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Abstract

We give the parameters of any evaluation code on a smooth quadric
surface. For hyperbolic quadrics the approach uses elementary results on
product codes and the parameters of codes on elliptic quadrics are obtained
by detecting a BCH structure of these codes and using the BCH bound.
The elliptic quadric is a twist of the surface P1×P1 and we detect a similar
BCH structure on twists of the Segre embedding of a product of any d copies
of the projective line.
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Introduction

The parameters of evaluation codes on quadric surfaces have been studied by
Aubry (who also considered higher dimensional quadrics) in [1] and by Edoukou
in [3]. Most of the results on the topic concern the evaluation of forms of degree 1
or 2. The reason of this restriction is that the estimate of the minimum distance
of such codes by geometric methods becomes harder when the degree increases.

In this article, we give the parameters of all evaluation codes on smooth
quadric surfaces. The approach is not based on point counting but on the de-
tection of a particular structure on the codes. Namely, we prove that codes on
hyperbolic quadrics are tensor products of two extended Reed–Solomon codes
and that codes on elliptic quadrics are extensions of some BCH codes studied
by Pellikaan and the second author in [2]. A nice consequence of these results
is that they solve a point counting problem which was not proved up to now.
It should be underlined that usually, one tries to estimate the parameters of an
Algebraic–Geometry code by solving some equivalent geometric problem. In the
present paper we proceed in the opposite direction, namely, we are able to solve
open geometric problems using known coding theoretic results.
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Basically, studying codes on hyperbolic and elliptic quadrics reduces to study
codes on P1×P1 and a twist of it. This approach has a natural generalization to
products of d ≥ 2 copies of P1 yielding naturally tensor products of d extended
Reed–Solomon codes and their twists yielding extended BCH codes of length
qd + 1. In particular, this construction gives a geometric realization of a large
class of BCH codes as evaluation codes and without using a subfield subcode
operation.

The paper is organized as follows. The prerequisites on evaluation codes,
twists and quadric surfaces are given in Section 1. Evaluation codes on hyperbolic
quadric surfaces are considered in Section 2 and codes on elliptic quadrics are
treated in Section 3. The higher dimensional case is studied in Section 4.

1 Prerequisites

1.1 Evaluation codes

Let X ⊂ Pr be a smooth projective variety over Fq. Let Fr := Fq[x0, . . . , xr] be
the graded coordinate ring of Pr and for all integer s, denote by Fr(s) its subspace
of homogeneous forms of degree s. Given f ∈ Fr(s) and P a point of Pr, we
define the evaluation of f at P as f(P ) := f(p0, . . . , pr), where (p0 : . . . : pr) is the
system of homogeneous coordinates of P such that the first nonzero coordinate
starting from the left is set to 1, i.e. is of the form (0 : . . . : 0 : 1 : pi : . . . : pr).

The evaluation code CX(s) is defined as the image of the evaluation map

ev :

{
Fr(s) → Fn

q

f 7→ (f(P1), . . . , f(Pn))
,

where P1, . . . , Pn are the Fq–points of X. If we denote by IX(s) the degree s
part of the homogeneous ideal IX ⊂ Fr associated to X, then the above map ev
obviously factors as ev : Fr(s)/IX(s)→ Fn

q .
The codes CX(s) with X = Pr are the projective Reed-Muller codes PCs(r, q)

and their parameters were obtained by Sorensen [10, Theorem 1]. In this paper
we first consider the case that X ⊂ P3 is a smooth quadric. The case of a
hyperbolic quadric corresponds to the Segre embedding of P1 × P1 in P3 and
the case of an elliptic quadric to a twist of such an embedding. We will then
consider more generally the case that X is the Segre embedding of the product
P1 × · · · × P1 ↪→ P2d−1 of d copies of the projective line, or a twist of such an
embedding.

