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Static analysis by abstract interpretation see Cousot 77

A simple C program

int x,
x=0 //1
while(x<=99){ //2

x=1+x; //3
} //4

x1 = {0}
x2 = (x1 ∪ x3)∩]−∞, 99]

x3 = 1 + x2

x4 = (x1 ∪ x3) ∩ [100,+∞[

Pb: Find automatically the smallest overapproximation of the
values of x at each breakpoint.

By writing an interval

I = [−i−, i+]

and after reductions:

Nonlinear fixed point equation given by line 2(
x−2
x+

2

)
=

(
max(0, (x−2 − 1))

min(99,max(0, (x+
2 + 1))

)
.

=⇒ (x−2 , x
+
2 ) = (0, 99) (How to find it automatically?)
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Game interpretation

Simple zero sum repeated game with stopping option:
One day game (date k): (Min) can decide to stop and pays 99
(the game ends) or to let (Max) play. Then (Max) can stop and
wins 0 (the game ends) or continue to play and wins 1.

G =
G + 1 0

99 99
v 0 = 0
vk = min(max(vk−1 + 1, 0), 99)

v∞ = 99 (Value Iteration 99 steps!!!)



Game theory and abstract interpretation correspondences

Repeated games Abstract interpretation

dynamical system program
Dynamical Programming operator functional

horizon n problem n logical steps
limit of the value in horizon n optimal invariant (bound)

value iteration Kleene iteration



Method to compute the optimal invariant

I Classical Value Iteration (Kleene):

- Theoretically guarantees the minimality of the fixed point
found.

- Slow (99 iterations for the previous simple case) and may not
be convergent.

- Often needs acceleration techniques: minimality no longer
guaranteed.

I An alternative: Policy Iteration Algorithm: Howard (60)
(stochastic control), extended by Hoffman and Karp (66)
(stochastic games).
Fast method (but complexity unknown).

Extended by Costan, Gaubert, Goubault, Martel and Putot
(CAV’05) to fixed point problems in static analysis.



Control Approach

f : Rd 7→ Rd ,
fi = inf

a∈A(i)
sup

b∈B(i ,a)
ra,b
i + Ma,b

i ,

A strategy (policy) π is a map which associates to each state i an
available action: π(i) ∈ A(i).
Consider the one player dynamic operator:

f πi = sup
b∈B(i ,π(i))

r
π(i),b
i + M

π(i),b
i .

The set {f π | π strategy } has the lower selection property:
∀ x ∈ Rd , ∃ π s.t f (x) = f π(x).

Idea: To solve f (x) = x , we solve a sequence of one player
problems i.e f π(x) = x .



Policy Iteration Algorithm

f : L 7→ L, L is a complete lattice E.g:
L = R̄d = {R ∪ {−∞} ∪ {+∞}}d .
Assume f = infπ∈Π f π (f π are minimum free).
The set {f π | π ∈ Π} has the lower selection property.

1. Init: Select a strategy π0, k = 0.

2. Value Determination (Dk): Compute a fixed point uk of f π
k
.

3. Compute f (uk).

4. If f (uk) = uk , return uk

5. Policy Improvement (Ik): If f (uk) < uk define πk+1 s.t

f (uk) = f π
k+1

(uk) and go to Step (Dk+1).

If we compute, at (Dk) the smallest uk and if {f π | π strategy} is
finite and f π are order preserving, the algorithm stops.



Example 1

int x,
x=0 //1
while(x<=99){ //2

x=1+x; //3
} //4

f

(
x−2
x+

2

)
=

(
max(0, (x−2 − 1))

min(99,max(0, (x+
2 + 1)))

)
.

We start by:

f π
0

(
x−2
x+

2

)
=

(
max(0, (x−2 − 1))

99

)
.

The smallest fixed point of this policy is (0, 99) (Linear
Programming...).

This fixed point is also a fixed point for f so PI Algorithm stops.
(0 iteration)
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Example 2 (x = 1+x  x = 1−x)

int x,
x=0 //1
while(x<=99){ //2

x=1-x; //3
} //4
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(
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=
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)
.
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x−2
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2 − 1))
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)
,

PI algorithm returns (98, 99), i.e x2 = [−98, 99],

but (0, 1) is the
smallest fixed point i.e x2 = [0, 1].
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How can we refine PI to find the smallest fixed point?



Optimization point of view

Smallest fixed point problem

↓
Minimization problem

↓
First order characterization

Maps are not C 1 neither convex 99K weaker differential notion:
semidifferential.
Implementable characterization 99K nonlinear spectral radius.



Mathematical tools

Definition (Semidifferential see Rockafellar and Wets (98))

The semidifferential f ′u of f at u is the homogeneous continuous
map s.t: f (u + h) = f (u) + f ′u(h) + o(‖h‖).

E.g,
f (x , y) = min(1, x ,max(y , 0)), f ′(0,0)(h1, h2) = min(h1,max(h2, 0)).

Definition (Spectral radius)

The spectral radius ρC(g) of a homogeneous continuous map g on
a closed convex pointed cone C is the nonnegative number:

ρC(g) = sup{λ ≥ 0 | ∃ x ∈ C\{0}, g(x) = λx}



A characterization of local minimality

u is a locally minimal fixed point if there exists a neighborhood
which does not contain fixed point smaller than u.

Theorem (Characterization of a locally minimal fixed point)

Let u ∈ Fix(f ). Consider the following statements:

1. u is a locally minimal fixed point.

2. Fix|Rd
−

(f ′u) = {0}.

3. ρRd
−

(f ′u) < 1.

