
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Policy iteration in finite templates domain

Assalé Adjé 1,2

DTIM
Onera Toulouse

31055 Toulouse Cedex 4 - France.

Abstract

We prove in this paper that policy iteration can be generally defined in finite domain of templates using
Lagrange duality. Such policy iteration algorithm converges to a fixed point when for very simple technique
condition holds. This fixed point furnishes a safe over-approximation of the set of reachable values taken
by the variables of a program. We prove also that policy iteration can be easily initialised for one single
loop programs when templates are correctly chosen.

Keywords: Abstract interpretation, policy iteration, convex optimisation.

1 Introduction

We introduced a complete lattice consisting of sub-level sets of (possibly non-convex)

functions, which we use as an abstract domain in the sense of abstract interpreta-

tion [CC77] for computing numerical program invariants. This abstract domain is

parameterised by a basis of functions, akin to the approach put forward by Manna,

Sankaranarayanan, and Sipma (the linear template abstract domain [SSM05]), ex-

cept that the basis functions or templates which we use here need not be linear.

The templates can be thought as invariant algebraic relations which help to prove

correctness of the programs. Previously, the set of templates have been provided

by an user. Natural invariant quadratic relations as Lyapunov functions to dis-

crete linear systems have been considered [AGG10a,AGG11]. More recently, for

similar systems, Lyapunov functions certified in floating-point arithmetic have been

generated automatically using semi-definite programming [RJGF12].

In this paper, we propose a generalised approach to compute ”good” templates in

Section 7 and prove that policy iteration for one single loop programs can be easily

initialised when templates are correctly chosen. Moreover, we show in Subsection 6.3

1 Email: assale.adje@onera.fr
2 The author is supported by the RTRA / STAE Project BRIEFCASE.

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Assalé Adjé

that policy iteration described in [AGG10a,AGG11] actually converges to a fixed

point of the relaxed semantics FR (see Theorem 6.3) whereas previous result only

shows that a postfixpoint was approximated.

2 Recalling the generalised templates

In [AGG10b,AGG11], we introduced the concept of generalised templates which

are just functions from Rd to R. We can think of hidden algebraic relations to

prove certain properties on the analysed program. We suppose that these functions

are given by some oracles. Suppose that the subset of relations between variables

is fixed, we denote by P this set and P ⊆ F
(
Rd,R

)
. First, we recall the basic

definitions (abstraction and concretisation maps) and prove that this pair of maps

forms a Galois connection. Then we describe the lattice structures of abstract and

concrete domains.

2.1 Basic notions

We are interested in replacing the classical concrete semantics by meaning of sub-

level sets i.e. we have a functional representation of numerical invariants through

the functions of P. An invariant will be determined as the intersection of sub-level

sets. The problem is thus reduced to find the optimal levels on each templates p.

We introduce a set of functions from P to R = R ∪ {−∞} ∪ {+∞} denoted by

F
(
P,R

)
. For an element v ∈ F

(
P,R

)
, we associate the intersection of sub-level

sets defined by v(p) where p belongs to P.

Definition 2.1 (P-sub-level sets) To a function v ∈ F
(
P,R

)
, we associate the

P-sub-level set denoted by v? and defined as:

v? = {x ∈ Rd | p(x) ≤ v(p), ∀p ∈ P} =
⋂
p∈P
{x ∈ Rd | p(x) ≤ v(p)}

When P is a set of convex functions, the P-sub-level sets corresponds to the inter-

section of classical sub-level sets from convex analysis. In our case, P can contain

non-convex functions so P-sub-level sets are not necessarily convex in the usual

sense.

We also want a functional representation of a set. In convex analysis, it is

well-known that a closed convex set can be represented by its support function i.e.

the supremum of linear forms on the set (e.g see Section 13 of [Roc96]). Here, we

use the same notion but we replace the linear forms by the functions p ∈ P which

are not necessarily linear. This generalisation is not new and was introduced by

Moreau [Mor70]. The reader can be also consult [Rub00,Sin97] for more details

about those concepts.

Definition 2.2 (P-support functions) To X ⊆ Rd, we associate the abstract

support function denoted by X† and defined as:

X†(p) = sup
x∈X

p(x)

2

Assalé Adjé

We equip the F
(
P,R

)
with the classical partial order for the functions i.e v ≤

w ⇐⇒ v(p) ≤ w(p) for all p ∈ P . We order the set of the subsets of Rd by the

inclusion. By taking these orders, we get the following proposition.

Proposition 2.1 The pair of maps v 7→ v? and X 7→ X† defines a Galois connec-

tion between F
(
P,R

)
and the set of subsets of Rd.

In the terminology of abstract interpretation, (.)† is the abstraction function,

and (.)? is the concretisation function. The Galois connection result will provide

the correctness of the semantics.

2.2 The lattices of P-convex sets and P-convex functions

Now, we are interested in closed elements (in term of Galois connection) that we

call here P-convex elements. Formally, they are defined as follows.

Definition 2.3 (P-convexity) Let v ∈ F
(
P,R

)
, we say that v is a P-convex func-

tion if v = (v?)†. A set X ⊂ Rd is a P-convex set if X = (X†)?.

