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Abstract

The problem of computing the smallest fixed point of an order-
preserving map arises in the study of zero-sum positive stochastic
games. It also arises in static analysis of programs by abstract inter-
pretation. In this context, the discount rate may be negative. We
characterize the minimality of a fixed point in terms of the nonlinear
spectral radius of a certain semidifferential. We apply this charac-
terization to design a policy iteration algorithm, which applies to the
case of finite state and action spaces. The algorithm returns a locally
minimal fixed point, which turns out to be globally minimal when the
discount rate is nonnegative.

Keywords: Positive stochastic games, policy iteration algorithm, negative dis-

count, static analysis by abstract interpretation, nonexpansive mappings, semidif-

ferentials, nonlinear spectral radius.

∗LSV, CNRS & ENS de Cachan, 61, avenue du Président Wilson, F-94235 Cachan
Cedex, France. Email: assale.adje@lsv.ens-cachan.fr. This work was performed when the
first author was with the MeASI team of CEA, LIST and with CMAP, École Polytechnique,
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1 Introduction

Zero-sum repeated games can be studied classically by means of dynamic
programming or Shapley operators. When the state space is finite, such an
operator is a map f from Rd to Rd, where d is the number of states. Typically,
the operator f can be written as:

fi(x) = min
a∈Ai

max
b∈Bi,a

P a,b
i x+ ra,bi

Here, Ai represents the set of actions of Player I (Minimizer) in state i, Bi,a

represents the set of actions of Player II (Maximizer) in state i when Player
I has just played a (the information of both players is perfect), ra,bi is an
instantaneous payment from Player I to Player II, and P a,b

i = (P ab
ij )j ∈ Rd is

a substochastic vector, giving the transition probabilities to the next state,
as a function of the current state and of the actions of both players. The
difference 1 −

∑
j P

a,b
ij gives the probability that the game terminates as a

function of the current state and actions. The operator f will send Rd to Rd

if for instance the instantaneous payments are bounded. We may consider
the game in which the total payment is the expectation of the sum of the
instantaneous payments of Player I to Player II, up to the time at which
the game terminates. This includes the discounted case, in which for all i,∑

j P
a,b
ij = α < 1, for some discount factor α. Then, the fixed point of f is

unique, and its ith-coordinate gives the value of the game when the initial
state is i, see [FV97]. In more general situations [FV97, MS97], the value
is known to be the largest (or dually, the smallest) fixed point of certain
Shapley operators, and it is of interest to compute this value, a difficulty
being that Shapley operators may have several fixed points.

The same problem appears in a different context. Static analysis of pro-
grams by abstract interpretation [CC77] is a technique to compute automat-
ically invariants of programs, in order to prove them correct. The fixed point
operators arising in static analysis include the Shapley operators of stochas-
tic games as special cases. However, the “discount factor” may be larger
than one, which is somehow unfamiliar from the game theoretic point of
view. In this context, the existence of the smallest fixed point is guaranteed
by Tarski-type fixed point arguments, and this fixed point is generally ob-
tained by a monotone iteration (also called Kleene iteration) of the operator
f . This method is often slow. Some accelerations based on “widening” and
“narrowing”[CC92] are commonly used, which may lead to a loss of precision,
since they only yield an upper bound of the minimal fixed point. Some of the
authors introduced alternative algorithms based on policy iteration instead
[CGG+05, GGTZ07], which are often faster and more accurate. However,
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the fixed point that is returned is not always the smallest one.
In the present paper, we refine these policy iteration algorithms in order

to reach the smallest fixed point of f even in degenerate situations. Our main
result, Theorem 3.2 below, characterizes the minimality of a given fixed point
in terms of the spectral radius of its semidifferential map. This is inspired
by a result of Akian, Gaubert and Nussbaum [AGN], showing that a given
fixed point of a semidifferentiable nonexpansive map is unique if and only if
its semidifferential as 0 as a unique fixed point (actually, the result of [AGN]
is proved in an infinite dimensional setting, using only a mild compactness
condition). Theorem 3.2 also shows that when a fixed point is locally minimal
(meaning there is no smaller fixed point in a neighborhood), it is globally
minimal. Thus, the present paper shows that the ideas of localization via
semidifferentials developed in [AGN] also allow one to address the minimality
issue for a fixed point, instead of the uniqueness issue.

The construction of the present policy iteration algorithm relies on Theo-
rem 3.2, since an eigenvector of the semidifferential map is used as a descent
direction to determine the new policy in degenerate iterations.

An alternative approach to compute the smallest fixed point has been
developed by Gawlitza and Seidl [GS07, GS10]. In a nutshell, Gawlitza and
Seidl use an approach dual to the one of [CGG+05, GGTZ07], iterating in the
“max” strategy space instead of the “min” strategy space. The advantage of
this approach of [GS07, GS10] is that it allows one to compute the smallest
fixed point in cases in which the map is expansive in the sup-norm, which
are beyond the scope of the present approach. However, the present “min”
strategy approach has other interests (in particular, it gives at any step of
the algorithm a safe upper bound of the fixed point, which can be useful in
situations in which the convergence is slow, which do occur in applications).
A detailed comparison of the two approaches can be found in [GSA+12]. The
questions of computing fixed points of monotone maps, motivated by verifi-
cation problems, has also been addressed in [LS07a, LS07b] and [EGKS08].

The present work builds on the “operator” (nonexpansive maps) approach
to optimal control and zero-sum games, which has been developed by several
authors, see [Ney03] for a survey and [RS01, Sor02, AG03, Vig10, AGL11,
QR11, AGG11] for more or less recent developments in this direction.

Finally, we note that an initial version of the present work has appeared
in the proceedings [AGG08], and that a further version appeared in the Phd
thesis of the first author [Adj11, Chapter 8].
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2 Basic notions

In this paper, we will work in Rd equipped with the sup-norm ‖ · ‖. We
consider the natural partial order on Rd defined as: x 6 y if for all i, 1 6
i 6 d, xi 6 yi where xi indicates the ith coordinate of x. We write x < y
when x 6 y and there exists a j such that xj < yj. We denote by R+ (resp.
R−) the set of real nonnegative (resp. nonpositive) numbers. All vectors of
Rd such that f(x) = x are called fixed points of the map f . We denote by
Fix(f) the set of fixed points of f .