Then 3 =⇒ 2 =⇒ 1.

Sketch of Proof: 2 =⇒ 1, yn := ‖hn‖−1hn,
‖hn‖−1[f (u + ‖hn‖yn)− f (u)]− f ′u(yn)→ 0
=⇒ yn − f ′u(yn)→ 0 =⇒ y = f ′u(y) and ‖y‖ = 1 and y is

negative.



Nonexpansiveness: local to global

f is (sup-norm) nonexpansive if: ‖f (x)− f (y)‖∞ ≤ ‖x − y‖∞,
x , y ∈ Rd .

Theorem (Local is Global)

If f is an order preserving nonexpansive map then u is locally
minimal ⇐⇒ u is the smallest fixed point.

Lemma (Retraction of Rd)

There exists a nonexpansive and order preserving map P s.t
P(Rd) = Fix(f ) and Fix(P) = Fix(f ).

Proposition

If f is nonexpansive then Fix|Rd
−

(f ′u) = {0} if and only if

ρRd
−

(f ′u) < 1.



Piecewise affine maps
see C.D. Aliprantis and R. Tourby (07)
f : Rd 7→ Rd is piecewise affine if

fi = min
a∈Ai

max
b∈Ba

ga,b

where ga,b is affine and Ai and all Ba are finite.

Proposition (Semidifferential of piecewise affine maps)

A piecewise affine map f is semidifferentiable for all u ∈ Rd and:

1. Let Āj = {a ∈ Aj | fj(u) = maxb∈Ba ga,b(u)} and
B̄a = {b̄ ∈ Ba | ga,b̄(u) = maxb∈Ba ga,b(u)}, then

(f ′u)j = min
a∈Āj

max
b∈B̄a

∇ga,b·

2. For h small enough, f (u + h) = f (u) + f ′u(h).

...So, if f is piecewise affine then u is a locally minimal fixed point
⇐⇒ Fix|Rd

−
(f ′u) = {0}.



Smallest fixed point equivalent characterization

Theorem (Characterization of the smallest fixed point)

f : Rd 7→ Rd be an order preserving nonexpansive piecewise affine
map. The following assertions are equivalent:

1. u is the smallest fixed point of f .

2. Fix|Rd
−

(f ′u) = {0}.

3. ρRd
−

(f ′u) < 1.



Compute the smallest fixed point by Policy Iteration

fi = min
a∈A(i)

max
b∈Ba

ra,b
i + Ma,b

i (�)

where A(i) and all Ba are finite and Ma,b
i are substochastic vectors.

1. Compute a fixed point uk of f by Policy Iteration.

2. Policy Improvement (I2k) :Compute αk := ρRd
−

(f ′
uk ).

I If αk < 1, returns uk .
I If αk = 1, take h ∈ Rd

−\{0} s.t f ′uk (h) = h.
Take πk+1(j) which attains the min in
(f ′uk )j(h) = mina∈Āj

(f ′a )uk (h) where Āj = {a | fa(uk) = f (uk)}.
Initialize a new Policy Iteration with f πk+1

.

This algorithm stops.



Computational details

In policy Iteration

Proposition (Smallest fixed point of a policy)

The smallest (real) fixed point of f π is the unique optimal solution
of the linear program: min{

∑
1≤i≤d xi | x ∈ Rd , f π(x) ≤ x}.

In refinement
ρRd
−

(f ′u) < 1 can be checked by a Power Algorithm type... Using

equivalent spectral radius definition... (see Nussbaum (86) and
Mallet-Paret and Nussbaum (02)) this latter algorithm may not
stop when ρRd

−
(f ′u) = 1.



Computational details

To compute spectral radius...an extension of min-max function
(Olsder (91), Gunawardena (94)):

A homogeneous min-max function of the variables h1, . . . , hd is a
term in the grammar: X 7→ min(X ,X ),max(X ,X ), h1, · · · , hd , 0.
E.g, f (h1, h2, h3) = min(max(0, h2), h3).

Proposition (Spectral radius of homogeneous min-max maps)

Let g be a homogeneous min-max map on Rd , e ≡ −1, then

1. ρRd
−

(g) ∈ {0, 1}.

2. ρRd
−

(g) = 0 ⇐⇒ limk→+∞ gk(e) = 0.

3. This latter limit is reached in at most d steps.



Come back to Example 2

f

(
x−2
x+

2

)
=

(
max(0, (x+

2 − 1))
min(99,max(0, (x−2 + 1)))

)
.

We found (98, 99), the semidifferential at (98, 99):

f ′(98,99)(h1, h2) = (h2,min(0, h1)).

ρR2
−

(f ′(98,99)) = 1 and f ′(98,99)(e) = e.

This fixed point leads to a new policy:
f π

1
(x−2 , x

+
2 ) := (max(0, (x+

2 − 1)),max(0, (x−2 + 1)))

(Policy Iteration) returns (0, 1), f ′(0,1)(h1, h2) = (max(0, h2), h1).

ρR2
−

(f ′(0,1)) = 0 so (0, 1) is the smallest fixed point.



Example 3

A more complicated example in the paper

int x,int y,
x=[0,2];y=[10,15] //1
while (x<=y) { //2
x=x+1; //3
while (5<=y) { //4

y=y-1; //5
} //6

} //7



Conclusion

Conclusion

I Computional method to compute the smallest fixed point of
monotone piecewise affine nonexpansive maps .

I Prototype implementation in C.

I Fast method.

Future Work

I Big “jumps“ problem (the map is no longer nonexpansive).

I Improvement of calculus of the spectral radius and the
negative fixed point.
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