Definition 2.4 We respectively denote by VexP(P 7→ R) and VexP(Rd) the set of

P-convex function of F
(
P,R

)
and the set of P-convex sets of Rd.

The family of functions VexP(P 7→ R) is ordered by the partial order of real-valued

functions i.e v ≤ w ⇐⇒ v(p) ≤ w(p) ∀p ∈ P. The family of set VexP(Rd) is ordered

by the inclusion order denoted by ⊆. Galois connection permits to construct lattice

operations on P-convex elements. They are defined as follows.

Definition 2.5 (The meet and join) Let v and w be in F
(
P,R

)
. We denote by

inf(v, w) and sup(v, w) the functions defined respectively by, p 7→ inf(v(p), w(p))

and p 7→ sup(v(p), w(p)). We equip VexP(P 7→ R) with the join operator v ∨ w =

sup(v, w) and the meet operator v∧w = (inf(v, w)?)†. Similarly, we equip VexP(Rd)
with the join operator X t Y = ((X ∪ Y)†)? and the meet operator X u Y = X ∩ Y .

It is well-known that with the previous lattice operations, the lattice sets of P-convex

elements are isomorphic complete lattices.

Theorem 2.2 (VexP(P 7→ R),∧,∨) and (VexP(Rd),u,t) are isomorphic complete

lattices.

3 Abstract semantics

Suppose now we are given a program with d variables (x1, . . . , xd) and n control

points numbered from 1 to n. We suppose this program is written in a simple toy ver-

sion of a C-like imperative language, comprising global variables, no procedures, as-

signments of variables using only parallel assignments (x1, . . . , xd) = T (x1, . . . , xd),

tests of the form r(x1, . . . , xd) ≤ 0, where r : Rd 7→ Rm (m denotes the number

of conjunctions of real tests), and while loops with similar entry tests. We do not

recapitulate the standard collecting semantics that associates to this program a

monotone map F :
(
℘(Rd)

)n → (
℘(Rd)

)n
whose least fixed points lfp(F) has as ith

component (i = 1, . . . , n) the subset of Rd of values that the d variables x1, . . . , xd
can take at control point i. The aim of this section is to compute, inductively on the

3

Assalé Adjé

syntax, the abstraction (or a good over-approximation of it) F] of F from F
(
P,R

)n
to itself defined as usual as using Proposition 2.1:

F] :
(
VexP(P 7→ R)

)n → (
VexP(P 7→ R)

)n
v 7→ (F (v?))† := sup

y∈F (v?))
ey

The notation v? is in fact the vector of sets (v?1, · · · , v?n), (F (v?)†) is also interpreted

component-wise and ey is the evaluation function (from P to R) at y ∈ Rd, p 7→
ey(p) = p(y). We recall that standard collecting semantics F can only take three

forms at some breakpoints `.

• For variable assignments with a map T : Rd → Rd which acts on set of breakpoints

`′: F`(X) = T (X`′). We will denote by A the set of breakpoints representing

assignments.

• For assignments under tests (for both branches of conditional branchments) with

a map T : Rd → Rd (acting on set of breakpoints `′) and a test map r` : Rd → Rm:

F`(X) = T (X`′ ∩r−1
` (−)). We will denote by I the set of breakpoints representing

assignments under tests.

• for unions (for while loops and join of both branches of condition branchments):

F`(X) = X`1 ∪ X`2 . We will denote by U the set of breakpoints representing

unions.

Finally, the abstract functional F] takes the following form in case of assignments

under tests and assignments (taking r` ≡ −1 for instance):

F]` (v) =

sup

y∈T(v?
`′∩r

−1
` (]−∞,0]))

ey = sup
x∈v?

`′
r`(x)60

eT (x) if ` ∈ A ∪ I

sup
y∈v?`1∪v

?
`2

ey =
(
v?`1 ∪ v

?
`2

)†
if ` ∈ U

(1)

In case of assignments, the abstract functional is the value functional of a con-

strained optimisation problem and the new least fixed point equation to solve be-

comes:

inf{v ∈
(
VexP(P 7→ R)

)n | F](v) 6 v} . (2)

4 Relaxed semantics using Lagrange duality

4.1 Lagrange duality

Let f , {fi}i=1,...,k be functions on Rd. Let us consider the following constrained

maximisation problem:

sup{f(x) | fi(x) ≤ 0, ∀i = 1, . . . , k} (3)

In constrained optimisation, it is classical to construct another constrained op-

timisation problem from the initial one in order to solve an easier problem. A

4

Assalé Adjé

technique called Lagrange duality (for details see for example [AT03, Section 5.3])

consists in adding to the objective function the inner product of the vector of con-

straints with a positive vector of the euclidean space whose the dimension is the

number of constraints. In our context, the value of Problem (3) is given by the

following sup-inf (primal) value (4):

sup
x∈Rd

inf
λ∈Rk

+

f(x)−
k∑
i=1

λifi(x) . (4)

A simple result of constrained optimisation called weak duality theorem ensures

that if we commute the inf and the sup in Formula (4), the result is greater than

the value of Problem (4). The commutation of the inf and the sup gives us the so

called (dual) value:

inf
λ∈Rk

+

sup
x∈Rd

f(x)−
k∑
i=1

λifi(x) . (5)

The vectors λ ∈ Rk+ are called vectors of Lagrange multipliers. The function

λ 7→ supx∈Rd f(x)−
∑k

i=1 λifi(x) is always convex (the image of a segment is smaller

than the segment of images) and lower semi-continuous (this notion is recalled at

Definition 5.1), so it has good properties to minimise it. If the function −f is

convex, if the functions fi are convex and if the Slater constraint qualification (i.e.

there exists x ∈ Rd such that fi(x) < 0 for all i = 1, . . . , k) holds then the values of

Problem (4) and Problem (5) coincide.

