G) <3
0 3

Lo i e linear-time grid drawing, with O(n) x O(n) resolution

Thm (Tutte barycentric method, 1963)
Every 3-connected planar graph GG admits
a convex representation in R’.




(Planar) Schnyder woods

(definitions and main properties)




Schnyder woods for genus 0 (plane) triangulations: definition
Vs

genus 0 triangulation with a
marked root face {vg, vy, v}

Vo
Definition [Schnyder '90]

A Schnyder wood of a (rooted) planar triangulation is partition of
all inner edges into three sets Ty, 17 and 15 such that

local Schnyder condition i) edge are colored and oriented in such a way that each
inner node has exaclty one outgoing edge of each color

i) colors and orientations around each inner node must
respect the local Schnyder condition

iii) inner edges incident to V; are of color ¢ and oriented
toward V;




Spanning property of Schnyder woods

Theorem [schnyder '90] T; := digraph defined by directed edges of color i
The three sets 1, 17, I5 are spanning trees of
the inner vertices of T (each rooted at vertex v;)

U2
. . T2 () TO j S

13

Mono-chromatic paths

Lemma

For each inner vertex v the three
monochromatic paths Py, P, Ps
directed from v toward each vertex
V; are vertex disjoint (except at v)
and partition the inner faces into
three sets Ry(v), R1(v), Ra(v)

each path P;(v) is chord-free




Schnyder drawings: face counting algorithm

Theorem (Schnyder, Soda '90)
For a triangulation 7 having n vertices, we can draw it (with no edge crossings) on a grid of
size (2n — b) X (2n — b), by setting xg = (2n — 5,0), x1 = (0,0) and z5 = (0,2n — 5).

Input: a planar triangulation T
| Output:
a straight-line planar grid-drawing of T

..

T endowed with a Schnyder wood



Schnyder drawings: face counting algorithm

Theorem (Schnyder, Soda '90)
For a triangulation 7 having n vertices, we can draw it (with no edge crossings) on a grid of
size (2n — b) X (2n — b), by setting xg = (2n — 5,0), x1 = (0,0) and z5 = (0,2n — 5).

U = Ty T+ 1 T1 T 2T2 |Ro(v)] Ry (v)] | Rz (v))|
T = R %o e Tt o

|R;(v)| is the number of triangles in R;(v)

v |F'| — 1 =2n—>5 is the number

ey of inner triangles

Lo T

«; i1s the normalized area of the
triangle (z;_1,%;+1,0) b=(0, 13)

— 3> 0 ™ O Q OT W
R A s




Linear-time computation of (planar) Schnyder woods

use Canonical Orderings [De Fraysseix, Pach, Pollack '89]

Theorem (Brehm, 2000)

A Schnyder wood can be computed in linear-time
(via a sequence of n — 2 vertex shellings)

Remove at each step a vertex v on the boundary 0G/,
(with no incident chordal edges in the gray region)




Schnyder woods for higher genus surfaces

g-Schnyder woods Toroidal Schnyder woods (g=1)
[Castelli Aleardi, Fusy, Lewiner, SoCG'08] [Goncalves Lévéque, DCG'14]

Schnyder local rule valid almost Schnyder local rule valid at each vertex
everywhere (except O(g) vertices)




Planarization: from the torus back to the plane

GG cut-graph

I' non-contractible cycle

—>

Thm(Fijavz, unpublished]

A simple toroidal triangulation contains three
non-contractible and non-homotopic
cycles that all intersect on one vertex
and that are pairwise disjoint otherwise.




Planarization: from the torus back to the plane

—>

Thm(Fijavz, unpublished]

A simple toroidal triangulation contains three
non-contractible and non-homotopic
cycles that all intersect on one vertex
and that are pairwise disjoint otherwise.

