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Fig. 1: Different results generated by our camera trajectory diffusion system. Project
page https://www.lix.polytechnique.fr/vista/projects/2024_et_courant.

Abstract. Stories and emotions in movies emerge through the effect of
well-thought-out directing decisions, in particular camera placement and
movement over time. Crafting compelling camera trajectories remains a
complex iterative process, even for skilful artists. To tackle this, in this
paper, we propose a dataset called the Exceptional Trajectories (E.T.)
with camera trajectories along with character information and textual
captions encompassing descriptions of both camera and character. To
our knowledge, this is the first dataset of its kind. To show the potential
applications of the E.T. dataset, we propose a diffusion-based approach,
named Director, which generates complex camera trajectories from
textual captions that describe the relation and synchronisation between
the camera and characters. To ensure robust and accurate evaluations,
we train on the E.T. dataset CLaTr, a Contrastive Language-Trajectory
embedding for evaluation metrics. We posit that our proposed dataset
and method significantly advance the democratization of cinematogra-
phy, making it more accessible to common users.

https://www.lix.polytechnique.fr/vista/projects/2024_et_courant
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1 Introduction

Cinematography is a collaborative and complex crafting process that mixes tech-
nical, artistic and storytelling skills. The ultimate objective is to communicate a
distinct message to the audience, at a cognitive (e.g., revealing facts), emotional
and aesthetic level, through tasks such as laying out the scene (mise-en-scène),
setting up the lighting and making decisions to place and move the camera in
relation to the characters, their actions or the overall scene content. In this con-
text, the camera is the only window into this staged world and therefore plays a
critical role in conveying the director’s intention. Through more than a hundred
years of practice, cinematography has forged a common language for directors
– the film grammar – that prescribes how to place and move the camera to
achieve intended effects. Yet mastering camera placements and motions remains
challenging, especially for novice users confronted with hundreds of possibilities
and little insights into how to generate the best ones.

To lower the barriers in handling camera placement and camera motion, re-
searchers have introduced a variety of methods. These include purely geometric
approaches [4, 30], optimization- and control-based strategies [11, 12], as well as
deep learning-grounded methodologies [5,11,20,23] to interactively or automat-
ically compute the parameters of camera trajectories. Typically, these methods
address cinematographic tasks as either cinematic-rule-based control [5, 12, 20]
or example-based imitation [22, 23, 45], conceptually resembling discriminative
and regression models or registration and adaptation methods, respectively. Such
techniques, however, suffer from the need to either design the underlying geomet-
ric model for each type of motion, or to design carefully crafted cost functions for
each motion, and are often limited in their capacity to combine mixed motions
creatively.

Recent advances in video generation [46, 52] enable users to explore more
creative possibilities by capturing and reproducing camera motion in their gen-
erated videos. Jiang et al. [24] followed this path and addressed camera tra-
jectory generation using diffusion models, which incorporate a high degree of
controllability. Yet, this work displayed two main drawbacks: first, it relied on
a character-centric coordinate system to simplify the problem, thus limiting its
generation capabilities, and second its evaluation metrics relied on camera tra-
jectory features with oversimplified assumptions.

In other domains, the generative techniques often rely on the availability of
large datasets enriched with textual descriptions, such as language-motion ob-
tained via motion capture (mocap) [14, 36] or language-vision [29, 40] datasets.
Yet in cinematography, there is no movie datasets where crucial cinematic in-
formation such as camera and character trajectories are available. Most recent
approaches build on synthetic data [22–24], or general videos from streaming
platforms (see [20] for drone trajectory generation, or [53] for dedicated real-
estate videos) without the cinematic features that conform to the film grammar.
Some example-based approaches address cinematic transfer tasks from real film
clips [25, 45], these approaches only retarget and adapt the camera trajectory
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with little control or variability in the results and do not encode cinematographic
knowledge.

In this work, we propose a new camera trajectory dataset extracted from
real movie clips, called E.T. the Exceptional Trajectories. It comprises camera
trajectories together with textual descriptions of both camera and character
trajectory over time (see Figure 2). E.T. contains more than 11M frames with
the corresponding camera and character trajectories, as well as two types of
captions: camera-only and camera-character, describing the trajectory of the
camera with respect to the trajectory of the character. To our knowledge, E.T.
is the first extensive dataset with geometric information on both camera and
character trajectories accompanied by textual descriptions.

To exploit this dataset, we also propose Director (DiffusIon tRansformEr
Camera TrajectORy), a diffusion-based model that generates camera trajectories
by leveraging text descriptions and character information, as shown in Figure 1.
This allows us to better encode the correlation between character and cam-
era trajectories. Moreover, unlike previous methods [24] that use a constrained
character-relative coordinate system, we propose to use a global coordinate sys-
tem. Director relies on a classical diffusion framework with three distinct
architectures for conditioning: in-context, AdaLN and cross-attention settings.
Furthermore, we propose a language-trajectory embedding: CLaTr (Contrastive
Language-Trajectory), trained at scale using the E.T. dataset. CLaTr serves
as a foundation for computing default generative metrics similar to Frechet-
Inception-Distance (FID) [16] for generated trajectories. Our experiments show
that all three architectures of Director successfully leverage the combination
of input captions and character trajectories as conditions. Overall, Director
sets the new state-of-the-art on the camera trajectory generation task.