4.2 Abstraction of assignments and test using Lagrange duality

We recall that the abstract functional described at Equation (1) applied to affecta-

tions and tests is of the form:

F]` (v) = sup
{x∈Rd|(v`′−ex)(q)≥0, ∀ q∈P, r`(x)≤0}

eT (x) (6)

When we fix a template p ∈ P, Equation (6) becomes an optimisation problem of

the form of Equation (3) and we can use Lagrange duality as in the first step of

Subsection 4.1. In our case, Lagrange multipliers are some non-negative functions λ

from P to R. We thus consider the function which we will call the relaxed function:

FR` (v) := inf
λ∈F(P,R+)
µ∈Rm

+

sup
x∈Rd

eT (x) +
∑
q∈P

λ(q) (v`′(q)− q(x))− µᵀr`(x) . (7)

When we fix a template p ∈ P, we have:

(
FR` (v)

)
(p) = inf

λ∈F(P,R+)
µ∈Rm

+

sup
x∈Rd

p(T (x)) +
∑
q∈P

λ(q) (v`′(q)− q(x))− µᵀr`(x) . (8)

5

Assalé Adjé

4.3 Abstraction of loops

Note that the following double inequalities hold for all v ∈ F
(
P,R

)n
,

sup(vexP(v`1), vexP(v`2)) 6
(
v?`1 ∪ v

?
`2

)†
6 sup(v`1 , v`2) (9)

This means that as for zones, the union of two such P-convex functions v`1 and v`2
is directly given by taking their maximum on each element of the basis of functions

P. Nevertheless, during the fixed point iteration (as in Section 6) the functions v`1
and v`2 are not necessarily P-convex. Moreover, if we take the abstract semantics

F]` (v), we do not have an infimum of linear forms (or at least a maximum of linear

forms) on the abstract values v`1 and v`2 , a formulation that we need. Finally, we

relaxed the abstract semantics F]` (v) by the supremum itself and:

FR` (v) = sup(v`1 , v`2) . (10)

5 Properties of the relaxed semantics

The introduction of relaxed semantics aims to get better computational properties

of the semantics. We describe in this section the properties of the relaxed semantics

which justify the using of the new semantics. In order to reduce the size of the

paper, the proofs are skipped.

First, we show at Theorem 5.1 that the computation of an invariant from relaxed

semantics will provide a safe over-approximation of the invariant of the abstract

semantics.

Theorem 5.1 Let i be a coordinate in A ∪ I ∪ U. For all v ∈ F
(
P,R

)n
, F]i (v) ≤

FRi (v).

Furthermore, we prove monotonicity of the semantics. This property will be

crucial to show that policy iteration provides more and more precise over approxi-

mation of an invariant until a fixed point is reached.

Proposition 5.2 For i ∈ A ∪ I ∪ U, the map v 7→ FRi (v) is monotone on the set

F
(
P,R

)n
.

Let v be in F
(
P,R

)n
. We introduce auxiliary functions to make appear some

hidden properties. For i ∈ A∪I, we now define, for p ∈ P, for (λ, µ) ∈ F (P,R+)×Rm+ ,

F λ,µi (v) by: (
F λ,µi (v)

)
(p) :=

∑
q∈P

λ(q)v`′(q) + V λ,µ
i (p) (11)

where V λ,µ
i (p) := sup

x∈Rd

p ◦ T (x)−
∑
q∈P

λ(q)q(x)− µᵀr`(x) . (12)

The relaxed functional can now be readily rewritten as follows.

Lemma 5.3 For i ∈ A ∪ I:
(
FRj (v)

)
(p) = infλ∈F(P,R+)

µ∈Rm
+

(
F λ,µj (v)

)
(p) .

6

Assalé Adjé

We recall some mathematical tools to get convergence proofs. Some definitions

have been earlier given in the text, we give formal definitions here. All topological

aspects are understood in the sense of Rd-standard norm topology.

Definition 5.1 (Lower/upper semi-continuous functions) A function f : Rd 7→
R is said to be lower semi-continuous if for all α ∈ R, the set {x ∈ Rd | f(x) ≤ α}
is topologically closed. A function g : Rd 7→ R is said to be upper semi-continuous

if −g is lower semi-continuous.

A continuous function and (point-wise) supremum of lower semi-continuous func-

tions are lower semi-continuous. Note that f is lower semi-continuous function iff for

all x ∈ Rd and for all sequence xn which converges to x that f(x) ≤ lim infn f(xn).

For a function f lower semi-continuous and order-preserving, we get f(supn xn) =

g(x) = supn f(xn) for all increasing converging sequence (xn)n≥0 to x.