GG cut-graph

I' non-contractible cycle

— | <>

cylindric triangulation:oplanar triangulation with two boundaries




Toroidal Schnyder woodes:

Remark: in the toroidal case (g = 1)

n—e+f=2-2g e =3n

Def. Toroidal Schnyder woods [Goncalves Lévéque, DCG'14]

definition

[Goncalves Lévéque, DCG'14]

® 3-orientation 4+ Schnyder local rule valid at each vertex

toroidal Schnyder \;vc;gd_




Toroidal Schnyder woods vs. 3-orientations

Remark: in the toroidal case (g = 1) e = 3n
n—e+f=2-2g

Def. Toroidal Schnyder woods [Goncalves Lévéque, DCG'14]
® 3-orientation +|{Schnyder local rule valid at each vertex A

Ta

>
2

1

1

Remark: unlike the planar case, some 3-orientations
do not lead to valid Schnyder woods

not valid toroidal
valid 3-orientation Schnyder wood

(%

Vo U1
[3-orientation] [Schnyder wood]

(in the plane there is a bijection between

. : (the local Schnyder rule cannot
3-orientations and Schnyder woods)

be propagated everywhere)




/)

toroidal Schnyder wood

® mono-chromatic cycles are non-contractibles

(there are 3 disjoint
mono-chromatic cycles of color 2)

® toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

Toroidal Schnyder woods: cycles

e =3n

(n edges in each color)

Remark: the inner region of a
« contractible mono-chromatic cycle

is a (planar) topological disk

# irreducible

triangulations

#triangulations
g=1)

1
4

15
1

1
7
112
2109
37867

Open problem: is it possible to find (at
least) one toroidal Schnyder wood with
connected mono-chromatic components

(true for all triangulations
of size at most n = 11)




Toroidal Schnyder woods: cycles

/)

toroidal Schnyder wood

® toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color: e = 3n

® mono-chromatic cycles are non-contractibles  all mono-chromatic cycles of the same color are:
homotopic and disjoint (parallel) and oriented in
one direction :




Toroidal Schnyder woods: cycles

/)

toroidal Schnyder wood

® toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

I T e e e |
- = = = e

all mono-chromatic cycles of different colors are:
L . . e .
either homotopic and disjoint (parallel) or crossing




Crossing cycles: a hierarchy of Schnyder woods
Toroidal Schnyder woods [Goncalves Lévéque, DCG'14]

Toroidal Schnyder woods can be:

® crossing: every monochromatic cycle intersects at least one monochromatic cycle of each color

e only half-crossing: only two mono-chromatic cycles are pairwise crossing

e non-crossing: all mono-chromatic i-cycles are parallel (non crossing)

crossing Schnyder wood half-crossing
Schnyder wood

the Schnyder wood
is balanced
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toroidal Schnyder (periodic) draw
try to generalize the region counting method to obtain

Ining

def
Goal

a straight-line grid drawing which is zy-periodic
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Regions are defined by crossing cycles

In the toroidal case: regions are unbounded
(|n the unlversal cover)

\l'

region R;(v) is defined by two
(crossing) paths outgoing from
vertex v

. [Ro(v)| (U)I IRl(v)I IRz(v)I

Regions are defined if cycles are crossing




Toroidal Schnyder woods: existence |

Thm{[Fijavz, unpublished] [for simple toroidal triangulations]
(no multiple edges, no loops)

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.

Corollary|[Goncalves Lévéque, DCG'14]

Any simple toroidal triangulation admits a toroidal crossing Schnyder wood

(two planar quasi-triangulations)  crossing toroidal Schnyder wood

Split along Fo, Fl, F2
(for simple triangulations)




Toroidal Schnyder woods: existence |

Thm{[Fijavz, unpublished] (for simple toroidal triangulations)

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.

Corollary|[Goncalves Lévéque, DCG'14]

Any simple toroidal triangulation admits a toroidal crossing Schnyder wood

(two planar quasi-triangulations)  crossing toroidal Schnyder wood

Split along Fo, Fl, F2
(for simple triangulations)




Toroidal Schnyder woods: existence ||
Thm[Goncalves Lévéque, DCG'14] (for general toroidal triangulations)

Any toroidal triangulation admits a toroidal crossing Schnyder wood

computation of (planar) Schnyder woods

first phase: perform edge contractions
second phase: perform edge expansion+edge coloring

(3 p055|b|e choices of coloring)

(5 cases to distinguish)




Toroidal Schnyder woods: existence ||
Thm|[Goncalves Lévéque, DCG'14] (for general toroidal triangulations)

Any toroidal triangulation admits a toroidal crossing Schnyder wood

computation of (planar) Schnyder woods

first phase: perform edge contractions
second phase: perform edge expansion+edge coloring

color and orient

decontract (and color/orient)

perform a sequence of n — 1
edge contractions




Open problems

Open problem|Lévéque, 2015]
s it possible to compute crossing toroidal Schnyder woods via vertex shellings?