1.2 Twists

Given two varieties X and Y over a field k, one says that Y is a twist of X if
the two varieties are not isomorphic as k–varieties but are as K–varieties, where
K is a finite extension of k. For instance, the plane curves over Q defined by
the homogeneous equations x2 + y2 − z2 = 0 and x2 + y2 + z2 = 0 are Q(

√
−1)–

isomorphic but not Q–isomorphic.
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1.3 Quadric surfaces

Over a finite field Fq there exists two distinct isomorphism classes of smooth
quadric surfaces, respectively called elliptic quadrics and hyperbolic quadrics (see
[6] for further details).

1.3.1 Rational parametrization of quadrics

Elliptic and hyperbolic quadrics are both rational. Here is a parametrization of
the hyperbolic quadric with equation x0x3 − x1x2 = 0.{

P2 99K P3

(x : y : z) 7−→ (z2 : xz : yz : xy)
. (1)

Let Q(x, y) be an irreducible homogeneous polynomial of degree 2 over Fq,
then the following map yields a rational parametrization of the elliptic quadric
with equation x0x3 −Q(x1, x2) = 0{

P2 99K P3

(x : y : z) 7−→ (z2 : xz : yz : Q(x, y))
. (2)

Remark 1.1. From the above descriptions of these quadrics, one can easily prove
that the elliptic quadric is a twist of the hyperbolic one. Let (x− wy)(x− wqy)
be the factorization of Q over Fq2 (with w ∈ Fq2 \ Fq). The Fq2–map (x0 : x1 :
x2 : x3)→ (x0 : x1 −wx2 : x1 −wqx2 : x3) induces an Fq2–isomorphism between
the elliptic and the hyperbolic quadric.

Remark 1.2. The elliptic quadric is unique up to projective equivalence. This en-
tails that, in the above description, if we replace Q by another irreducible degree
2 polynomial, we get another elliptic quadric which is projectively equivalent to
the first one.

2 Codes on hyperbolic quadrics

From now on, the hyperbolic quadric is denoted by H. It is well–known that H
is isomorphic to P1 ×P1. Indeed, the quadric H with equation x0x3 − x1x2 = 0
is the image of the Segre embedding (see [4, Chapter 4 §4], [9, Chapter I §5.1]
for a definition of the Segre embedding):

φ :

{
P1 ×P1 → P3

((u0 : v0), (u1 : v1)) 7→ (u0u1 : u0v1 : v0u1 : v0v1)
.

A homogeneous form f ∈ F3(s) pulled back by φ yields the bi-homogeneous form
f(u0u1, u0v1, v0u1, v0v1) of bi-degree (s, s). Afterwards, one sees easily that the
pullback map φ? induces an isomorphism F3(s)/IH(s)

∼−→ F1(s)⊗F1(s), where
IH(s) is the degree s part of the homogeneous ideal associated to H.

Consequently, the code CH(s) is nothing but the code CP1(s)⊗CP1(s). The
code CP1(s) is an extended Reed–Solomon code with parameters [(q + 1), (s +
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1), q − s + 1]. It is well–known that the minimum distance of a tensor product
of two codes is the product of the minimum distances. This yields the following
result.

Theorem 2.1. Let H be a hyperbolic quadric over Fq, let s be an integer such
that s < q, then the code CH(s) has parameters [(q + 1)2, (s+ 1)2, (q − s+ 1)2].

Remark 2.2. The above result is already partially proved by S.H. Hansen in [5,
Example 3.2], where the author obtains (q − s + 1)2 as a lower bound for the
minimum distance without proving that it is reached.

Actually, Hansen considers more general evaluation codes on H: the codes
obtained by evaluating spaces of forms whose pullback by φ are of the form
F1(a)⊗F1(b). Using the above approach, one proves easily that such codes have
parameters [(q + 1)2, (a+ 1)(b+ 1), (q − a+ 1)(q − b+ 1)]. This proves that the
lower bound of Hansen is the actual minimum distance.

Remark 2.3. Using structure of the Picard group of H one can prove that any
evaluation code on H is equivalent to one of the codes described in Remark 2.2.

Theorem 2.1 has the following geometric corollary.

Corollary 2.4 (Maximum number of points of a (s, s) curve). Let X be a curve
obtained by the intersection of H with a hypersurface of degree s of P3 which
does not contain H. Then the number of rational points of X satisfies

]X(Fq) ≤ 2s(q + 1)− s2

and the equality holds if and only if X is a union of s lines of the form φ({a}×P1)
and s lines of the form φ(P1 × {b}).