Definition 5.2 (Slater’s condition) Let f : Rd → R and g : Rd 7→ Rk. A

constrained maximisation sup{f(x) | g(x) ≤ 0, x ∈ Rd} satisfies Slater’s condition

iff there exists x0 ∈ Rd such that g(x0) < 0 i.e. for all coordinates i = 1, . . . , k,

gi(x0) < 0.

Slater’s condition is linked to the non-emptiness of the interior of the set of

constraints. Indeed if the interior of set of constraints is nonempty and constraints

function gi are convex and lower-semicontinuous, then int({x ∈ Rd | g(x) ≤ 0}) =

{x ∈ Rd | g(x) < 0}, where int denotes the interior set and g = (g1, g2, . . . , gm).

Depending on templates we choose, it is easy to check Slater’s condition. For

example, taking a set of templates P such that p(0) = 0 for all p ∈ P, for i ∈ A ∪ I,
if v`(i)(p) > 0, then Slater’s condition holds for optimisation problem 6 (whenever

r`(x0) < 0 is also satisfied for some x0 such that v`′(p) > p(x0)).

Slater’s condition is a sufficient condition to the existence of optimal solutions

to the minimisation problem which appears in relaxed functional. Indeed Slater’s

condition implies the level boundiness of the dual functional. Optimal solutions will

be used to compute a ”pivoting” policy when a fixed point is not reached.

Proposition 5.4 (Selection property) Let i ∈ A ∪ I. Assume that the max-

imisation problem 6 satisfies the Slater’s condition and for all p ∈ P, there exists

(λp, µp) ∈ F (P,R+)× Rm+ such that:

sup
x∈Rd

eT (x) −
∑
q∈P

λp(q)q(x)− µᵀpr`(x)

is finite. Then the minimisation problem 8 admits a solution i.e. for all p ∈ P,

there exists (λp
∗, µp

∗) ∈ F (P,R+)× R+ such that:(
FRi (v)

)
(p) = p ◦ T (x) +

∑
q∈P

λp
∗(q)

(
v`′(q)− q(x)

)
− µ∗p

ᵀr`(x)

The last result of this section discuss about continuity of the relaxed functional.

Kleene iteration and policy iteration are iterative processes to compute fixed point.

It is important to to prove that the limits of the sequences produced by both iter-

ations scheme are fixed point. To show it, we need continuity.

7

Assalé Adjé

Proposition 5.5 (Continuity result on FRi) Let i ∈ A ∪ I ∪ U. The following

assertions holds:

(i) Let p ∈ P. The map from F (P,R)n to R, v 7→ FRi (v)(p) is upper semi-

continuous.

(ii) For all decreasing sequences (vn)n≥0 ∈ F
(
P,R

)n
:(

inf
n≥0

FRi (vn)

)
(p) =

(
FRi (inf

n≥0
vn)

)
(p) .

(iii) Let p ∈ P. Let i ∈ A ∪ I. Assume, there exists a nonempty compact set Ki,p

such that
(
FRi (·)

)
(p) = inf(λ,µ)∈Ki,p

F λ,µi (·)(p); Then:

(a) the map from F (P,R)n to R, v 7→ FRi (v)(p) is lower semi-continuous,

(b) for all increasing sequences (vn)n≥0 ∈ F
(
P,R

)n
:(

sup
n≥0

FRi (vn)
)
(p) =

(
FRi (sup

n≥0
vn)
)
(p) .

6 Solving fixed point equations

6.1 Fixed point equations in templates domain

We recall that P is a finite set of templates. The map F is a monotone map

which interprets a program with d variables and n labels in ℘
(
Rd
)n

. We recall

that v? denotes the vector of sets ((v1)?, · · · , (vn)?) and F](v) = (F (v?))† i.e. ∀ i,
F]i (v) = (Fi(v

?))† and FR is the map, the components of which are the relaxed

functions of F]. As usual in abstract interpretation, we are interested in solving the

least fixed point equation:

inf{v ∈ VexP(P 7→ R)n | F](v) ≤ v} . (13)

Nevertheless, the function F] is not easily computable (since the templates p are

general). Hence, we solve instead the following fixed point equation in F
(
P,R

)n
:

inf{v ∈ F
(
P,R

)n | FR(v) ≤ v} . (14)

We next describe and compare two ways of computing (or approximating) the

smallest fixed point of the relaxed semantics equation: Kleene iteration in Section

6.2, and policy iteration in Section 6.3.

6.2 Kleene iteration

We denote by ⊥ the smallest element of F
(
P,R

)n
i.e. for all i = 1, · · · , n and for all

p ∈ P, ⊥i (p) = −∞. The Kleene iteration sequence in F
(
P,R

)n
is thus as follows:

v0 =⊥, for k ≥ 0, vk+1 = FR(vk) .

Now using continuity result of Proposition 5.5, we get the following theorem:

8

Assalé Adjé

Theorem 6.1 If for all i ∈ A∪I, for all p ∈ P, there exists a nonempty compact set

Ki,p such that
(
FRi (·)

)
(p) = inf(λ,µ)∈Ki,p

F λ,µi (·)(p); then Kleene iteration converges

to the smallest fixed point of FR.