Our contributions are: (1) We introduce the E.T. camera trajectory dataset
extracted from real movie clips. We complement camera trajectories with charac-
ter trajectories and captions for both camera and character. (2) We present Di-
rector, a camera trajectory diffusion model that exploits both character trajec-
tories and textual descriptions. It offers higher controllability and granularity for
users than existing approaches [24] and achieves state-of-the-art performances.
(3) We propose CLaTr, a robust and accurate language-trajectory embedding,
which facilitates the evaluation of camera trajectory generation models.

2 Related work

Camera control. Over the past twenty years, there have been several paradigm
shifts in camera planning and control. Initial studies [4] predominantly focused
on geometric modeling [30] and rule-based trajectory controls [11] to direct and
create camera trajectories that comply with either hand-crafted cinematic rules
or image-based criteria. With the progress of deep learning, [23] introduced a
method to synthesize camera trajectory for 3D animations in two stages: (i) cap-
turing cinematic styles from a reference clip using a Mixture-of-Experts model,
and (ii) generating trajectories based on 3D character animations autoregres-
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(a) (b)

[Camera-character] 
”As , to follow their 
motion.”

the character moves down the camera trucks left

[Camera-only]  
”The camera  throughout the entire shot.”trucks left
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”While the  and then , 

 to follow their motion.”
character moves right forward the camera 

trucks right

[Camera-only]  
”The camera moves  throughout the 
entire shot.”

right along a trucking motion

Fig. 2: Examples E.T. samples. Each subfigure presents frames from the original
movie shot on the left, while the right side depicts the extracted and processed cam-
era and character trajectories. Additionally, the bottom part showcases the generated
camera trajectory caption with or without the character trajectory.

sively. Subsequent research [22], building on this, incorporates keyframing to
provide extra control such as positional and velocity constraints. More recently,
JAWS [45] pioneered the direction for example-based camera retargeting within
a Neural Radiance Field (NeRF) [31] setting, by optimising camera trajectory
directly given the 2D reference clip in a 3D NeRF. All these example-based
methods share a common limitation: they struggle with generalization because
they require carefully selected reference videos to ensure high quality.

Unlike example-based methods, many cinematic-rule-based methods read-
ily integrate with Deep Reinforcement Learning (DRL) and Imitation Learning
(IL) techniques, particularly in the drone cinematography domain: [20] exploit
optical flow and human poses to guide drone controls via an IL framework.
Similarly, [5] use DRL to control drone actions for multiple rewards, includ-
ing obstacle avoidance, target tracking, shooting style etc. Recently, GAIT [48]
employs an aesthetic score-based RL method instead of handcrafted rewards to
control the camera in the virtual 3D environment. However, these RL-based cam-
era control approaches also have limitations: (1) they need environment-specific
training; (2) they inherently restrict the diversity of results, often leading to
collapsed trajectory styles. Instead, we leverage the generalization capabilities
of generative models to address the camera control task.
Camera diffusion. Generative models have recently gained much progress and
attention in domains such as textual-conditioned image generation [33, 37, 39],
video synthesis [3, 41] and human motion generation [7, 42, 51]. Among these,
diffusion models stand out for their strong ability to produce high-fidelity and
diverse generative samples [10,47], making them particularly well-suited for cam-
era trajectory generation tasks.

The first application of diffusion models in camera control is the Cinemato-
graphic Camera Diffusion (CCD) [24], which relies on the MDM architecture
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(human Motion Diffusion Model) [42] and is trained on synthetic data. However,
CCD simplifies the task by expressing all the camera trajectories in character-
centric relative coordinates. Its small-scale synthetic training dataset also limits
the broader application of the method (e.g., only 48-size vocabulary is used
during training), thus making it unable to generate camera trajectories from
real datasets and, in turn, impractical for common users. In contrast, in our
proposed E.T. dataset, we represent camera trajectories in a global coordinate
system, distinct from character trajectories. This approach allows for more di-
verse correlations between character and camera movements. Additionally, E.T.
offers a rich vocabulary (∼ 5.4k) and extensive camera trajectory data.

Recent literature also includes several text-to-video generation techniques
that can handle different categories of camera motions [46, 52]. These methods,
however, assume access to 3D camera trajectories, whereas our approach gen-
erates them. Furthermore, they typically overlook the camera’s primary targets
(i.e., the characters), which are essential for defining camera trajectories. In con-
trast, our dataset contains character information, and we leverage it to generate
camera trajectories that focus on a specific target character.
Camera trajectory datasets. Many modern generative methods leverage
large multimodal datasets. For instance, in text-to-image generation, the default
dataset is LAION [40] with around 400 million image-text pairs. Similarly, in hu-
man motion synthesis, the large-scale KIT [36] and HumanML3D [14] datasets
offer detailed textual captions that enhance comprehension of human motion.
Yet, for camera control, only a few datasets are available [24,53]. This is largely
due to the intricacies involved in extracting camera poses from real-world videos,
especially in cinematic contexts due to the presence of stylistic elements (e.g . mo-
tion blur or depth-of-field). Zhou et al. [53] applied Structure-from-Motion (SfM)
methods to YouTube real-estate videos, creating the RealEstate10K dataset.
This dataset, designed primarily for 3D reconstruction, comprises solely smooth
camera movements and limited scene variation, lacking the nuanced complex-
ity of cinematic camera motion and human presence. More recently Jiang et
al. [24] introduced a synthetic cinematic camera trajectory dataset, aiming to
circumvent extraction challenges. However, this dataset oversimplifies the intri-
cate cinematic dynamics present in real-world movies.

A recent breakthrough in 3D human pose estimation for videos, termed
SLAHMR [13], offers a compelling trade-off between robustness and accuracy
by jointly optimizing camera and character trajectory estimations. Motivated
by the lack of camera trajectory datasets, the capabilities of SLAHMR and the
recent advances in other domains, we propose a new multi-modal camera tra-
jectory dataset E.T. extracted from cinematic content, which we enhance with
automatically generated captions for camera and character trajectories.