Open problem:[Goncalves Lévéque, DCG'14] is it
possible to find (at least) one toroidal Schnyder
wood which is crossing and with connected
mono-chromatic components (one for each color)?

3 disjoint mono-chromatic cycles of color 2
Mono-chromatic cycles of color 0 and 1 are connected

Open problem: is it possible to find (at
least) one toroidal Schnyder wood with
connected mono-chromatic components
and such the intersection of the three
cycles is a single vertex?




Our contribution:

Computing in linear time (crossing) Schnyder woods with
at least two monochromatic connected components

(via vertex shellings)




Toroidal Schnyder woods via (cylindric) canonical orderings
(not necessarily crossing Schnyder woods)

First step: compute a (chord-free) Compute a cylindric canonical ordering

non-contractible cycle T [Castelli Aleardi, Fusy, Devillers, GD2012]

Cut along the cycle I Perform an incremental vertex shelling, starting from I,

(cylindric triangulation)

S

o o

At each step color and orient edges

Corollary
Any simple toroidal triangulation admits a toroidal (not necessarily crossing) Schnyder
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Structural properties of Schnyder woods computed by Algo 1

® edges of I are either 0 or 1
® ) and 1-paths are oriented downward

® )-paths are oriented upward

® (), 1 and 2-paths cross the cycle I'

® (), 1 and 2-cycles are never homotopic to I

é edges on I are either blue or red
A
crossing Schnyder wood the Schnyder wood may be NOT crossing
but it is at least balanced




Toward half-crossing Schnyder woods
(with one connected mono-chromatic component)




P-constrained (cylindric) Schnyder woods
Input: a cylindric triangulation G and a chord-free path P := {ug,...,u;_1}

the path P must intersect the two boundary cycles only at ug and u;_1

Output: a Schnyder wood Sp(G) such that the edges of P are of color 2
Solution: perform vertex shellings only for (boundary) vertices which are not

adjacent to an inner vertex of P

. Cea:t




Definition of a river

Def: a river is a cylindric triangulation such that the two boundaries are
disjoint and chordless and such every vertex is incident to a non-trivial chord
(connecting the two boundaries)

Ceajt — {Zo, AR IR ,Zs_l}
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chords other
than
(’LLO, ut—l)

) at the

Ut—1,T

no chord (
right of P

Ut—1, ZE) at

no chord (
the left of P

S
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.
(qv)
(-
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I
7))
S
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>
(4]
-
)
)
7))
2
_
o
-
.80
o

us_1 has

chords both

at the left
and the

right of P




Right-most traversal of a river

Right-most traversal: remove
at each step the left-most
vertex without chords

Lemma

In cases (A), (B) and (C1),
the blue path P; visits all
vertices on the top boundary
and crosses P either at ug or
at us_1

In case (C5), the blue path P;
may not cover all top boundary
vertices (not crossing P), but
then there exists a ccw-oriented
(contractible) cycle (green
region)




An algorithm for half-crossing Schnyder woods

Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component) T

Data: a simple toroidal triangulation 7, a non-contractible chordless cycle T’
Result: a half-crossing Schnyder wood

// Pre-processing step o
cut Talong I': let & be the resulting cylindric triangulation ; o
compute a river R and the partition G = Giop U R U Ghottom ;
// First pass

compute a Schnyder wood S(Gigp) of Gigp

choose an arbitrary non trivial chord e = (x,z) of R ;