Kleene iteration has the inconvenience that the values vk which are obtained at

a given iteration k (before convergence) do not provide a safe invariant. We shall

see that policy iteration does not have this inconvenient: even if it is stopped at an

intermediate step, it does provide a safe invariant. Moreover, the convergence of

the Kleene iteration can be very slow, so it needs to be coupled with an acceleration

technique which provides over-approximations. In [AGG10b,AGG11], after a given

number of iterations, and during a few iterations, we round bounds outwards with

a decreasing precision (akin to the widening used in [GPBG08]).

6.3 Policy Iteration

We present now policy iteration algorithm. As usual, we present first the policies

notion and then describe completely policy iteration at Algorithm 1.

6.3.1 Policy definition

A policy iteration algorithm can be used to solve a fixed point equation for a mono-

tone function written as an infimum of a family of simpler monotone functions,

obtained by selecting policies, see [CGG+05,GGTZ07] for more background. The

idea is to solve a sequence of fixed point problems involving simpler functions. In

the present setting, we look for a representation of the relaxed function

FR = inf
π∈Π

F π (15)

where the infimum is taken over a set Π whose elements π are called policies, and

where each function F π is required to be monotone. The correctness of the algorithm

relies on a selection property, meaning in the present setting that for each argument

(i, v, p) of the function FR, there must exist a policy π such that
(
FRi (v)

)
(p) =(

F πi (v)
)
(p). The idea of the algorithm is to start from a policy π, compute the

smallest fixed point v of F π, evaluate FR at point v, and, if v 6= FR(v), determine

the new policy using the selection property (see Proposition 5.4) at point v.

Let us now identify the policies. Lemma 5.3 shows that for each template p,

each coordinate FRi corresponding to an assignment i ∈ A∪ I can be written as the

infimum of a family of affine functions v 7→ F λ,µi (v), the infimum being taken over

the set of a couple of Lagrange multipliers (λ, µ). Choosing a policy π consists in

selecting, for each i ∈ A ∪ I and p ∈ P, a Lagrange multiplier a pair of Lagrange

multipliers λ, µ (for i ∈ A a Lagrange multiplier has to be chosen, the added test

is trivial ans thus µ has to be chosen equal to 0). We denote by πi(p) the value

of (λ, µ) chosen by the policy π. Then, the map F π in 15 is obtained by replacing

FRi by the affine functions appearing in Lemma 5.3, for i ∈ A ∪ I. For coordinates

corresponding to loops, i.e., i ∈ U, we take F πi = FRi (the choice of policy is

trivial) since the infimum operation does not appear in the expression of FR (see

Equation 10).

9

Assalé Adjé

Proposition 5.4 shows that the selection property is valid under a Slater con-

straint qualification condition. We thus introduce FS(P,R)n, the set of elements of

F
(
P,R

)
which satisfy the Slater condition when the component Fi of F corresponds

to an assignment or a test. More concretely: v ∈ FS(P,R)n, if, for all i ∈ A∪ I the

set: {x ∈ Rd | q(x) < v`′(q), ∀ q ∈ P} ∩ {x ∈ Rd | r`(x) < 0} is non-empty.

Note we can do restrictions on policies when degenerate cases appear:

• At some breakpoints i and for corresponding label j, if there exists p ∈ P such

that vj(p) = −∞ then we can choose any vector of non-negative λ such that

λ(p) 6= 0. Note that in this case, FRi (v) ≡ −∞ and the smallest fixed point of

FR for the coordinate i must check vi ≡ −∞.

• At some breakpoints i and for corresponding label j, if there exists p ∈ P such

that vj(p) = +∞ then we can choose any vector of non-negative λ such that

λ(p) = 0 for all p ∈ P such that vj(p) = +∞.

These two restrictions let us work with finite values when we have to compute

optimal policies.

6.4 Algorithm

Algorithm 1 Policy iteration in finite templates domain

1 Choose π0 ∈ Π, k = 0.

2 Compute V πk
= {V πk

(q)}q∈P and define the associated function F π
k

by choosing

λ and µ according to policy πk using Equation 11.

3 Compute the smallest fixed point vk in F
(
P,R

)n
of F π

k
.

4 If wk ∈ FS(P,R)n continue otherwise return wk.

5 Evaluate FR(wk), if FR(wk) = wk return wk otherwise take πk+1 s.t. FR(wk) =

F π
k+1

(wk). Increment k and go to 2.

In [AGG10b,AGG11], we have proved that policy iteration on quadratic tem-

plates converges towards a postfixpoint of our relaxed functional (Theorem 6.2 here).

Combined with Theorem 5.1, this postfixpoint is also a postfixpoint of abstract se-

mantics.

Theorem 6.2 The following assertions hold: (1) FR(vl) 6= vl =⇒ FR(vl) < vl;

(2) the sequence vl computed by Algorithm 1 is strictly decreasing; (3) the limit v∞

of the sequence vl is a postfixpoint: FR(v∞) ≤ v∞.

Theorem 6.2 ensures that Algorithm 1 produces a sequence of safe over-approximations

of the numerical invariant we want. Now we complete Theorem 6.2 by showing that

actually, Algorithm 1 converges to a fixed point.

Theorem 6.3 (Convergence of Algorithm 1) If Slater condition is always sat-

isfied then policy iteration converges to a fixed point.