3 Exceptional Trajectories (E.T.)

We introduce a camera trajectory dataset called Exceptional Trajectories (E.T.),
extracted from real movies. E.T. is built upon the Condensed Movies Dataset
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Dataset #Samples #Frames #Hours Domain Character Camera #VocabularyTraj #Captions Traj #Captions

KIT Motion-Language [36] 4K 0.8M 11.23 Mocap ✓ 6K - 1,623
HumanML3D [14] 14K 2M 28.59 Mocap ✓ 45K - 5,371
RealEstate10k [53] 79K 11M 121 Youtube - ✓ - -
CCD [24] 25K 4.5M 50 Synthetic - ✓ 25K 48

E.T. (Ours) 115K 11M 120 Movie ✓ 115K ✓ 230K 1,790

Table 1: Dataset comparison. We compare the E.T. dataset to (i) two human
motion datasets KIT [36] and HumanML3D [14]; and (ii) camera trajectory datasets
RealEstate10K [53] and CCD [24]. Here the notion of sample is common across all
datasets and corresponds to data associated with a continuous temporal sequence.

(CMD) [1]. Each sample in E.T. represents a camera trajectory at the shot level
together with a character trajectory and two types of textual captions: a camera-
only caption, which describes the camera motion; and a joint camera-character
trajectory caption, which describes the motion of the camera according to the
motion of the character (see Figure 2). Below, we describe the key properties and
statistics of E.T. (Section 3.1) followed by the creation pipeline (Section 3.2).

3.1 E.T. properties and statistics

The key properties of E.T. are as follows:
Cinematic content. The camera trajectories in E.T. are both realistic and
cinematic, since they are extracted from real-world movies (Table 1). This dual
nature allows for effective modelling of various visual styles, in contrast to
RealEstate10k’s [53] focus on shots characterized by smooth camera trajectories
and limited scene variation. Furthermore, by extracting data from real-world
movies, E.T. sets itself apart from CCD [24], which only relies on synthetic
camera trajectories.
Scale. E.T. is built upon 16, 210 different scenes from CMD [1]. It comprises
115K samples spanning 11M frames and totalling 120 hours of footage, offer-
ing extensive and diverse camera and character (human) trajectories based on
real movies. In contrast, existing human motion datasets are much smaller, with
only 11.23 hours for KIT [36] and 28.59 hours for HumanMl3D [14] (see Ta-
ble 1). When compared against datasets with camera trajectories, it far exceeds
CCD [24] in terms of hours, frames and samples. Although its scale is com-
parable to RealEstate10k [53], it provides additional character trajectories and
captions referring to real movies as opposed to RealEstate10k, which focuses
only on camera trajectories in another domain.
Controllability. E.T. stands out by comprising not only camera and character
trajectories but also camera-only and camera-character captions (see Figure 2).
Incorporating caption information into the model offers multiple advantages: (1)
it democratizes the input format for general users; and (2) it adds complementary
semantic information to the trajectory data. In comparison, RealEstate lacks
captions entirely. CCD’s captions are limited by a small vocabulary size and
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Extraction  

and pre-processing

[Caption] 
”  while 

, followed by 
 as .”

The camera trucks right the character 
moves right pushing in towards 
the character they advance forward

Caption 
generation

LLM

Motion  
tagging

Tagger

[Camera motion]  
 /  

[Main character motion] 
 / 

Frames 0-95: truck right Frames 96-124: push-in  

Frames 0-93: right Frames 94-124: forward

Fig. 3: Dataset creation pipeline. Given RGB frames from a video, we first extract
and pre-process camera and character poses, then tag resulting camera and character
trajectories (sequence of poses) to obtain rough independent descriptions (middle part).
Finally, we translate these descriptions into rich textual captions, aligning the camera
trajectory with that of the character (right part).

focus only on camera while lacking character information4. The richness and
complexity of E.T.’s captions are on par in terms of vocabulary size –above a
thousand– with human motion datasets such as KIT and HumanML3D, which
provide detailed, hand-crafted human motion descriptions5.
Statistics. Figures 4a- 4b display the statistics of the E.T. dataset, confirming
the diversity and all six degrees of freedom coverage of both camera and character
trajectories (see more in Appendix B.1.)

3.2 Dataset creation pipeline

E.T. is constructed by a three-step process (see Figure 3). First, we extract the
3D coordinates of cameras and characters over time, which we further refine to
form uniform trajectories. Second, we perform motion tagging, i.e. partition each
trajectory into segments with each segment comprising a pure camera motion
that we label (tag). Third, we generate captions that describe both the camera
and the character trajectory over time. We detail each step below.

Data extraction and pre-processing. To extract camera and character poses, we
apply on each shot the joint camera and 3D human poses estimator SLAHMR [50].
Given the complexity of estimating 3D poses from 2D data, the raw outputs
4 Note that CCD indirectly comprises camera trajectories through the character-

relative coordinate system.
5 Note that E.T. has no overlap with human motion datasets. E.T.’s extracted 3D

poses (see Section 3.2) are less accurate than the ones in motion capture, while its
captions describe camera trajectory relative to character trajectory, as opposed to
describing exact human motions targeted by these datasets.
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tend to be noisy. To address this, we perform various pre-processing steps such
as alignment, filtering, smoothing and cropping to a maximum length of 300
frames as in [14]. Refer to the Appendix B.2 for further details.