When the action spaces are finite, dynamic programming operators are
not differentiable, and they may even have empty subdifferentials or su-
perdifferentials. However, following [AGN], we analyze their local behav-
ior by means of a nonlinear analogue of the differential, the semidifferential
(e.g. [RW98]). In order to define it, let us recall some basic notions concerning
cones and homogeneous maps.

Definition 2.1 (Cone, homogeneous map and spectral radius). A subset C
of Rd is called a cone if for all λ > 0 and for all x ∈ C, λx ∈ C. A cone C
is said to be pointed if C ∩ −C = {0}. A self-map g on a cone C is said to
be homogeneous (of degree one), if for all strictly positive real numbers λ,
g(λx) = λg(x). We define the spectral radius of a homogeneous continuous
self-map g on a closed convex pointed cone C, the nonnegative number ρC(g):

ρC(g) = sup{λ > 0 | ∃ x ∈ C\{0}, g(x) = λx}

Note that closed convex pointed cones are precisely what we need to
define spectral radius of homogeneous continuous self-maps g on C. Several
notions of spectral radius for continuous maps have been defined, we refer
the reader to [Nus88, MPN02] for more details.

A vector x ∈ C\{0} such that g(x) = λx is a nonlinear eigenvector of
g, and λ is the associated nonlinear eigenvalue. Remark that, when g maps
from C to itself and C is a pointed cone, all the eigenvalues are nonnegative.
The existence of nonlinear eigenvectors is guaranteed by standard fixed point
arguments [Nus88].

Proposition 2.1 (Positivity of nonlinear spectral radius). For any pointed
convex cone C, for any continuous map g : C 7→ C, the set:

{λ > 0 | ∃x ∈ C\{0}, g(x) = λx}

is nonempty.

We next recall the notion of semidifferential, see [RW98] for more back-
ground.
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Definition 2.1 (Semidifferential). Let u ∈ Rd and f be a self-map on Rd. We
say that f is semidifferentiable at u if there exists a homogeneous continuous
map g on Rd and a neighborhood V of 0 such that for all h ∈ V :

f(u+ h) = f(u) + g(h) + o(‖h‖)

We call g the semidifferential of f at u and we denote it f ′u.

Note that f semidifferentiable at u implies that f is continuous at u. If
f is semidifferentiable at u, we have for all t > 0 and for h small enough:

f(u+ th) = f(u) + tf ′u(h) + o(t‖h‖)

This implies that

f ′u(h) = lim
t→0+

f(u+ th)− f(u)

t
and the semidifferential coincides with the directional derivative of f at u in
direction h (on the positive side). The latter limit characterization implies
that the semidifferential is unique. The following result shows that semidif-
ferentiability requires the latter limit to be uniform in the direction h.

Proposition 2.2 (see [RW98, Theorem 7.21]). Let f be a self-map on Rd.
Let u be in Rd. The map f is semidifferentiable at u if and only if for all
vectors h, the following limit exists:

lim
t→0+

h′→h

f(u+ th′)− f(u)

t

In this paper, we also treat the special case of piecewise affine maps.

Definition 2.2 (Piecewise affine map). Let f be a self-map on Rd. We say
that f is piecewise affine if for all j ∈ {1, · · · , d} there exists finite sets Aj
and {Ba}a∈Aj

and a family {ga,b} of affine maps such that:

fj = min
a∈Aj

max
b∈Ba

ga,b

It is shown in [Ovc02, AT07] that the set of piecewise affine maps that
we define is the same as the set of functions f for which there exists a family
of convex closed sets with nonempty interior which covers Rd and such that
the restriction of f on each element of this family is affine.

Proposition 2.3. Let f be a piecewise affine self-map on Rd. Let u be in Rd.
Then f is semidifferentiable at u ∈ Rd. For j ∈ {1, . . . , d}, we set Aj = {a ∈
Aj | fj(u) = maxb∈Ba ga,b(u)} and Ba = {b ∈ Ba | ga,b(u) = maxb∈Ba ga,b(u)},
then:

(f ′u)j = min
a∈Aj

max
b∈Ba

∇ga,b·
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This assertion may be deduced by applying the rule of the “differentia-
tion” of a max see Exercise 10.27 of [RW98]. Alternatively Proposition 2.3
can be recovered from Proposition 3.3 (established independently) below.

3 Main Results

Let f be a continuous map from Rd to Rd with a nonempty set of fixed
points. For u ∈ Rd, we denote the set of nonpositive fixed points of f ′u by
Fix|Rd

−
(f ′u).

We recall a simple case where an order-preserving self-map f on Rd has
a smallest fixed point in Rd.

Proposition 3.1 (Existence of smallest fixed point). Let f be a self-map
on Rd. Suppose that f is order-preserving. Assume that the set {x ∈ Rd |
f(x) 6 x} is bounded from below. Then f has a smallest fixed point u in Rd

and u satisfies:
u = inf{x ∈ Rd | f(x) ≤ x} .

Proof. Let Γ be the set {x ∈ Rd | f(x) 6 x}. The fact that Γ is bounded
from below implies that the infimum of Γ exists, we denote it by u. Since f
is order-preserving, we have f(u) 6 u and f(u) ∈ Γ. Hence we get u ≤ f(u)
and so u = f(u). The set Γ contains all the fixed points of f and we conclude
that u is the smallest fixed of f in Rd.

The existence of the smallest fixed point for f does not imply that the
set {x ∈ Rd | f(x) 6 x} is bounded from below. Let us take for example,
the function on R, g : x 7→ 2x. The function g has a unique fixed point in
R but the {x ∈ R | g(x) 6 x} = R−. Proposition 4.1 below will describe a
situation where the existence of a smallest fixed point for a map f implies
that the set {x ∈ Rd | f(x) 6 x} is bounded from below.

