Epreuve d'entraînement 3. Durée 1 heure.

Mardi 18 Mai

Les documents, calculatrices, téléphones portables, etc, sont interdits. Il sera tout particulièrement tenu compte de la rédaction : tout résultat non justifié sera considéré comme incorrect.

Lire bien attentivement TOUT l'énoncé.

Questions de cours

- 1. Enoncer la première formule de la moyenne pour les intégrales.
- 2. Enoncer le théorème des valeurs intermédiaires.

Exercice 1

Soit f une fonction continue de [0,1] dans \mathbb{R} . On suppose que :

$$\int_0^1 f(x)dx = \frac{1}{2}$$

On veut montrer qu'il existe $x_0 \in [0, 1], f(x_0) = x_0$.

1. Montrer que:

$$\int_0^1 (f(x) - x) dx = 0$$

- 2. Montrer que si, pour tout $x \in [0,1]$, $f(x) x \ge 0$ alors, pour tout $x \in [0,1]$, f(x) = x, en déduire qu'il existe $x_0 \in [0,1]$, $f(x_0) = x_0$.
- 3. On suppose maintenant qu'il existe $x_1 \in [0,1]$ tel que $f(x_1) x_1 > 0$ et qu'il existe $x_2 \in [0,1]$ tel que $f(x_2) x_2 < 0$. Montrer qu'il existe x_0 tel que $f(x_0) = x_0$.

Exercice 2

Soient $n \in \mathbb{N}^*$, $b \in \mathbb{R}$, $c \in \mathbb{R}$.

On suppose que:

$$b > 0, c > 0, b - c > 0$$

On définit la fonction $f_n : \mathbb{R} \mapsto \mathbb{R}$ définie par :

$$f_n(x) = \frac{1}{n}x^{2n} + bx^2 - cx + 1$$

Partie I

- 1. Vérifier que, pour tout $n \in \mathbb{N}^*$, f_n est de classe \mathcal{C}^2 . Vérifier que, pour tout $n \in \mathbb{N}^*$, $f_n(0) = 1$.
- 2. Montrer que, pour tout $x \in \mathbb{R}$, $bx^2 cx + 1 > 1 \frac{(c+1)^2}{4b}$.

3. En déduire que, pour tout $n \in \mathbb{N}^*$, pour tout $x \in \mathbb{R}$, $f_n(x) > 1 - \frac{(c+1)^2}{4b}$. Que peut-on conclure sur les fonctions f_n ?

Partie II

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $x_n \in \left[0, \frac{1}{2}\right[$ tel que $f_n'(x_n) = 0$.
- 2. Montrer que, pour tout $n \in \mathbb{N}^*$, f'_n est strictement croissante. En déduire que x_n est l'unique solution de l'équation $f'_n(x) = 0$.
- 3. Montrer que le minimum de f_n est atteint en x_n .

 Indication: Utiliser f'_n strictement croissante, en déduire les variation de f_n puis conclure.
- 4. Montrer que, pour tout $n \in \mathbb{N}^*$, pour tout $x \in [0,1]$, $f'_{n+1}(x) \leq f'_n(x)$.
- 5. En déduire que $(x_n)_{n\in\mathbb{N}^*}$ est croissante et conclure que $(x_n)_{n\in\mathbb{N}^*}$ converge. On pourra utiliser que, pour une fonction h strictement croissante, $h(x) \leq h(y) \implies x \leq y$.
- 6. Montrer que $(2x_n^{2n-1})_{n\in\mathbb{N}^*}$ converge vers 0 et en déduire que $(x_n)_{n\in\mathbb{N}^*}$ converge vers $\frac{c}{2b}$.

Questions bonus

- 1. Que peut-on dire, à n fixé, sur l'ensemble des minimas de f_n ?
- 2. Quel réel réalise le minimum de la fonction $x :\mapsto bx^2 cx + 1$?
- 3. Que conclut-on sur la construction du minimum de $x :\mapsto bx^2 cx + 1$?