Motion tagging. Our objective is to partition camera or character trajectories
into segments of pure motion: tags. Besides static, we consider the six funda-
mental motions across three degrees of freedom. They include lateral movements
left, and right; vertical movements up and down; and depth movements forward
and backwards. Each trajectory is partitioned into motion tags with one, two,
or three pure camera motions, totalling 27 combinations (see Figure 4a).

We propose a thresholding-based method that uses trajectory velocity for mo-
tion tagging: This method consists of two stages: (i) for each dimension (XYZ),
we use an initial threshold on velocity to detect whether the camera or character
remains static along the dimension; (ii) when multiple dimensions are non-static,
we calculate pairwise velocity rates and use a threshold to pinpoint dominant
velocities. A dimension is classified as static if its velocity is outmatched. The
tag of motion between two points is then determined by the combination of non-
static dimensions. Finally, we apply smoothing to avoid noisy and sparse tags
and hence enhance the overall trajectory-level tagging.

For camera trajectory tagging, we use the rigid body velocity ∈ SE(3) –
derived from rotation and translation– to account for the camera’s facing direc-
tion. this enables us to differentiate between similar motions, such as ‘trucking’,
where the camera moves along an axis with a perpendicular facing direction, and
‘depth’, where the facing direction aligns with the movement axis. For character
trajectory tagging, we assume that characters face the direction of their move-
ment. Hence, we represent character trajectory using only the linear velocity, as
derived from the translation of their hip centres.

These result in a coarse description of both camera and character trajectories
over time as shown in Figure 3 (left).

Caption generation. Our objective is to provide rich textual descriptions of the
extracted camera trajectories according to the character trajectory. In movie,
cameras typically move relative to the subject being filmed, i.e., the main char-
acter. Therefore, for each shot, we first identify the main character following [43]6
based on the temporal and spatial coverage of their bounding boxes within the
shot. Then, for both camera and main character trajectories, we generate cap-
tions for each motion tag, as shown in the center of Figure 3. Then, inspired
by [9], our goal is to convert the descriptions obtained via motion tagging for
camera and character trajectories into detailed textual annotations. For this,
we prompt an LLM –Mistral-7B [21]– to generate camera trajectory captions by
referencing the main character’s trajectory as anchor points. Our prompt formu-
lation follows a structured approach with context, instruction, constraint, and
example. Further details can be found in the Appendix B.3.

6 Hitchcock’s rule: ‘the size of an object in the frame should equal its importance in
the story at the moment ’ [43].
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(a) Camera segment distribution
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(b) Character segment distribution

Fig. 4: E.T. statistics.

This step results in a rich description of both camera and character trajec-
tories over time as shown in Figure 3 (right).

4 Method

Here, we introduce our proposed DiffusIon tRansformEr Camera TrajectORy
(Director) method for camera trajectory generation (Section 4.1). Direc-
tor takes as input the character trajectory with the camera-character cap-
tion and generates a camera trajectory. Additionally, we present the Contrastive
Language-Trajectory embedding (CLaTR) that serves as a basis for creating a
common space between text and trajectories (Section 4.2), enabling the compu-
tation of evaluation metrics.

4.1 Camera trajectory diffusion

Problem formulation. We consider a camera trajectory x1:N as a sequence of N
consecutive camera poses. Each camera pose x = [R|t] comprises a rotation R
representing the camera’s orientation and a translation t indicating its position.
We aim at generating camera trajectories under two conditions: (i) a target
character trajectory h1:N capturing the 3D positions of the main character; and
(ii) a textual description c specifying the desired camera movement relative to
the character movement.

Diffusion framework. We follow the general diffusion paradigm established in
EDM [26]. In essence, diffusion models consist of randomly sampling x0 ∼
N (0, σ2

maxI), and progressively denoising it to reach the endpoint xK of this
process, distributed according to the initial data distribution. During the train-
ing stage, we perturb an initial data distribution with standard deviation σdata,
with i.i.d. Gaussian noise with standard deviation σ. When σmax ≫ σdata, the
noise distribution equivalent to a normal distribution N (0, σ2

maxI). We use these
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Fig. 5: DiffusIon tRansformEr Camera TrajectORy (Director). We display 3
variants of our diffusion model Director. Director A incorporates the conditioning
as in-context tokens. Director B leverages AdaLN modulation of the transformer
block to add the conditioning. Director C uses the full text and character trajectory
sequences by relying on cross-attention.

modified versions of the initial data distribution to train a denoiser module D,
which takes as input a sample x to denoise, the two conditions (character tra-
jectory h and the caption c), and the corresponding standard deviation σ. Then,
D is trained using the denoising score matching loss:

Lscore =
(
D(x,h, c; σ)− x

)
/σ2. (1)

During the sampling phase, we apply the 2nd order deterministic sampling
introduced in EDM [26] with classifier-free guidance [19].

Director architecture. Director (DiffusIon tRansformEr Camera Trajec-
tORy) takes as input the character trajectory and the caption and generates
a camera trajectory. Its architecture is illustrated in Figure 5. The base of Di-
rector is a pre-norm Transformer [44,49]. We condition the transformer on the
diffusion timestep, the character trajectory, and a textual description that de-
scribes the relative movement between the camera and character trajectories (see
Figure 2). The timestep is tokenized using a sinusoidal positional embedding [44]
and then mapped with an MLP.