Proof. The upper bound comes from Theorem 2.1. Moreover, it is easy to see
that the union of s rational lines of the first ruling and s lines of the other one
has 2s(q + 1)− s2 rational points.

Conversely, it is well–known that the minimum weight codewords of a ten-
sor product of codes are tensor products of minimum weight codewords. Thus,
minimum weight codewords of CH(s) are obtained by the evaluation of forms f
whose pullback φ?f equals g(u0, v0)h(u1, v1), where g, h both split in products
of s distinct polynomials of degree 1. Thus, the vanishing locus of f is a union
of lines and any f whose vanishing locus is not such a union has strictly less
rational points in its vanishing locus on H.

3 BCH codes and codes on elliptic quadrics

From now on, the elliptic quadric is denoted by E and s denotes a positive integer.
The aim of the this section is to prove that the codes CE(s) are extended BCH
codes. More precisely, these codes of length q2 +1 (the elliptic quadric has q2 +1
rational points) punctured at two positions yield a BCH code of length q2 − 1.
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The cyclic structure of the punctured codes can be explained geometrically.
Indeed, the automorphism group of E acts 2-transitively on rational points and
the stabilizer of two points contains a linear automorphism permuting cyclically
the q2 − 1 other points.

3.1 A class of BCH codes

Definition 3.1. For a given field Fq and a positive integer s, let B(s) be the
cyclic code defined over the extension field Fq2 that is generated by the vectors
of the form (ζr|ζ ∈ F×

q2
), for r = u+ qv such that 0 ≤ u, v ≤ s. And let B0(s) be

the subfield subcode B(s)|Fq
.

This class of codes is studied in [2] and the following result is obtained.

Proposition 3.2. The code B0(s) has parameters [q2−1, (s+1)2, q2−1−s(q+1)].
Moreover it is a BCH code.

Proof. [2, Proposition 12] .

Remark 3.3. Observe that the code B(s) is defined over Fq and there exists a
generator matrix defined over Fq that generates B0(s) (with coefficients chosen
in Fq) as well as B(s) (with coefficients chosen in Fq2). Thus B0(s) and B(s)
have the same parameters. The condition 0 ≤ u, v ≤ s differs from the condition
0 ≤ u + v ≤ s that is used to describe punctured Reed-Muller codes as cyclic
codes.

3.2 Codes on the elliptic quadric

The objective is to determine the parameters and in particular the minimum
distance of the codes CE(s). Recall that except for the case s = 1, 2 the minimum
distance of these codes was unknown up to now.

The point of the following statements is to show that the code CE(s) punc-
tured at two positions is the BCH code B0(s) up to a reordering of the coordi-
nates. Let us choose two points which will correspond to the punctured positions.

Notation 3.4. From now on, we choose an irreducible homogeneous polynomial
Q(x1, x2) and define E ⊂ P3 by the equation x0x3 −Q(x1, x2) = 0 as in (2). Let
P0 and P∞ be the points of P3 with coordinates (0 : 0 : 0 : 1) and (1 : 0 : 0 : 0),
respectively. Both points are contained in E . We denote by C∗E(s) the code CE(s)
punctured at the two positions corresponding to P0 and P∞.

The following theorem, proved in §3.2.2 is central in our study.

Theorem 3.5. For all s < q, the code C∗E(s) defined in Notation 3.4 is permu-
tation equivalent to the code B0(s) introduced in §3.1.
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3.2.1 The affine parametrization

First, we should notice that P∞ is the only rational point of E ∩{x0 = 0}. Thus,
one can work in the affine chart U := E∩{x0 6= 0}. Using (2), we get the following
affine parametrization of U{

A2 → A3

(x, y) 7→ (x, y,Q(x, y))
. (3)

Remark 3.6. The image of the origin of A2 by the above map is the point P0.
Thus, there is a one–to–one correspondence between the points of A2(Fq) \
{(0, 0)} and the points of E supporting the code C∗E(s).