P {x,z};

if z has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, P);
r+e1;

else
run the left-most P-constrained traversal of (R, P) ;

e

end
compute a Schnyder wood S(Ghottom) of Grotiom ;
glue boundary cycles together and let S(7) = S(Grottom ) U S(R) U S(Giop) ;
if the r-cycle and 2-cycles are crossing in S(T) then
return S(7) ;
end
// Run a second pass on R O .
~9 +— any 2-cycle of S[T) // Remark: the r-cycle and 2-cycles are parallel
Py +— N AR, // restriction of 72 to the river R Com pute S(Gto )
u FFRNP p
if u has type (A), (B) or (C1) then
run the right-most P-constrained traversal of (R, F»);
re1;
else
run the left-most P-constrained traversal of (R, P») ;
re0;

end

// Remark: S(Ghostom) and S(Gi,p) are Po-constrained
glue boundary cycles together and let S(7) = S(Ghottom ) U S(R) U S(Giop) ;
return S(7) ;




An algorithm for half-crossing Schnyder woods

Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component)

Data: a simple toroidal triangulation 7, a non-contractible chordless cycle T’
Result: a half-crossing Schnyder wood

// Pre-processing step

cut Talong I': let & be the resulting cylindric triangulation ;

compute a river R and the partition G = Giop U R U Ghottom ;

// First pass

compute a Schnyder wood S(Gigp) of Gigp

choose an arbitrary non trivial chord e = (x,z) of R ;

P« {x,z

if z has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, P);
re1;

else

run the left-most P-constrained traversal of (R, P) ;
re0;

end

compute a Schnyder wood S{Ghottom) of Grotiom ;
glue boundary cycles together and let S(7) = S(Grottom ) U S(R) U S(Giop) ;
if the r-cycle and 2-cycles are crossing in S(T) then
return S(7) ;
end

// Run a second pass on R

~9 +— any 2-cycle of S[T) // Remark: the r-cycle and 2-cycles are parallel
Py, +— vwNR; // restriction of <, to the river R

u FFRNP

if u has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, F»);

re1;

else

run the left-most P-constrained traversal of (R, P») ;
e 0

end

// Remark: S(Gpoteom) and S(Gi.,) are Ph-constrained

glue boundary cycles together and let S(7) = S(Ghottom ) U S(R) U S(Giop) ;
return S(7) ;

One pass suffices

compute a constrained rightmost traversal of R

1 Gbot
1

2 has type A

1-cycles and 2-cycles
are crossing

there is one connected
1-cycle

return the Schnyder wood




An algorithm for half-crossing Schnyder woods
Two passes are required

Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component)

Data: a simple toroidal triangulation 7, a non-contractible chordless cycle T’
Result: a half-crossing Schnyder wood

// Pre-processing step

cut Talong I': let & be the resulting cylindric triangulation ;

compute a river R and the partition G = Giop U R U Ghottom ;

// First pass

compute a Schnyder wood S(Gigp) of Gigp

choose an arbitrary non trivial chord e = (x,z) of R ;

P« {x,z

if z has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, P);
re1;

else

run the left-most P-constrained traversal of (R, P) ;
re0;

end
compute a Schnyder wood S(Ghottom) of Grotiom ;
glue boundary cycles together and let S(7) = S(Grottom ) U S(R) U S(Giop) ;

if the r-cycle and 2-cycles are crossing in S(T) then
return S(7) ;

end

// Run a second pass on R

~9 +— any 2-cycle of S[T) // Remark: the r-cycle and 2-cycles are parallel

Py, +— v NR; // restriction of <, to the river R

u FFRNP

if u has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, F»);

re1;

else

run the left-most P-constrained traversal of (R, P») ;
e 0

end

// Remark: S(Gpoteom) and S(Gi.,) are Ph-constrained

glue boundary cycles together and let S(7) = S(Ghottom ) U S(R) U S(Giop) ;
return S(7) ;

(blue) 1-cycles and (black)

2-cycles are NOT crossing
(red) 0-cycles cross (black)
2-cycles but have 2 components

(black) 2-cycles are chord-free




An algorithm for half-crossing Schnyder woods

- Run the second pass
' o o

Algo 2 Half-crossing Schnyder woods (with a connected mono-chromatic component

O
O o

Data: a simple toroidal triangulation 7, a non-contractible chordless cycle T’
Result: a half-crossing Schnyder wood

1

1

1

1

1

// Pre-processing step !
cut Talong I': let G be the resulting eylindric triangulation ; : g o o

1

1

i

1

1

I

1
1
1
1
]
1
1
1
compute a river R and the partition G = Giop U R U Ghottom ; :
// First pass ;
1

compute a Schnyder wood S(Gigp) of Gigp o

choose an arbitrary non trivial chord e = (x,z) of R ; I -~ .