Inspired by the DiT architecture variants [34], we explore three distinct ways
to include the conditioning in the denoising process (Figure 5).
Director A (Figure 5a). The conditioning is added to the context of the
transformer input. We only use the global clip token for the text, and we do
a linear embedding of the character trajectories, which in turn gets averaged
pooled into a single token.
Director B (Figure 5b). Both conditionings (character trajectory and cap-
tion) are concatenated into a single token which gets mapped at each layer into 6
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vectors, γ1, β1, λ1, γ2, β2, λ2. Then, the layer-norm of the transformer is replaced
by the following AdaLN operation:

ADALN(γ, β, x) = (1 + γ)LN(X) + β , (2)

where LN refers to the Layer Normalization, γ, β are the scale and bias, re-
spectively. The AdaLN operation is performed before each self-attention and
feed-forward layer in the transformer. The output of each self-attention and
cross-attention is rescaled by λ. Following [34], we initialize the modulation such
that the output is zero.
Director C (Figure 5c). We leverage the full sequence length of the condi-
tioning. We retrieve the CLIP-embedded text sequence and the linearly projected
trajectory and concatenate them into a single sequence. We then use 2 layers of
transformer encoders to pre-process this sequence, which is then incorporated
into the Director transformer with a cross-attention block.

4.2 Contrastive Language-Trajectory embedding (CLaTr)

Given the scarcity of relevant camera trajectory methods and datasets, the com-
munity has not introduced adequate metrics for this task. In the concurrent cin-
ematic camera trajectory diffusion work [24], the authors evaluate their model
with metrics from the human motion community. For this, they train a dedi-
cated camera trajectory classifier to extract features. However, their classifier is
trained on a simplistic task, comprising only six basic camera motion classes on
synthetic data, which fails to capture the true complexity of camera trajectories.

To address this lack of proper evaluation metrics, in this section, we propose
to extend existing metrics from text-image-based and text-motion-based gen-
eration (which rely on feature embeddings to measure the generation quality)
to text-trajectory generation. The main obstacle is that no commonly accepted
text-trajectory feature embedding exists. Therefore, we propose to learn a gen-
eral text-trajectory embedding in a contrastive CLIP-like manner to acquire an
accurate and robust feature representation, which can serve as a foundation for
computing camera trajectory evaluation metrics.

We introduce Contrastive Language-Trajectory embedding (CLaTr) by cap-
italizing our multi-modal dataset E.T. with a CLIP-like approach [38]. Our
language-trajectory embedding follows the methodology outlined in [35], origi-
nally designed for human motion. CLaTr consists of a VAE [27] framework with
trajectory and text encoders and a shared feature decoder. CLaTr is trained with
three losses: (a) a reconstruction loss LR, quantifying trajectory reconstruction
of both trajectory and text features; (b) four KL loss terms LKL, which regular-
ize each modality distribution and also enforce inter-modality similarity; and (c)
a cross-modal embedding similarity loss LE , ensuring alignment between text
and trajectory features. See Appendix C for more details.
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Set Methods ω
Camera trajectory quality Text-camera coherence

FDCLaTr ↓ P ↑ R ↑ D ↑ C ↑ CS ↑ C-P ↑ C-R ↑ C-F1 ↑
E
.T

.
p
u
re

tr
a
je

ct
or

ie
s CCD [24] 5.5 31.33 0.79 0.55 0.83 0.72 3.21 0.53 0.28 0.27

MDM [42] 1.8 6.10 0.77 0.68 0.89 0.80 21.26 0.81 0.75 0.76
Director A 1.6 5.16 0.82 0.67 1.00 0.86 21.88 0.84 0.78 0.80
Director B 1.8 6.61 0.80 0.72 0.92 0.82 23.10 0.85 0.80 0.86
Director C 1.6 4.57 0.83 0.65 1.00 0.87 21.49 0.83 0.78 0.80

E
.T

.
m

ix
ed

tr
a
je

ct
or

ie
s CCD [24] 6.0 35.81 0.73 0.55 0.75 0.67 6.26 0.37 0.20 0.17

MDM [42] 2.0 6.79 0.78 0.65 0.85 0.76 18.32 0.36 0.36 0.34
Director A 1.4 3.88 0.82 0.68 0.98 0.85 20.76 0.43 0.43 0.42
Director B 1.6 6.10 0.78 0.74 0.85 0.78 20.78 0.41 0.40 0.39
Director C 1.4 3.76 0.83 0.67 1.00 0.86 21.95 0.49 0.49 0.48

Table 2: Quantitative Results. Comparison of Di-
rector and concurrent methods on E.T. pure and
mixed subsets, evaluating trajectory quality (left) and
caption coherence (right). First best and second best .

DIRECTOR A

MDM

CLaTr-Score

F
D
C
L
a
T
r

DIRECTOR C

DIRECTOR B

Fig. 6: FDCLaTr vs
CLaTr-Score. Guidance
range between 0.6 and 2.2
on E.T. mixed subset.

5 Experiments

Implementation details. We train Director with a batch size of 128 using the
AdamW optimizer with a learning rate of 1e-4, (β1, β2)=(0.9, 0.95) and a weight
decay of 0.1. We use a cosine decay learning rate scheduler with 5k steps of
warmup for a total of 170k steps in bfloat16 mixed precision. The model has 8
layers with a hidden dim of 512 and 16 attention heads. We use dropout and
stochastic depth of 0.1. We set the default temporal input size to 300 to match
the E.T. sample size (see Section 3.2) and use masking to handle inputs with
fewer than 300 frames. For the camera trajectory, we use the 6D continuous
representation for rotation [54] combined with the 3D translation component.
For the character trajectory, we use the 3D position of the character’s hip center.