3.2.2 Equality of codes

First, we state an elementary combinatorial lemma.

Lemma 3.7. For all nonnegative integer s, the sets Us := {(i+k, j+k) | i, j, k ≥
0 and i+ j + k ≤ s} and Vs := {(i′, j′) | 0 ≤ i′, j′ ≤ s} are equal.

Proof. The inclusion Us ⊂ Vs is obvious. Conversely, let (i′, j′) ∈ Vs. If i′+j′ ≤ s,
then set k := 0, else set k := (i′ + j′) − s. Then, for i := i′ − k and j := j′ − k,
we get (i′, j′) = (i+ k, j + k) ∈ Us.

We can now proceed to the proof of Theorem 3.5.

Proof of Theorem 3.5. Consider the base field extension C∗E(s)⊗ Fq2 . From Re-
mark 3.3, the subfield subcode of this code over Fq is C∗E(s). We will prove that
C∗E(s)⊗ Fq2 = B(s), and the theorem then follows from Definition 3.1 and

C∗E(s) = C∗E(s)⊗ Fq2 |Fq = B(s)|Fq = B0(s).

We use the affine point of view described in §3.2.1 and denote by (x, y, z) a
system of coordinates of A3. The code C∗E(s)⊗Fq2 is obtained by evaluating at
all the Fq–rational points of U \ {P0} the functions of the space Fq2 [x, y, z]≤s of
polynomials with total degree lower than or equal to s.

Let w ∈ Fq2 be the element of Fq2 \Fq such that Q(x, y) = (x+wy)(x+wqy)
over Fq2 (without loss of generality, one can assume that the coefficient of x2 in
Q is 1). Consider the family of polynomials

fi,j,k := (x− wy)i(x− wqy)jzk, i+ j + k ≤ s.

The polynomials fi,j,k yield an Fq2–basis of Fq2 [x, y, z]≤s. Pulling back this basis
by the map described in (3), we get the family of polynomials

f?i,j,k := (x+ wy)i(x+ wqy)jQ(x, y)k = (x+ wy)i+k(x+ wqy)j+k,

for i+ j + k ≤ s. Therefore, using the map (3) together with Remark 3.6, we see
that CE(s)

∗ ⊗ Fq2 is generated over Fq2 by the words

(f?i,j,k(x, y) | (x, y) ∈ F2
q \ {0, 0}), for i+ j + k ≤ s.
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Finally, for ζ ∈ Fq2 , there exist unique a, b ∈ Fq such that ζ = a+ wb, and

f?i,j,k(a, b) = ζi+kζ̄(j+k),

where ζ̄ denotes the conjugate of ζ under the Frobenius action. That is ζ̄ := ζq.
We conclude that C∗E(s)⊗ Fq2 is generated over Fq2 by the words

(ζi+kζq(j+k) | ζ ∈ F×
q2

), for i+ j + k ≤ s.

Using Lemma 3.7, the code is generated by the words

(ζi
′+qj′ | ζ ∈ F×

q2
), for i′, j′ ≤ s,

and hence this code is nothing but the code B(s). This yields the result.

3.3 The parameters of the codes on the elliptic quadric

As a conclusion we have the following result.

Theorem 3.8. For all s < q − 1, the code CE(s) has parameters [q2 + 1, (s +
1)2, q2 + 1− s(q + 1)]

Proof. From Theorem 3.5 and Proposition 3.2, this code punctured at two posi-
tions has parameters [q2−1, (s+1)2, q2−1−s(q+1)]. Thus, CE(s) has dimension
at least (s+1)2 and minimum distance between q2−1−s(q+1) and q2+1−s(q+1).

Let c be a minimum weight codeword of CE(s). By the previous assertion,
the weight of c satisfies w(c) ≥ q2 − 1 − s(q + 1). Moreover, since s is assumed
to be < q − 1, then w(c) ≥ q + 1 ≥ 3. This word is obtained by the evaluation
of f ∈ F3(s). Since the automorphism group of E acts 2–transitively, one can
assume that f does not vanish on P0 and P∞ (see Notation 3.4). Therefore,
if c∗ ∈ CE(s)

∗ denotes the punctured codeword c, then w(c∗) = w(c) − 2 and
hence w(c) ≥ q2 + 1 − s(q + 1). Consequently, the code has minimum distance
q2 + 1− s(q + 1).