P {22} ; - ' 7o Is chord-free

if z has type (A), (B) or (C1) then

run the right-most P-constrained traversal of (R, P); Choose P2 p— {y) w} e 2 ﬂ R
1

re1;

o O

else
run the left-most P-constrained traversal of (R, P) ;
e

end e w has type C5

compute a Schnyder wood S(Ghottom) of Grotiom ;

glue boundary cycles together and let S(7) = S(Grottom ) U S(R) U S(Giop) ; com pute a Const ra | ned

if the r-cycle and 2-cycles are crossing in S(T) then

return S(T) : leftmost traversal of R

end

// Run a second pass on h

9 4+ any 2-cvcle of S[T) // Remark: the r-cycle and 2-cycles are parallel
Py, — vwNR;|// restriction of -2 to the river R

wi— RN

if u has type (A), (B) or (C1) then ® .
run the right-most P-constrained traversal of (R, F»); V ‘ ‘ there IS Only one
re 1 \ / A connected 0-cycle
else :
run the left-most P-constrained traversal of (R, P») ;
e 0 \

ond of the O-cycle(s) and the
// Remark: S(Gpoteom) and S(Gi.,) are Ph-constrained 2_Cycle are Crossing
glue boundary cycles together and let S(7) = S(Ghottom ) U S(R) U S(Giop) ;
return S(7) ;




Toward crossing Schnyder woods
(with two connected mono-chromatic components)




An algorithm for crossing Schnyder woods
I’

(@)

o o0—O
o

s o

o

0 .
O-o
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O

compute two non overlapping rivers

the 2-cycles and the
1-cycle are NOT
crossing

half-crossing before reversing crossing after reversing
an oriented cycle in Ry, to be reversed




Experimental results




Fast linear-time implementation

I preprocessing (computation of I')
B vertex shelling procedure

ring 1.53M

ring 715k
ring 311k

average timings (seconds)

02 04 06 08 1 12 14

(with Java 1.8, on a Dell Laptop,
Intel core i7 2.6GHz, 8GB RAM)

Koch Penrose
snowfla. triangl




Conjectures on toroidal Schyder woods: experimental confirmation

Open problem: is it possible
to find (at least) one toroidal
Schnyder wood with
connected mono-chromatic
components and such the
intersection of the three cycles
is a single vertex?

(true for all triangulations
of size at most n = 11)

# irreducible | #triangulations
triangulations (g=1)

1 1

4 7

15 112

1 2109

— 37867

e generated with surftri software [Sulanke, 2006]




Schyder woods for g > 2

Thm (3-orientations for graphs on surfaces, of arbitrary genus) e
[Albar Goncalves Knauer, 2014] AN Wikipedia picture
Any triangulation of a surface (the sphere and the projective '

plane) admits a '3-orientation’: orientation without sinks

s.t. every vertex has outdegree divisible by three

Open problem [Goncalves Knauer Lévéque, 2016]
Existence of Schnyder woods for higher genus triangulations

Experimental confirmation (g = 2)
Multiple local Schnyder condition:

the outdegree of every vertex is a
positive multiple of 3.

exaustive generation of all 3-orientations
for all triangulations with g =2, n < 11

All simple triangulations of genus g =2

(there are no sinks) . )
and size < 11 admit Schnyder woods

# irreducible | #triangulations
Thm [Suagee’ 2021] triangulations (g = 2)

Simple triangulations of genus g > 1 having 7 —
"large” edgewidth do admit Schnyder woods 8 —

9
edgewidth > 40(29 — 1) 10 865

1 26276 113506
surftri software [Sulanke, 2006]

(size of the smallest non contractible cycle)




Concluding remarks