5.1 Quantitative results

Metrics. We use two sets of metrics.
First, we assess camera trajectory quality, specifically how well the generated
camera trajectories match the distribution of the ground truth camera trajec-
tories. For this, we use the CLaTr-based metrics described in Section 4.2: the
Frechet CLaTr Distance (FDCLaTr) similar to FID [17]), Precision (R), Recall
(R), Density (D) and Coverage (C) [32]. As the validation set comprises only
a few samples and these metrics need a critical amount of samples (10k+), we
compare to the train set as it is common practice in small dataset generative
models (e.g. CIFAR image generation [18,28]).
Second, we use text-camera coherence metrics, which measure the coherence
between the given caption (text) and the generated camera trajectory. For this,
we use the CLaTr-Score (CS) (see Section 4.2), similar to CLIP-Score [15]. Ad-
ditionally, we derive Classifier Precision (C-P), Classifier Recall (C-R) and Clas-
sifier F1-Score (C-F1) by performing motion tagging (described in Section 3.2)
on generated camera trajectories and compare them to the ground truth.

Dataset. In our experiments, we train and evaluate our model on two different
subsets of the E.T. dataset. First, the pure camera trajectory subset, where we



E.T. the Exceptional Trajectories 13

only keep the samples having a single camera motion trajectory (e.g. “the camera
trucks right”). Second, the mixed camera trajectories subset, which excludes some
static-only camera trajectories to create a balanced subset. In this way, we can
both correctly compare against methods suited for simple, pure trajectories and
emphasize the difficulty of the mixed compositional camera trajectories. We
compare in Table 2 Director with concurrent methods on the pure subset
(top) and mixed subset (bottom).

Comparison to the state of the art. We report in Table 2 and Figure 6 quan-
titative results of the different Director architectures against the previous
state-of-the-art CCD [24], and MDM [42], a default modern method in human
motion. We observe that overall we outperform both works on all metrics and
both subsets. Particularly, in the mixed trajectory subset (bottom of Table 2),
we demonstrate superior camera trajectory quality metrics (left section of Ta-
ble 2) with a margin of −3.0 FDCLaTr against MDM and −32.1 against CCD.
Additionally, our method excels in text-camera coherence (right section of Ta-
ble 2) within the same subset, achieving a substantial improvement of +3.6
ClaTR-Score against MDM and +15.7 against CCD.

Additionally, we show in Figure 6 the trade-off between FDCLaTr (trajectory
quality) and CLaTr-Score (conditioning coherence) for varying guidance weights.
The optimal point is at the bottom right, where FDCLaTr is lowest and CLaTr-
Score is highest. We observe that the MDM curve (blue) consistently lies above
Director’s curves, indicating that MDM performs worse.

These results reveal the effectiveness of our method both in generating high-
quality camera trajectories and in handling the input caption conditioning.

Ablation of Director architectures. We observe in Table 2 and Figure 6 that
Director C outperforms other variants, followed closely by Director A. The
cross-attention mechanism in Director C enables effective incorporation of
conditioning into the model, leading to its superior performance. Director A
offers a compelling balance of efficiency and performance: it exhibits comparable
results to Director C with a simpler concept and fewer parameters. In contrast,
Director B excels in text-camera coherence on the pure trajectory subset (top-
right of Table 2) but struggles on the mixed trajectory subset (bottom-right of
Table 2). We attribute this to the AdaLN’s ability to condition the model in
simple setups, but its failure to capture sequential complexity in harder scenarios.

5.2 Qualitative results

Figure 7 shows generated camera trajectories from Director (architecture C).
Each sub-figure displays the trajectories with pyramid markers for keyframes,
along with character meshes and corresponding captions. The output trajectories
are smooth and consistent with the input conditions. We highlight four key
strengths of our method:
Controllability (Figure 7a). Director offers high controllability: by modi-
fying only two words in the caption, the user can generate all kinds of camera
trajectories, e.g. “trucks right”, “trucks left”, “booms top” and “booms bottom”.
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The camera [ / /
/ ] while the 

character remains stationary.

trucks right    
booms top

trucks left  
  booms bottom

(a) Controllability

While the character moves right, the 
camera performs a boom bottom.

(b) Diversity

While the character moves to the right, 
the camera [  / 

] once the 
character stops.

stays static and pushes-in
trucks right and remains static

(c) Complexity

The camera remains static as the 
character moves to the [  / ].right left

(d) Character-aware

Fig. 7: Qualitative results. Generated camera trajectories with corresponding
prompts and character trajectories, highlighting (a) controllability, (b) diversity, (c)
complexity, and (d) character awareness. Darker shades indicate later frames.

Diversity (Figure 7b). Given the same input conditions (i.e. character tra-
jectory and caption), Director generates diverse camera trajectories, allowing
users to explore a wide range of creative and unique outputs.
Complexity (Figure 7c). Director can handle complex input conditions,
including character trajectories (e.g., “moves right” then “stops”) and camera
trajectories descriptions (e.g., “stays static and pushes-in” and “trucks right and
remains static”).
Character-awareness (Figure 7d). Director effectively considers the char-
acter, generating camera trajectories that follow the character’s movement when
the prompt and character trajectory are mirrored.

6 Conclusion

We designed and implemented E.T., a dataset of camera and character trajecto-
ries extracted from movie sequences that we believe will be very beneficial to the
community. In addition to their trajectories, E.T. comes with text captions that
describe the camera and character trajectories over time. We showed how E.T.
can be exploited to train a diffusion-based approach to generate complex camera
trajectories from high-level textual descriptions which correlate the trajectory
of the camera with the trajectory of the characters. For this, we propose the
diffusion-based method Director, which sets the new state of the art on cam-
era trajectory generation. In the future, we plan to address the expressiveness of
the trajectory captions, by including more information about modifiers and the
exact position on the screen where the characters should be located.