Definition 3.1 (Locally minimal fixed point). Let u ∈ Fix(f). We say that
u is a locally minimal fixed point if there is a neighborhood V of u such that
for all v ∈ V ∩ Fix(f), v 6 u =⇒ v = u.

Theorem 3.1. Let u ∈ Fix(f). Assume that f is semidifferentiable at u.
Consider the following statements:

1. u is a locally minimal fixed point.

2. Fix|Rd
−

(f ′u) = {0}.

3. ρRd
−

(f ′u) < 1.
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Then 3 =⇒ 2 =⇒ 1.

Proof. Point 3 implies point 2 indeed. In order to show that 2 implies 1,
assume that u is not a locally minimal fixed point. Then, there exists a
sequence hn of nonzero vectors in Rd

− tending to the zero vector such that
u + hn is a fixed point of f . After replacing hn by a subsequence, we may
assume that yn := ‖hn‖−1hn has a limit y. Then, ‖y‖ = 1 and y ∈ Rd

−.
Writing u + hn = u + ‖hn‖yn, and using Proposition 2.2, we conclude that
y = f ′u(y), showing that f ′u has a nonzero fixed point in Rd

−.

Example 3.1. Consider the self-map f of R2 defined as follows:

f

(
x
y

)
=

(
max(min(x, y), 0) + 2 max(min(x+ 1, 0),−2)
max(max(x, y), 0) + 2 max(min(y + 1, 0),−2)

)
The fixed point set of f is shown at Figure 1. It consists of the union

of six isolated points, two half lines and a cone. Let us deduce the local
minimality of the fixed point (0, 0) by using Theorem 3.1.

(-4,-4)

(-4,-2)

(-2,-4)

(-2,-2)

(0,-4)

(0,-2)

(-4,0) (-2,0) (0,0)

Figure 1: Fixed point set of the function f of Example 3.1

Using Proposition 2.3, the semidifferential at (0, 0) is the function:

h 7→ f ′(0,0)(h1, h2) = (max(min(h1, h2), 0),max(max(h1, h2), 0)),
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hence, f ′(0,0) vanishes on the nonpositive cone of R2 and so f ′(0,0) does not
have any nonzero negative fixed point.

We just gave sufficient condition to the local minimality. Now, we give a
sufficient condition to ensure that a fixed point is not the smallest one.

Proposition 3.2. Suppose that f is an order-preserving self-map and that
the set {x ∈ Rd | f(x) 6 x} is bounded from below. Let u be in Fix(f) and
assume that f is semidifferentiable at u. If ρRd

−
(f ′u) > 1 then u is not the

smallest fixed point.

Proof. By definition of the spectral radius, ρRd
−

(f ′u) > 1 implies that, there

exists µ > 1 and h ∈ Rd
−\{0} such that, f ′u(h) = µh. Let us write ε :=

min
hi<0
−‖h‖−1(µ− 1)hi > 0. There exists t0 > 0 such that, 0 < t < t0 implies

that fi(u+ th) 6 ui + tµhi + tε‖h‖, for all i such that hi < 0. Hence, for all i
such that hi < 0, fi(u+ th) 6 ui+ tµhi− t‖h‖−1(µ−1)hi‖h‖ = ui+ thi < ui.
Since f is order-preserving, f(u+th) 6 u, for all t > 0, so fi(u+th) 6 ui+thi,
for all i such that hi = 0.

We conclude that, f(u + th) < u + th. The sequence (fk(u + th))k∈N is
nonincreasing and all its terms belong to the set {x ∈ Rd | f(x) 6 x} which is
bounded from below, by continuity of f , it converges to a fixed point strictly
smaller than u.

Example 3.2. We come back to Example 3.1. The map f is clearly bounded
from below since f(x, y) > (−4,−4) for all (x, y) ∈ R2. We consider the
fixed point (0,−2). At this point, the semidifferential f ′(0,−2) is the function:

h 7→ (0,max(h1, 0) + 2h2),

thus, ρR2
−

(f ′(0,−2)) = 2. By Theorem 3.2, (0,−2) is not the smallest fixed
point of f .

In Theorem 3.1 and Proposition 3.2, there are no restrictive conditions
on the map. We next consider the special case of piecewise affine maps.

Proposition 3.3. Let f be a piecewise affine self-map on Rd. There is
neighborhood V of u such that, for all u+ h ∈ V:

f(u+ h) = f(u) + f ′u(h) .

Proof. Note that it is equivalent to show the equality for all coordinates of
f and we fix a coordinate j ∈ {1, . . . , d}. We set, for all a ∈ Aj, ga(x) =
maxb∈Ba ga,b(x). We denote by Ba the set of elements b ∈ Ba such that
ga(u) = ga,b(u). There exists a neighborhood Va of u such that: ga(u+ h) =
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maxb∈Ba
ga,b(u + h), for all h such that u + h ∈ Va. Since ga,b is affine, we

have: ga,b(u+ h) = ga,b(u) +∇ga,b · h. It follows that, for all b̄ ∈ Ba:

ga(u+ h) = ga,b̄(u) + max
b∈Ba

∇ga,b · h (1)

Let us denote Aj the set of elements a ∈ Aj such that fj(u) = ga(x).
There exists a neighborhood of u, V ⊆

⋂
a Va, such that: fj(u + h) =

mina∈Aj
ga(u + h) if u + h ∈ V . Applying (1), we get: fj(u + h) = fj(u) +

mina∈Aj
maxb∈Ba

∇ga,b ·h if u+h ∈ V . Clearly h 7→ mina∈Aj
maxb∈Ba

∇ga,b ·h
is continuous and homogeneous thus it must coincide with the semidifferential
of fj at u. Note that Proposition 2.3 follows from the latter fact.

From Proposition 3.3, we deduce the following corollary which character-
izes the locally minimal fixed point of piecewise affine maps.

Corollary 3.1. Let f be a piecewise affine self-map on Rd and let u ∈
Fix(f), then u is a locally minimal fixed point if and only Fix|Rd

−
(f ′u) = {0}.