Proof. Third point of Theorem 6.2 is FR(v∞) ≤ v∞. Now we have to prove that

v∞ ≤ FR(v∞). At third step of Algorithm 1, we compute the smallest fixed point

of F π
k
. Since we have for all k ≥ 0, vk+1 ≤ vk and by the fact that F π

k+1
is

10

Assalé Adjé

order-preserving we have: vk+1 = F π
k+1

(vk+1) ≤ F π
k+1

(vk) = FR(vk). Now by

taking the infimum on k, we get v∞ = infk v
k+1 = infk v

k ≤ infk F
R(vk) and

finally using the commutation of decreasing inf thanks to Proposition 5.5 then

infk F
R(vk) = FR(infk v

k) = FR(v∞) and we conclude that v∞ ≤ FR(v∞). 2

For the third step of Algorithm 1, since P is finite and using Lemma 5.3, F π
l

is

monotone and affine F (P,R ∪ {+∞})n, we compute the smallest fixed point of F π
l

by solving the following linear program see [GGTZ07, Section 4]:

min
n∑
i=1

∑
q∈P

vi(q) s.t.
(
F
πl
k

k (v)
)
(q) ≤ vk(q), ∀k = 1, · · · , n, ∀q ∈ P (16)

7 Templates design and initial policies

The choice of the initial policies is a crucial point for the quality of the fixed point

found by policy iteration. For example, if we know that the values of the variables

are bounded an unbounded first invariant can be a fixed point and policy iteration

stops. The choice depends on the template design algorithm.

The set of reachable values taken by the variables of the analysed program is

bounded (in the sense of a Rd-norm) if there exists a function P such that P is

level bounded (∀α ∈ R, {x ∈ Rd | P (x) ≤ α} is bounded) and a sub-level of P is

an invariant (i.e. contains all possible values taken by the variables of the analysed

program). Nevertheless, finding both invariant function (relation) and invariant

level seems to be difficult and in a first time, in template design, we only focus on

invariant relations. It means that we are looking for a function such that all sub-

levels are invariant by program updates (assignments and guarded assignments).

We can formulate the problem as follows.

Problem 7.1 Find a function P : Rd → R such that:

For all α ∈ R there exists β ∈ R+ such that P (x) ≤ α =⇒ ‖x‖22 ≤ β; (17a)

For all i ∈ A ∪ I, for all vi ∈ R, ri(x) ≤ 0 ∧ P (x) ≤ vi =⇒ P (Ti(x)) ≤ vi. (17b)

We can formulate Problem 7.1 as a constrained maximisation problem and then

using Lagrange duality in order to get a more restrictive but easier to solve prob-

lem. A solution can be given when affine or polynomial arithmetic are considered.

We introduce Problem 7.2 which only deals with inequalities. The formulation

in terms of positivity implies that we could consider relaxations such as sum-of-

squares [Par03,Las10] to compute polynomial invariants relations. The main issue

to this generalisation is the selection of the right degree of the polynomial solution.

Problem 7.2 Find P : Rd → R, {γi, i ∈ I}, γi ∈ Rm+) such that:

∀x ∈ Rd, P (x)− ‖x‖22 ≥ 0; (18a)

∀ i ∈ A ∪ I, ∀x ∈ Rd, P (x)− P (Ti(x)) + γᵀi ri(x) ≥ 0; (18b)

11

Assalé Adjé

We get the following result: a solution of the set of inequalities of Problem 7.2

gives a solution to Problem 7.1.

Proposition 7.3 (Problem 7.2 solves Problem 7.1) The following assertions

hold: (1) If P satisfies Equation (18a) then P satisfies Equation (17a); (2) if

(P, {γi}i∈A∪I) satisfies Equation (18b) then (P, {γi}i∈A∪I) satisfies Equation (17b).

Finally, if (P, {γi}i∈A∪I) is a solution to Problem 7.2 then (P, {γi}i∈A∪I) is a

solution to Problem 7.1.

Note that Proposition 7.3 and Inequations (18b) can be used to compute un-

bounded algebraic invariant relations between variables. Then these relations can

be used as templates and finite bounds on them (to compute the ”diameter” of the

numerical invariant) can be found by using policy iteration. Here we are interested

in proving that set of reachable values are bounded and thus consider the whole set

of inequalities included Inequality (18a).

Now, we present the second main result of the paper. Let (P, {γi}i∈A∪I) be a

solution of Problem 7.2. Using a set of templates P = {P, xi 7→ x2
i }. Then policy

iteration can be easily initialised (independently of Kleene iteration and widening)

for one simple loop program i.e. one loop with one update inside.

Theorem 7.4 (Policy iteration initialisation) Let us consider a relaxed of the

form:
FR1 (v) = C†

FR2 (v) = sup{v1, v3}

FR3 (v) = inf
λ∈F(P,R+)
µ∈Rm

+

sup
x∈Rd

eT (x) +
∑
q∈P

λ(q) (v2(q)− q(x))− µᵀr3(x) ,

where C is the nonempty set of the initialisation of the variables and C† denotes

the abstraction of C. Let (P, γ3) a solution to Problem 7.2. Assume that we use the

set of templates P = {x 7→ x2
i , i = 1, . . . , d} ∪ {P}. For all p′ ∈ P, Policy iteration

can be initialised with the following policy:

π0
3(p′) =

p 7→
 0 if p 6= P

1 if p = P
, γ3

 (19)

Moreover, the following polyhedron: {v ∈ F (P,R)3 | F π0
(v) ≤ v} is nonempty and

bounded from below and lfp(F π
0
) has finite coordinates.