Acknowledgements

This work was supported by ANR-22-CE23-0007, ANR-22-CE39-0016, Hi!Paris
grant and fellowship, and was granted access to the HPC resources of IDRIS un-
der the allocation 2023-AD011013951 made by GENCI. We would like to thank
Hongda Jiang, Mathis Petrovich, Pierre Vassal and the anonymous reviewers for
their insightful comments and suggestions.



E.T. the Exceptional Trajectories 15

References

1. Bain, M., Nagrani, A., Brown, A., Zisserman, A.: Condensed movies: Story based
retrieval with contextual embeddings. In: ACCV (2020) 6, 18

2. Björck, Å.: Least squares methods. Handbook of numerical analysis (1990) 20
3. Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D., Kilian, M., Lorenz, D.,

Levi, Y., English, Z., Voleti, V., Letts, A., et al.: Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127
(2023) 4

4. Blinn, J.: Where am I? what am I looking at? (cinematography). IEEE Computer
Graphics and Applications (1988) 2, 3

5. Bonatti, R., Wang, W., Ho, C., Ahuja, A., Gschwindt, M., Camci, E., Kayacan,
E., Choudhury, S., Scherer, S.: Autonomous aerial cinematography in unstructured
environments with learned artistic decision-making. J. Field Robotics. (2020) 2, 4

6. Castellano, B.: Pyscenedetect. https : / / github . com / Breakthrough /
PySceneDetect (2014) 18

7. Chen, X., Jiang, B., Liu, W., Huang, Z., Fu, B., Chen, T., Yu, G.: Executing your
commands via motion diffusion in latent space. In: CVPR (2023) 4

8. Courant, R., Lino, C., Christie, M., Kalogeiton, V.: High-level features for movie
style understanding. In: ICCV-W (2021) 21

9. Delmas, G., Weinzaepfel, P., Lucas, T., Moreno-Noguer, F., Rogez, G.: Posescript:
3d human poses from natural language. In: ECCV (2022) 8

10. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In:
NeurIPS (2021) 4

11. Drucker, S.M., Galyean, T.A., Zeltzer, D.: Cinema: A system for procedural camera
movements. In: Symposium on Interactive 3D graphics (1992) 2, 3

12. Galvane, Q., Christie, M., Lino, C., Ronfard, R.: Camera-on-rails: automated com-
putation of constrained camera paths. In: ACM Motion In Games (2015) 2

13. Goel, S., Pavlakos, G., Rajasegaran, J., Kanazawa*, A., Malik*, J.: Humans in 4D:
Reconstructing and tracking humans with transformers. In: ICCV (2023) 5

14. Guo, C., Zou, S., Zuo, X., Wang, S., Ji, W., Li, X., Cheng, L.: Generating diverse
and natural 3d human motions from text. In: CVPR (2022) 2, 5, 6, 8, 23

15. Hessel, J., Holtzman, A., Forbes, M., Le Bras, R., Choi, Y.: CLIPScore: A reference-
free evaluation metric for image captioning. In: EMNLP (2021) 12

16. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. NeurIPS
(2017) 3

17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In:
NeurIPS (2017) 12

18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS
(2020) 12

19. Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS-W (2021) 10
20. Huang, C., Lin, C., Yang, Z., Kong, Y., Chen, P., Yang, X., Cheng, K.: Learning

to film from professional human motion videos. In: CVPR (2019) 2, 4
21. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas,

D.d.l., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al.: Mistral 7B.
arXiv preprint arXiv:2310.06825 (2023) 8

22. Jiang, H., Christie, M., Wang, X., Liu, L., Wang, B., Chen, B.: Camera keyframing
with style and control. ACM TOG (2021) 2, 4

https://github.com/Breakthrough/PySceneDetect
https://github.com/Breakthrough/PySceneDetect


16 R. Courant et al.

23. Jiang, H., Wang, B., Wang, X., Christie, M., Chen, B.: Example-driven virtual
cinematography by learning camera behaviors. ACM TOG (2020) 2, 3

24. Jiang, H., Wang, X., Christie, M., Liu, L., Chen, B.: Cinematographic camera
diffusion model. Computer Graphics Forum (2024) 2, 3, 4, 5, 6, 11, 12, 13

25. Jiang, X., Rao, A., Wang, J., Lin, D., Dai, B.: Cinematic behavior transfer via
nerf-based differentiable filming. arXiv preprint arXiv:2311.17754 (2023) 2

26. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-
based generative models. NeurIPS (2022) 9, 10

27. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. stat (2014) 11
28. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images.

Toronto, ON, Canada (2009) 12
29. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,

Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014) 2
30. Lino, C., Christie, M.: Intuitive and efficient camera control with the toric space.