The second part of the previous proposition is the basis of a “descent”
algorithm given in the section 4. If a fixed point u is not locally minimal,
then there exists a strictly negative fixed point h for f ′u which may be thought
of as a descent direction such that u+ h is a fixed point of f .

Example 3.3. We consider the same example as before, Example 3.1. Now,
we look at a fixed point of the form z = (x, y) such that y > x > 0. The
map f of Example 3.1 is piecewise affine. Following Proposition 2.3, at z the
semidifferential f ′z is the function:

h 7→
{

(h1, h2) if y > x
(min(h1, h2),max(h1, h2)) if y = x

In these two cases, f ′z admits a negative fixed point hence z is not a
locally fixed point. The isolated points of Figure 1 and the vector (0, 0) do
not have any negative fixed point, we recover that these fixed points are
locally minimal.

In order to pass from local minimality to global minimality, we shall need
the following nonexpansiveness condition.

Definition 3.2 (Nonexpansive map). Let f be a self-map on Rd: f is nonex-
pansive (with respect to the sup-norm) if for all x, y ∈ Rd, ‖f(x)− f(y)‖ 6
‖x− y‖.

Nonexpansiveness is automatically satisfied by Shapley operators since
they are order-preserving and additively homogeneous.
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Proposition 3.4. Let f be a nonexpansive self-map on Rd and let u ∈ Rd.
Assume that f is semidifferentiable at u. Then Fix|Rd

−
(f ′u) = {0} if and only

if ρRd
−

(f ′u) < 1.

Proof. It suffices to show that ρRd
−

(f ′u) 6 1. Firstly, f ′u is nonexpansive as a

pointwise limit of nonexpansive maps. Assume that ρRd
−

(f ′u) > 1, there exists

µ > 1 and v ∈ Rd
− such that f ′u(v) = µv, then ‖f ′u(v)− f ′u(0)‖ = µ‖v‖ >

‖v − 0‖ which contradicts the nonexpansiveness of f ′u.

The main result of this paper is the following theorem, which will allow
us to check the global minimality of a fixed point.

Theorem 3.2. Let f be an order-preserving nonexpansive self-map on Rd.
Let u be a fixed point of f . Then, u is locally minimal if and only if it is the
smallest fixed point of f . If in addition f is piecewise affine, the following
assertions are equivalent:

1. u is the smallest fixed point of f .

2. Fix|Rd
−

(f ′u) = {0}.

3. ρRd
−

(f ′u) < 1.

The proof of this theorem relies on the existence of an order-preserving
and nonexpansive retract on the fixed point set of f . This idea was already
used in [CGG+05]. The existence of nonexpansive retracts on the fixed point
set is a classical topic in the theory of nonexpansive mappings, see Nussbaum
[Nus88]. In the present finite dimensional case, the result of the next lemma
is an elementary one.

Lemma 3.1. Let f be a nonexpansive order-preserving self-map on Rd. Let
u be in Fix(f). Then there is a nonlinear order-preserving and nonexpansive
map P such that P (Rd) = Fix(f) and Fix(P ) = Fix(f).

Proof. Following the idea of [GG04], we shall construct the map P as follow:
P (x) = limk→+∞ f

k(y) where y = lim supl→+∞ f
l(x). Since f is nonexpansive

and u ∈ Fix(f), (fk(x))k∈N is bounded for all x ∈ Rd. We can now write, for
all x ∈ Rd, Q(x) = lim supk→+∞ f

k(x). Moreover, given k > 0, we have, for
all m > k, supn>k f

n(x) > fm(x) and since f is order-preserving, for all m >
k, f(supn>k f

n(x)) > f(fm(x)) so, f(supn>k f
n(x)) > supm>k f(fm(x)), we

conclude, by taking the limit when k tends to +∞ and using the continuity of
f , f(Q(x)) > Q(x), so (f l(Q(x))k∈N is a nondecreasing sequence. Moreover,
since f is nonexpansive, the limit P (x) = liml→+∞ f

l(Q(x)) is finite. Observe
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that the map P is order-preserving and nonexpansive since it is the pointwise
limit of order-preserving and nonexpansive maps. Furthermore, f(P (x)) =
f(lim f l(Q(x)) = lim f l+1Q(x) = P (x) so P (Rd) ⊆ Fix(f). Moreover, it
is easy to see that P fixes every fixed point of f . It follows that P is a
projector.

Proof of Theorem 3.2. Suppose that u is a locally minimal fixed point but
not the smallest fixed point. Then, there is a fixed point v such that
inf(v, u) < u. For all scalars t > 0, define ωt := inf(v+ t, u). Let us take P as
in Lemma 3.1. Since P is nonexpansive in the sup-norm, ‖P (v + t)− P (v)‖ 6
t for all t > 0 and so P (v + t) 6 P (v) + t. Using the monotonicity of P ,
we deduce that P (ωt) 6 inf(P (v + t), P (u)) 6 inf(P (v) + t, P (u)) = ωt. Let
t0 = inf{t > 0 | ωt = u}. Then, for 0 < t < t0, P (ωt) is a fixed point
of f , which is such that P (ωt) < u. Since P is continuous, P (ωt) tends to
P (ωt0) = P (u) = u as t tends to t−0 , which contradicts the local minimality
of u. Hence a contradiction with u not being the smallest fixed point. Define
by 1′ the property that u is a locally minimal fixed point. We just showed
1 ⇔ 1′. By Theorem 3.1, we get 3 =⇒ 2 =⇒ 1′. By Corollary 3.1,
1′ =⇒ 2 and by Proposition 3.4 we get 2 =⇒ 3.