Proof. Consider the initial policy π0 such that π3 is given by Equation (19), we

have: F π
0

1 (v) = C†, F π
0

2 (v) = sup{v1, v3}, F π
0

3 (v) = v2(P) + V π0

3 , with V π0

3 =

supx∈Rd eT (x)−P (x)−γᵀ3r3(x). From Inequality (18a), we have for all p′ ∈ P, p′ 6= P

that p′(x) ≤ ‖x‖22 ≤ P (x) for all x ∈ Rd and then p′(T (x)) ≤ ‖T (x)‖22 ≤ P (T (x))

for all x ∈ Rd also holds. From Inequality (18b), we have P (T (x)) ≤ P (x)+γ3r3(x)

for all x ∈ Rd. Finally, V π0

3 (p′) = supx∈Rd p′(T (x)) − P (x) − γ3r3(x) ≤ 0 for all

p′ ∈ P. We conclude that the polyhedron: K0 = {v ∈ F (P,R)3 | F π0
(v) ≤ v} or

12

Assalé Adjé

x = [0 , 1] ;

v : = [0 , 1] ;

h = 0 . 0 1 ;

whi l e (t rue) { [2]

w = v ;

v = v∗(1−h)−h∗x ;

x = x+h∗w; [3] }

Fig. 1. Euler integration scheme of a harmonic oscillator

more precisely K0 = {v ∈ F (P,R)3 | C† ≤ v1, v1 ≤ v2, v3 ≤ v2, v2(P) + V π0

3 (p′) ≤
v3(p′),∀ p′ ∈ P} is nonempty and bounded from below then the linear program:

Min{
∑3

i=1

∑
p∈P vi(p) | v ∈ K0} has a finite solution. 2

Link to Lyapunov inequality for linear discrete dynamical system

Recall that, for a linear discrete dynamical system x := Ax, a quadratic function

x 7→ xᵀLx, where L is a d× d symmetric matrix, is called Lyapunov function iff: L

is positive definite i.e. xᵀLx > 0 for all nonzero x ∈ Rd and L − AᵀLA is positive

definite. Note that L is positive definite is equivalent up to a multiplicative constant

to L− Id is positive (xᵀ(L− Id)x ≥ 0 for all x ∈ Rd).
Suppose there exists only one (convergent) linear update in the analysed program

without guards (test is of the form −1 ≤ 0), then (x 7→ xᵀLx, 0) is a solution of

Problem 7 for every Lyapunov function x 7→ xᵀLx. An algorithm to compute

automatically floating points certified Lyapunov functions for while infinite loops

and one (guarded) affine update has been developed in [DM12].

8 Examples

8.1 With a Lyapunov function

As to illustrate the interest of the approach, let us consider a harmonic oscillator:

ẍ+ cẋ+x = 0. The program of this example which is given at Figure 1 implements

an Euler explicit scheme with a small step h = 0.01 and c = 1, that is, which

simulates the linear system (x, v)ᵀ = T (x, v)ᵀ with T =

 1 h

−h 1− h

 .

By semi-definite programming, we can compute a Lyapunov function for the lin-

ear system (x, v) :7→ (x, v)L(x, v)ᵀ defined as: L =

2 1

1 3

 . Recall that Lyapunov

functions for linear updates are solution of Problem 7.2. We also use the quadratic

functions x : (x, v) 7→ x2 and v : (x, v) 7→ v2 which corresponds to interval con-

straints. We introduce the set of templates P = {x, v, L}. The set of templates P
is thus good set of templates in the sense of Section 7 and we can use Theorem 7.4

to initialise Algorithm 1 and so we choose:

π0
3(x) = (0, 0, 1), π0

3(v) = (0, 0, 1), π0
3(L) = (0, 0, 1) .

13

Assalé Adjé

In the case of quadratic templates P, it is easy to evaluate functions V π. By

semi-definite programming, we find: V
π0
3

3 (x) = V
π0
3

3 (v) = V
π0
3

3 (L) = 0. To compute

the least fixed point of F π
0
, we solve the linear program (see 16), we find:

u0
1(x) = 1.0000 u0

2(x) = 7.0000 u0
3(x) = 7.0000

u0
1(v) = 1.0000 u0

2(v) = 7.0000 u0
3(v) = 7.0000

u0
1(L) = 7.0000 u0

2(L) = 7.0000 u0
3(L) = 7.0000

After 5 iterations, policy iteration stops with a fixed point which provides the fol-

lowing numerical invariant at loop:

{x2 ≤ 3.5000, v2 ≤ 2.3333, 2x2 + 3v2 + 2xv ≤ 7} .