Finally, let us prove that the dimension is (s + 1)2. Since the minimum
distance of CE(s) is > 2, then no codeword can be sent to zero by puncturing.
Thus, the puncturing map CE(s) → CE(s)

∗ is an isomorphism and hence, both
codes have the same dimension

Remark 3.9. As in Remark 2.3, one can prove using the structure of the Picard
group of E that any evaluation code on this surface is equivalent to CE(s) for
some s.

Theorem 3.8 has a geometric corollary.

Corollary 3.10. Let s < q−1. Let X ⊂ E be a curve obtained by the intersection
of E with a hypersurface of degree s which does not contain E. Then,

]C(Fq) ≤ s(q + 1).

Proof. It is a straightforward consequence of Theorem 3.8
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4 Higher dimensional analogues

The results in the previous sections give us the actual parameters of evaluation
codes on smooth quadric surfaces. The case of a hyperbolic quadric was proved
by establishing a relation with tensored Reed-Solomon codes and the case of an
elliptic quadric was proved using a correspondence with a suitable class of BCH
codes. Both approaches generalize and in this section we will describe evaluation
codes defined on the image X ⊂ Pr of Segre embedding φ : P1 × · · · × P1 −→
P2d−1 of d copies of P1.

It is well–known that the homogeneous ideal IX ⊂ Fr = Fq[x0, . . . , xr] for X
is generated by quadrics. In fact this is true more generally for the larger class
of Segre embeddings of projective space of any dimension (details and further
references can be found in [8]).

The case of the embedding of P1 ×P1 ×P1 has a rational parametrization{
P3 99K P7

(x : y : z : t) 7−→ (t3 : t2x : t2y : t2z : txy : tyz : tzx : xyz)
. (4)

The image is the intersection in P7 of nine quadrics that correspond to the
relations (t2x)(t2y) = (t3)(txy), (t2x)(tyz) = (t3)(xyz), (t2x)(xyz) = (txy)(tzx)
and their cyclic permutations under x 7→ y 7→ z 7→ x. The full resolution, given
in [7], is

0 −→ F7[−6] −→ F7[−4]9 −→ F7[−3]16 −→ F7[−2]9 −→ F7 −→ F7/IX −→ 0.

4.1 The non-twisted case

Without proof, which is similar to the case of smooth quadrics in P3 and which
will be available in an extended version, we give the parameters of evaluation
codes on the embedding X = P1 × · · · × P1 ⊂ P2d−1 and on twists of X over
Fqd .

Theorem 4.1. Let H be the Segre embedding of the product P1 × · · · × P1 ↪→
P2d−1 of d copies of projective line over Fq, let s be an integer such that s < q,
then the code CH(s) has parameters [(q + 1)d, (s + 1)d, (q − s + 1)d]. Moreover,
the code is the d-fold tensor product of an extended Reed-Solomon code.

4.2 The twisted case

Definition 4.2. Let d be a positive integer and α1, . . . , αd be an Fq–basis of
Fqd . The twist E over Fq2 is obtained from H by the change of variables{

x′0 := x0

x′j := αqj−1

1 x1 + · · ·+ αqj−1

d xd, for j ∈ {1, . . . , d}
.

Theorem 4.3. For all s < q − 1, the code CE(s) has parameters [qd + 1, (s +
1)d, qd + 1 − s(qd − 1)/(q − 1)]. Moreover, the twice punctured code C∗E(s) is a
BCH code.
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We observe that the last theorem has applications in two directions. It shows
first that the maximum number of Fq–rational zeros in E ⊂ Pr of a homogeneous
form of degree s agrees with the BCH bound, that is to say it can be obtained
using fairly elementary coding theory and without using geometric tools. On the
other hand it gives certain BCH codes a geometric interpretation as evaluation
codes on an algebraic variety.
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