4 A policy iteration algorithm to compute

the smallest fixed point

The previous results justify the following policy iteration algorithm which
returns the smallest fixed point of a nonexpansive order-preserving piecewise
affine map. Assume that f is a map from Rd to Rd, every coordinate of which
is given by

fj(x) = inf
a∈Aj

fa(x) (2)

where Aj is finite and every fa is a supremum of order-preserving nonexpan-
sive affine maps. A strategy π is a map from {1, · · · , d} to A =

⋃
16j6dAj

such that π(j) ∈ Aj for all j. We define fπ = (fπ(1), · · · , fπ(j), · · · , fπ(d)).
We assume that every map fπ has a smallest fixed point. The idea of the
algorithm is to use a descent direction to select the new strategy when a non-
minimal fixed point is reached . The algorithm, needs two oracles. Oracle 1
returns the smallest fixed point in Rd of a map fπ. Oracle 2 checks whether
the restriction of f ′u to the convex cone Rd

− has a spectral radius equal to 1,
and if this is the case, returns a vector h ∈ Rd

−\{0} such that f ′u(h) = h. We
discuss below the implementation of these oracles for subclasses of maps.
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Algorithm 1 Computing the smallest fixed point by Policy Iteration

Input: An order-preserving nonexpansive map f in the form (2).
Output: The smallest fixed point of f in Rd.
Init: Select a strategy π0, k = 0.
Value Determination (Dk): Call Oracle 1 to compute the smallest fixed
point uk of fπ

k
in Rd.

Policy Improvement (I1k): If f(uk) < uk, take πk+1 such that f(uk) =
fπ

k+1
(uk) and go to Step (Dk+1).

Policy Improvement (I2k): If f(uk) = uk, call Oracle 2 to compute αk :=
ρ(f ′

uk
).

• If αk < 1, return uk, which is the smallest fixed point of f .
• If αk = 1, take h ∈ Rd

−\{0} such that f ′
uk

(h) = h. Define πk+1(j) as an

optimal action a in (f ′
uk

)j(h) = mina∈Aj
(fa)′

uk
(h) where Aj = {a ∈ Aj |

fa(uk) = fj(u
k)}. Then go to (Dk+1).

Since the number of strategies is finite, we shall see that the existence
of a smallest fixed point in Rd for every policy suffices to show that Algo-
rithm 1 terminates. We start by proving that the smallest fixed point of a
nonexpansive and order-preserving self-map on Rd can be computed using
an optimization problem.

Proposition 4.1. Let g be an order-preserving nonexpansive self-map on
Rd. Assume that g has a smallest fixed point in Rd denoted by u.

1. The vector u is the smallest element of {x ∈ Rd | g(x) 6 x};

2. The vector u is the unique optimal solution of the minimization prob-
lem: min{

∑
16i6d xi | x ∈ Rd, g(x) 6 x}.

Proof. The vector u satisfies g(u) = u and a fortiori g(u) 6 u. Let x be any
vector satisfying g(x) 6 x. Since g is order-preserving, nonexpansive and
has a fixed point, (gk(x))k∈N is a bounded nonincreasing sequence. Denoting
by y the limit of (gk(x))k∈N, we get y 6 x and y is a finite fixed point
of g so y > u, the first assertion is thus proved. We conclude next that∑

16i6d ui 6
∑

16i6d yi 6
∑

16i6d xi. Since this holds for all feasible x, it
follows that u is an optimal solution. If x is an arbitrary optimal solution,
we must have

∑
16i6d ui =

∑
16i6d xi and since u 6 x, it follows that u = x

and the second assertion is proved.

Now, we prove that Algorithm 1 terminates when policies have a smallest
fixed point.

12



Theorem 4.1 (Termination of Algorithm 1). Let f be an order-preserving
nonexpansive map in the form (2). If every policy fπ has a smallest fixed
point in Rd, then Algorithm 1 terminates.

Proof. To show that Algorithm 1 terminates, it suffices to check that the
sequence of produced points u0, u1, · · · is strictly decreasing, because the
corresponding policies must be distinct and the number of policies is finite.
Let k be an integer. Let be uk be a vector of Rd. Suppose that an improve-
ment of type I1

k arises: f(uk) < uk. There exists a policy fπ
k+1

such that
fπ

k+1
(uk) = f(uk). Let us denote uk+1 the smallest fixed point of fπ

k+1
.

Since uk belongs to the set {x ∈ Rd | fπk+1
(x) 6 x}, we conclude from the

first assertion of Proposition 4.1 that uk+1 6 uk. Furthermore, since uk is
not a fixed point of fπ

k+1
, uk+1 < uk. Suppose that an improvement of type

I2
k arises: uk is not the smallest fixed point of f . Then, since f is piecewise

affine and nonexpansive, by Proposition 3.1 and Theorem 3.2, there exists
h ∈ Rd

−\{0}, fπ
k+1

(uk + th) = uk + th for t > 0 small enough. It follows that
uk+1 6 uk + th < uk.

Now, we discuss the implementation of the oracles. Using Proposition 4.1
assertion 2, the following corollary identifies a situation where Oracle 1 can
be implemented by solving a linear programming problem.

Corollary 4.1. Let g be an order-preserving nonexpansive map that is the
supremum of finitely many affine maps. Assume, that g has a smallest fixed
point u in Rd. Then u is the unique optimal solution of the linear program:

min{
∑

16i6d

xi | x ∈ Rd, g(x) 6 x}.

The implementation of Oracle 2 raises the issue of computing the spectral
radius. Let g be an order-preserving, homogeneous and continuous self-map
of Rd

−. It is known that:

ρRd
−

(g) = inf
x∈int(Rd

−)
sup

16i6d

gi(x)

xi
(3)

ρRd
−

(g) = sup
x∈Rd

−

lim sup
k→+∞

‖gk(x)‖
1
k (4)

The first equality, which is a generalization of the Collatz-Wielandt prop-
erty in Perron-Frobenius theory, follows from a result of Nussbaum [Nus86]
Theorem 3.1. The second characterization is shown by Mallet-Paret and

13



Nussbaum in [MPN02] under more general assumptions. We deduce, for
every vector x ∈ int(Rd

−):

ρRd
−

(g) 6

(
sup

16i6d

gki (x)

xi

) 1
k

. (5)

Moreover, the latter upper bound converges to ρRd
−

(g) as k tends to infinity.