8.2 Unbounded case

We consider a program which contains a loop while and non trivial test. This

program is described at Figure 2.

i =0;

j = 0 ; [1]

whi l e [2] (i <=42){
i=i +1;

j=j+i ; [3]

}

Fig. 2. A simple program with a loop and a test

We want to prove that j ≤ i(i+ 1)

2
. We use policy iteration to prove it. The

numerical invariant is unbounded and thus for using Proposition 7.3, we can only

check whether Inequality (18b) holds to initialise our policy iteration. We are

looking for non-negative µ such that:

−(i+ 1)(i+ 2)

2
+ j + i+

i(i+ 1)

2
− j + µ(42− i) ≤ 0 ∀ (i, j) ∈ R2

A simple calculus permits to show that the inequality holds for µ = 0. So we

use the singleton set of templates P = {(i, j) 7→ − i(i+ 1)

2
+ j}. Then we can

take as initial policy π0 = (1, 0) and we get V π0

3 = 0 and we have to solve the

linear program: Min{v1 + v2 + v3 | v1 ≥ 0, v2 ≥ v1, v2 ≥ v3, v3 ≥ v2}. We get

v1 = v2 = v3 = 0 which is a fixed point of FR and provides the wanted numerical

invariants.

9 Conclusion and Future Works

We define policy iteration algorithm in a general setting using a finite domain of

templates. and prove that the algorithm converges to a fixed point of the relaxed

14

Assalé Adjé

semantics. This result allows us to use characterisation tools [AGG14] to check

whether the solution found is the smallest one. We also define the problem of com-

puting good templates and prove that initialisation of policy iteration is provided

from this choice of invariant relations. Future works should include an automatic

method to compute the invariant algebraic relations and automatic way to initialise

policy iteration from the relations generated.

References

[AGG10a] A. Adje, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-definite relaxation
to compute accurate numerical invariants in static analysis. In Proceedings of the 19th European
Symposium on Programming (ESOP 2010), number 6012 in Lecture Notes in Computer Science,
pages 23–42. Springer, 2010.

[AGG10b] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. In Andrew D. Gordon,
editor, ESOP, volume 6012 of Lecture Notes in Computer Science, pages 23–42. Springer, 2010.

[AGG11] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. Logical Methods in
Computer Science, 8(1), 2011.

[AGG14] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. Computing the smallest fixed point of
order-preserving nonexpansive mappings arising in positive stochastic games and static analysis
of programs. Journal of Mathematical Analysis and Applications, 410(1):227 – 240, 2014.

[AT03] A. Auslender and M. Teboulle. Asymptotic Cones and Functions in Optimization and
Variational Inequalities. Springer, 2003.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iteration algorithm for
computing fixed points in static analysis of programs. In Proceedings of the 17th International
Conference on Computer Aided Verification (CAV’05), volume 3576 of LNCS, pages 462–475.
Springer, 2005.

[DM12] Thao Dang and Ian M. Mitchell, editors. Hybrid Systems: Computation and Control (part of
CPS Week 2012), HSCC’12, Beijing, China, April 17-19, 2012. ACM, 2012.

[GGTZ07] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy iteration on relational
domains. In Proceedings of the Sixteenth European Symposium Of Programming (ESOP’07),
volume 4421 of LNCS, pages 237–252. Springer, 2007.

[GPBG08] E. Goubault, S. Putot, P. Baufreton, and J. Gassino. Static analysis of the accuracy in control
systems: Principles and experiments. In Stefan Leue and Pedro Merino, editors, Formal Methods
for Industrial Critical Systems, volume 4916 of Lecture Notes in Computer Science, pages 3–20.
Springer Berlin Heidelberg, 2008.

[Las10] J.B. Lasserre. Moments, positive polynomials and their applications. Imperial College Press
optimization series. Imperial College Press, 2010.

[Mor70] J. J. Moreau. Inf-convultion, sous-additivé, convexité des fonctions numériques. Journal de
Mathématiques Pures et Appliquées, 49:109–154, 1970.

[Par03] P. Parillo. Semidefinite programming relaxations for semialgebraic problems. Math. Prog., 96(2,
series B):293–320, 2003.

[RJGF12] Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Eric Feron. A generic ellipsoid
abstract domain for linear time invariant systems. In Dang and Mitchell [DM12], pages 105–
114.

[Roc96] R.T. Rockafellar. Convex Analysis. Princeston University Press, 1996.

[Rub00] A. M. Rubinov. Abstract Convexity and Global optimization. Kluwer Academic Publishers,
2000.

[Sin97] I. Singer. Abstract Convex Analysis. Wiley-Interscience Publication, 1997.

[SSM05] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear systems using
mathematical programming. In The Sixth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI’05), volume 3385 of LNCS, pages 25–41, January
2005. http://www.metapress.com/link.asp?id=X2G04CAME7MDKD72.

15

http://www.metapress.com/link.asp?id=X2G04CAME7MDKD72

	Introduction
	Recalling the generalised templates
	Basic notions
	The lattices of P-convex sets and P-convex functions

	Abstract semantics
	Relaxed semantics using Lagrange duality
	Lagrange duality
	Abstraction of assignments and test using Lagrange duality
	Abstraction of loops

	Properties of the relaxed semantics
	Solving fixed point equations
	Fixed point equations in templates domain
	Kleene iteration
	Policy Iteration
	Algorithm

	Templates design and initial policies
	Examples
	With a Lyapunov function
	Unbounded case

	Conclusion and Future Works
	References