This yields an obvious method to check whether ρRd
−

(g) < 1, which consists

in computing the upper bound in (5) for successive values of k as long as
the upper bound is not smaller than 1. This algorithm will not stop when
ρRd
−

(g) = 1. However, we next describe simple situations where this idea
leads to a terminating algorithm.

First, we can adapt Proposition 4.1 to compute a descent direction from
a linear program when the semidifferential coincides with a supremum of
finitely many affine maps. Since the semidifferential is a homogeneous map
we can add box constraints to the linear program of Proposition 4.1. From
now, we denote e the vector the coordinates of which are equal to −1.

Proposition 4.2. Let g be a homogeneous order-preserving nonexpansive
self-map. Assume, that the restriction of g on the nonpositive cone Rd

− is the
supremum of finitely many affine maps. Let α be a nonnegative real number.
The unique optimal solution of the linear program:

min

{∑
16i6d

xi | x ∈ Rd, g(x) 6 x, αe 6 x 6 0

}
(Pα)

is the smallest fixed point of g in the set {x ∈ Rd | αe 6 x 6 0}.
Furthermore, if there exists α > 0 such that the optimal value of (Pα) is

equal to 0 then the null vector is the unique fixed point of g in Rd
−.

Proof. Since g is nonexpansive and homogeneous, ‖g(αe)‖ ≤ α and thus
g(αe) > αe. Moreover, g is order-preserving, we conclude that g is a self-
map on {x ∈ Rd | αe 6 x 6 0} which is a complete lattice. From Tarski’s
theorem, g has a smallest fixed point u such that αe 6 u 6 0 and u is the
smallest element of the feasible set of (Pα). Using the same argument as
in assertion 2 of Proposition 4.1, we conclude that u is the unique optimal
solution of (Pα).

Now, suppose there exists α > 0 such that the optimal value of (Pα) is 0
and assume that g has a nonzero fixed point u in Rd

−. Since g is homogeneous,
αu/‖u‖ is a feasible point of (Pα), the sum of coordinates of this vector is
strictly smaller than 0 which contradicts the fact that 0 is the optimal value
of (Pα).

14



The second simple case concerns the homogeneous min-max functions.

Definition 4.1. We call a homogeneous min-max function of the variables
h1, . . . , hd a term in the grammar: X 7→ min(X,X),max(X,X), h1, · · · , hd, 0.

For instance, the term min(h1,max(h2, h3, 0)) is produced by this gram-
mar. More generally, we shall say that a map from Rd to Rd is a homogeneous
min-max self-map if its coordinates are of the form of Definition 4.1. This
definition is inspired by the min-max functions considered by Gunawardena
[Gun94] and Olsder [Ols91]. The terms of this form comprise the semidif-
ferentials of the min-max functions considered there. For simple classes of
programs, like the one we shall consider in the next section, the semidiffer-
ential at any fixed point turns out to be a homogeneous min-max function.
In this case, the spectral radius can be computed efficiently by using to the
following integrity argument g(Zd) ⊆ Zd.

Proposition 4.3. Let g be a homogeneous min-max self-map on Rd. Then
ρRd
−

(g) ∈ {0, 1}. Moreover ρRd
−

(g) = 0 if and only if limk→+∞ g
k(e) = 0, and

the latter limit is reached in at most d steps.

Proof. Since g is nonexpansive and g(0) = 0, we have g(e) > e. We deduce,
by monotonicity of g, that (gk(e))k∈N is a nondecreasing sequence bounded
from above by 0. Moreover, g preserves the set of integer vectors. So this
sequence converges in at most d steps to some vector b ∈ Zd−. Let us suppose
that b = 0. For all y ∈ Rd

−, there exists t > 0 such that, 0 > y > te. Since
g is homogeneous and order-preserving, 0 > gk(y) > tgk(e) = 0 for all k > d
which implies that ρRd

−
(g) = 0. If b < 0 we have g(b) = b 6= 0, and so

ρRd
−

(g) > 1. Finally, since g is nonexpansive, we also have ρRd
−

(g) 6 1.

5 Applications

5.1 Applications to positive stochastic games

In this subsection, we consider applications to game theory, particularly in
zero-sum positive stochastic games. The term ”positive” means that all the
rewards are nonnegative. We are interested in the expectation of the infinite
sum of rewards at each date without discounting. Filar and Vrieze [FV97,
Theorem 4.4.3] prove that the value of a positive stochastic game is the
smallest nonnegative fixed point of a Shapley operator. They also develop
a value iteration [FV97, Theorem 4.4.4] to compute the value of this class
of games. Although value iteration is generally an effective method, one
can construct examples in which policy iteration is much faster. This occurs
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when the contraction rate of value iteration is close to one, or when the initial
estimate of the value function is too far away from the true value function.
We give such an example in Example 5.1. In consequence, we propose to use
Algorithm 1 to compute the value of zero-sum positive stochastic game with
perfect information.

Example 5.1. Let us consider the positive game in perfect information with
three states represented by Figure 5.1. The real ε is chosen in (0, 1/2]. In
the game the two players can stop the game at each state they can play. The
diamond node (state 1) is a stochastic node, the circle node (state 2) is con-
trolled by MIN and the triangle node (state 3) is controlled by MAX. The
thick edges represent the deterministic transitions, whereas dotted ones rep-
resent stochastic transitions. The double octagons are the stopping options
for each player and the numbers inside are stopping payoffs. The numbers on
the edges are either immediate payoffs if the nodes are controlled by players,
or the probability to reach the state at the endpoint of the edge.

1

2
ε

2

1− ε

ε

2

3

ε

√
ε

ε2

ε2
0

ε−1 ε−2

Figure 2: The game of Example 5.1
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The dynamic operator fε is thus defined as the following function:

fε(x) = fε

 x1

x2

x3

 =

 (1− ε)x2 + εx3

min(x1 +
ε

2
, x2 +

ε

2
, x3 + ε2, ε−1)

max(x1 +
√
ε, x2 + ε2, x3, ε

−2)


Since ε ∈ (0, 1/2], the value of the game is Vε = (2ε−1 − 1, ε−1, ε−2).

Indeed, Vε is a fixed point of fε and the semidifferential at Vε is the following
map: (h1, h2, h3) 7→ ((1−ε)h2 +εh3, 0,max(h3, 0)) which only admits (0, 0, 0)
as nonpositive fixed point and using Theorem 3.2, we conclude that Vε is the
smallest (positive) fixed point of fε and thus the value of the game. An
optimal policy is given by selecting the stopping options for each player.
Since we chose these stopping options as initial policy (this is our heuristic
choice for the next examples), policy iteration algorithm does not need any
further iteration to converge.

Table 1 shows the numbers of iterations needed by the value iteration
(VI) for different values of ε. The value iteration is initialized with the null
vector (0, 0, 0) and stops when the `∞ norm of the difference between two
iterates are smaller than 10−6.

ε # iterations for VI
0.5 11
0.25 35
0.1 203
0.01 200,003
0.001 2,000,003

Table 1: Numbers of iterations for Value Iteration for different values of ε

5.1.1 A detailed example of a positive game in perfect information

As in Example 5.1, we consider a positive stochastic games with stopping op-
tions. Again the space of states are decomposed in three kinds of states: the
states controlled by MIN , the ones controlled by MAX and the stochastic
states. The graph depicted by Figure 3 represents the game. The circle states
are controlled by MIN , the triangle ones by MAX and the diamond ones
are the stochastic states. The other nodes (represented by double octagons)
are the stopping options and the numbers inside represent the payoff. For the
nodes controlled by the players, the thick edges are the different actions for
the players and the numbers on them are the immediate payoff. The dotted
edges are the different transitions from a stochastic state to other states.
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7
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42

1

0
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17/40
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1/2

50

47 46 41

0

8

5

3

7

1

1

1
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4

3

4

5

2

8

Figure 3: The graph associated of the dynamic operator

The Shapley operator for this game is given by the following order-
preserving piecewise affine nonexpansive map:
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f(x) = f



x1

x2

x3

x4

x5

x6

x7

x8


=



min(x2 + 5, x3 + 7, x5, x7 + 8, 50)
min(x1 + 1, x3 + 1, x6 + 1, 47)

min(x1 + 3, x4 + 5, x7 + 2, x8 + 4, 46)
min(x5 + 2, x7 + 8, 41)
max(x1, x2 + 1, x7, 42)
max(x2 + 3, x8 + 4, 70)

(1/4)x1 + (17/40)x5 + (1/5)x7 + (1/8)x8

(1/2)x1 + (3/8)x7 + (1/8)x8


We can compute the value of the game by value iteration, it takes 42

iterations. Here, we apply Algorithm 1 to compute the smallest nonnegative
fixed point of f which determines the value of the game. To do this we can
use a map f̃ which coincides with the Shapley operator f on the nonnegative
cone and the fixed point of which are nonnegative. To construct f̃ , it suffices
to replace for the states controlled by MIN and the stochastic states, the
linear forms a · x + bi by max(a · x + bi, 0). Now, we initialize (Step (D0))
Algorithm 1 by taking the stopping options. We get the following map f̃ 0:

f̃π
0

(x) =



50
47
46
41

max(x1, x2 + 1, x7, 42)
max(x2 + 3, x8 + 4, 70)

max((1/4)x1 + (17/40)x5 + (1/5)x7 + (1/8)x8, 0)
max((1/2)x1 + (3/8)x7 + (1/8)x8, 0)


By a linear program (Proposition 4.1), we compute the smallest fixed

point of f̃π
0
, we find the vector x̄ = (50, 47, 46, 41, 50, 70, 50, 50)ᵀ. As required

by step (I10), we have to check whether x̄ is fixed point of f̃ , this is the case.
Now we enter in step (I11), to check whether x̄ is the smallest fixed point
of f̃ , we compute the semidifferential of f̃ at x̄ in the direction h using
Proposition 2.3, we obtain the map f̃ ′x̄ defined as follows:

min(h5, 0)
min(h3, 0)
min(h4, 0)

0
max(h1, h7)

0
(1/4)h1 + (17/40)h5 + (1/5)h7 + (1/8)h8

(1/2)h1 + (3/8)h7 + (1/8)h8


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On the nonpositive cone, the components of f̃ ′x̄ are linear forms except for
the sixth component which is a maximum of linear forms. Then, we can use
Proposition 4.2 as Oracle 2 to determine whether x̄ is the smallest fixed point
of f̃ . The unique optimal solution of linear program min{

∑
j hj | f̃ ′x̄(h) 6

h, hi ∈ [−1, 0], ∀i} is h̄ = (−1, 0, 0, 0,−1, 0,−1,−1)ᵀ. We use this vector as
descent direction. The vector h̄ gives us a new policy which is:

f̃π
1

(x) =



x5

47
46
41

max(x1, x2 + 1, x7, 42)
max(x2 + 3, x8 + 4, 70)

(1/4)x1 + (17/40)x5 + (1/5)x7 + (1/8)x8

(1/2)x1 + (3/8)x7 + (1/8)x8


and we go to the step (D1). By a linear program (Proposition 4.1), we

compute the smallest fixed point of f̃π
1
, we find the vector x∗ = (48, 47, 46, 41, 48,

70, 48, 48)ᵀ. The vector x∗ is also a fixed point of f̃ . We enter in the step
(I11). We compute the semidifferential of f̃ at x∗ in the direction h using
Proposition 2.3, we obtain the map f̃ ′x∗ defined as follows:

min(h5, 0)
min(h3, 0)
min(h4, 0)

0
max(h1, h2, h7)

0
(1/4)h1 + (17/40)h5 + (1/5)h7 + (1/8)h8

(1/2)h1 + (3/8)h7 + (1/8)h8


To check whether x∗ is the smallest fixed point of f̃ , we can proceed by

computing the upper bound of Equation (5) where g is the semidifferential
of f̃ at x∗. Taking the vector e the coordinates of which are equal to −1, we

find that max16i68
g6
i (e)

ei
=

109

320
< 1 and we conclude that x∗ is the smallest

fixed point of f̃ and so the value of the game depicted by Figure 3.

Remark 5.1. We could also use the same linear program (Pα) with α = 1. In
the case of the semidifferential of f̃ at x∗, the optimal value would be equal
to zero and the unique optimal solution would be the null vector.
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5.2 Applications to static analysis of programs

We next illustrate our results on an example from static analysis. We take
a simple but interesting program with nested loops (Figure 4). From this
program, we create semantic equations on the lattice of intervals [CC77]
(Figure 5) that describe the outer approximations of the sets of values that
program variables can take, for all possible executions. For instance, at
control point 4, the value of variable y can come either from point 3 or point
5 (hence the union operator), as long as the condition y > 5 is satisfied
(hence the intersection operator). An interval I is written as [−i−, i+] in
order to get fixed point equations of order-preserving maps in ii and i+. The
equations we derive on bounds are order-preserving piecewise affine maps, to
which we can apply our methods.

int x,int y,

x=[0,2];y=[10,15] //1
while (x<=y) { //2

x=x+1; //3
while (5<=y) { //4

y=y-1; //5
} //6

} //7

Figure 4: A simple C program

(x1, y1) = ([0, 2], [10, 15])

x2 = (x1 ∪ x6) ∩ [−∞, (y1 ∪ y6)+]

y2 = (y1 ∪ y6) ∩ [(x1 ∪ x6)−,+∞]

(x3, y3) = (x2 + [1, 1], y2)

(x4, y4) = (x3, (y3 ∪ y5) ∩ [5,+∞])

(x5, y5) = (x4, y4 + [−1,−1])

(x6, y6) = (x5, (y3 ∪ y5) ∩ [−∞, 4])

x7 = (x1 ∪ x6) ∩ [(y1 ∪ y6)− + 1,+∞]

y7 = (y1 ∪ y6) ∩ [−∞, (x1 ∪ x6)+ − 1]

Figure 5: Its abstract semantic
equations in intervals

The order-preserving nonexpansive piecewise affine map f for the bounds
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of these intervals is:

f

(
x
y

)
= f



x−2
x+

2

x−7
x+

7

y−2
y+

2

y−4
y+

4

y−6
y+

6

y−7
y+

7



=



0 ∨ (x−2 − 1)
2 ∨ (x+

2 + 1) ∧ 15 ∨ y+
6

0 ∨ (x−2 − 1) ∧ (−10 ∨ y−6 )− 1

0 ∨ (x+
2 + 1)

0 ∨ (x−2 − 1) ∧ −10 ∨ y−6
15 ∨ y+

6

y−2 ∨ (y−4 + 1) ∧ −5
y+

2 ∨ y+
4 − 1

y−2 ∨ y−4 + 1
y+

2 ∨ (y+
4 − 1) ∧ 4

−10 ∨ y−6
15 ∨ y+

6 ∧ (2 ∨ (x+
2 + 1))− 1


In the equations for the intervals x2, y2, y4, y6, x7 and y7, an intersection

appears, which gives a min (∧) in the corresponding coordinate of f . Choos-
ing a policy is the same as replacing every minimum of terms by one of the
terms, which yields a simpler “minimum-free” nonlinear map, which can be
interpreted as the dynamic programming operator of a one-player problem.

We next illustrate Algorithm 1. The underlined terms in the expression
of f indicate the initial policy π0, for instance, the fifth coordinate of fπ

0

is 0 ∨ (x−2 − 1). We first compute the smallest fixed point of this policy
(Step (D0)). This may be done by linear programming (Proposition 4.1),
or, in this special case, by a reduction to a shortest path problem. We find
(x̄, ȳ) = (0, 15,−1, 16, 0, 15,−5, 15, 0, 4, 0, 15)ᵀ. The first Policy Improvement
step, (I10), requires to check whether this is a fixed point of f . This turns
out to be the case. To determine whether (x̄, ȳ) is actually the smallest fixed
point, we enter in the second policy improvement step, (I20). We calculate
the semidifferential at (x̄, ȳ) in the direction (δx, δy), using Proposition 2.3:

f ′(x̄,ȳ) (δx̄, δȳ)ᵀ =
(
0, 0, δȳ−6 , δx̄

+
2 , 0 ∧ δȳ−6 , 0, 0, δȳ+

2 , δȳ
−
2 , 0, δȳ

−
6 , 0 ∧ δx̄+

2

)ᵀ
The method of Proposition 4.3, which we use as Oracle 2, yields in three steps
a fixed point for f ′(x̄,ȳ) that we denote by h = (0, 0,−1, 0,−1, 0, 0, 0,−1, 0,−1, 0)ᵀ.

This fixed point determines the new policy π1, which corresponds to the map
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g := fπ
1

given by:

g

(
x
y

)
= g



x−2
x+

2

x−7
x+

7

y−2
y+

2

y−4
y+

4

y−6
y+

6

y−7
y+

7



=



0 ∨ x−2 − 1
15 ∨ y+

6

−11 ∨ y−6 − 1
0 ∨ x+

2 + 1
−10 ∨ y−6
15 ∨ y+

6

−5
y+

2 ∨ y+
4 − 1

y−2 ∨ y−4 + 1
4

−10 ∨ y−6
1 ∨ x+

2


We are now in a new value determination step, (D1). We find the fixed

point (ũ, ṽ) = (0, 15,−5, 16,−4, 15,−5, 15,−4, 4,−4, 15)ᵀ of g, which is also
a fixed point of f (Step (I11)). In Step (I21), using Proposition 2.3, we compute
the semidifferential of f at (ũ, ṽ), which is given by:

f ′(ũ,ṽ) (δũ, δṽ)ᵀ =
(
0, 0, δṽ−6 , δũ

+
2 , δṽ

−
6 , 0, 0, δṽ

+
2 , δṽ

−
2 ∨ δṽ−4 , 0, δṽ−6 , 0 ∧ δũ+

2

)ᵀ
Calling again Oracle 2, we get ρRd

−
(f ′(ũ,ṽ)) = 0, and so, the algorithm

stops: (ũ, ṽ) is the smallest fixed point of f .
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