ACM TOG (2015) 2, 3
31. Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J., Ramamoorthi, R., Ng, R.:

Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020) 4

32. Naeem, M.F., Oh, S.J., Uh, Y., Choi, Y., Yoo, J.: Reliable fidelity and diversity
metrics for generative models. In: ICML (2020) 12

33. Nichol, A.Q., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., Mcgrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. In: ICML (2022) 4

34. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: ICCV (2023)
10, 11

35. Petrovich, M., Black, M.J., Varol, G.: TMR: Text-to-motion retrieval using con-
trastive 3d human motion synthesis. In: ICCV (2023) 11, 23

36. Plappert, M., Mandery, C., Asfour, T.: The KIT motion-language dataset. Big
Data (2016) 2, 5, 6

37. Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna,
J., Rombach, R.: SDXL: Improving latent diffusion models for high-resolution im-
age synthesis. arXiv preprint arXiv:2307.01952 (2023) 4

38. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021) 11

39. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022) 4

40. Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk, R., Mullis, C., Katta,
A., Coombes, T., Jitsev, J., Komatsuzaki, A.: LAION-400M: Open dataset of clip-
filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021) 2,
5

41. Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang, S., Hu, Q., Yang, H.,
Ashual, O., Gafni, O., et al.: Make-a-video: Text-to-video generation without text-
video data. arXiv preprint arXiv:2209.14792 (2022) 4

42. Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-Or, D., Bermano, A.H.: Human
motion diffusion model. In: ICLR (2023) 4, 5, 12, 13

43. Truffaut, F., Scott, H.: Hitchcock/truffaut. revised edition. Simon and Schuster
(1985) 8

44. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017) 10



E.T. the Exceptional Trajectories 17

45. Wang, X., Courant, R., Shi, J., Marchand, E., Christie, M.: JAWS: Just A Wild
Shot for cinematic transfer in neural radiance fields. In: CVPR (2023) 2, 4

46. Wang, Z., Yuan, Z., Wang, X., Chen, T., Xia, M., Luo, P., Shan, Y.: Motionc-
trl: A unified and flexible motion controller for video generation. arXiv preprint
arXiv:2312.03641 (2023) 2, 5

47. Xiao, Z., Kreis, K., Vahdat, A.: Tackling the generative learning trilemma with
denoising diffusion GANs. In: ICLR (2021) 4

48. Xie, D., Hu, P., Sun, X., Pirk, S., Zhang, J., Mech, R., Kaufman, A.E.: GAIT: Gen-
erating aesthetic indoor tours with deep reinforcement learning. In: ICCV (2023)
4

49. Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan,
Y., Wang, L., Liu, T.: On layer normalization in the transformer architecture. In:
ICML (2020) 10

50. Ye, V., Pavlakos, G., Malik, J., Kanazawa, A.: Decoupling human and camera
motion from videos in the wild. In: CVPR (2023) 7, 18, 20, 21

51. Zhang, M., Cai, Z., Pan, L., Hong, F., Guo, X., Yang, L., Liu, Z.: MotionDiffuse:
Text-driven human motion generation with diffusion model. IEEE TPAMI (2024)
4

52. Zhao, R., Gu, Y., Wu, J.Z., Zhang, D.J., Liu, J., Wu, W., Keppo, J., Shou, M.Z.:
Motiondirector: Motion customization of text-to-video diffusion models. arXiv
preprint arXiv:2310.08465 (2023) 2, 5

53. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: Learn-
ing view synthesis using multiplane images. ACM TOG (2018) 2, 5, 6

54. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation repre-
sentations in neural networks. In: CVPR (2019) 12, 23



18 R. Courant et al.

Appendix

A Ethical discussion

We discuss the ethical impact of our method across several aspects:

– Creative Integrity: It is a fine line between using AI tool to enhance the
human creativity and allowing it to deprive human creative process. Under
misusage, the proposed method could diminish the artistic expression instead
of support it.

– Intellectual Property : The use of AI-generated content raises questions about
ownership and copyright. The Intellectual Property ownership of the gener-
ated content can be debatable.

– Job Displacement or Creation: The automation of certain aspects of film-
making could lead to concerns about job displacement within the industry,
or under proper usage, may also help to create new types of jobs in the
domain.

B Exceptional Trajectories dataset (E.T.)

B.1 Additional statistics

We build our E.T. dataset the Condensed Movies Dataset [1] (CMD), encom-
passing over 30, 000 scenes from 3, 000 diverse movies, totaling more than 1, 000
hours of video. We segment each movie scene into continuous shots by leveraging
changes in color and intensity between frames [6].

We show additional statistics of E.T. in Figure 9. We observe that for both
camera and character, the majority of trajectories are smaller than 20 meters,
i.e. corresponding to a velocity of 20 meters/(300 frames/25 fps) = 1.67m.s−1.

Additionally, in Figure 8, we show extensive examples of E.T. samples.

B.2 Data pre-processing

Chunk alignment. A limitation of SLAHMR [50] is its inability to handle long
videos (exceeding 100 frames). Consequently, we divide each shot into chunks of
100 frames and process them independently. However, it produces non-consitant
outputs: it exhibits translational bias/offset and different scales, as shown in
Figure 10a.

To address this issue, we propose the following alignment method: divid-
ing shots into overlapping chunks, where consecutive chunks share frames, and
performing alignment on these overlapping frames. A chunk contains camera
trajectories with SE(3) poses represented as [R|t] (where R denotes rotation
and t translation), and 3D human poses described by V (vertices of a 3D mesh).
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[Camera-character] ”As  ,   to maintain their position in the shot.”the character moves backward the camera trucks left

[Camera-only] ”   throughout the entire shot.”The camera moves laterally to the left (trucking)
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Fig. 8: Examples E.T. samples. Each subfigure presents frames from the original
movie shot (left), and processed camera and character trajectories (right). Additionally,
the bottom part showcases the generated camera trajectory caption with or without
the character trajectory caption.
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Fig. 9: E.T. statistics.

(a) Before alignment. (b) After alignment.

Fig. 10: Raw chunk alignment. We show in (a) the raw independent chunks just
after the SLAHMR [50] extraction. In (b) we display the result of the chunk alignment
process. Each color (red, blue, green) corresponds to a different chunk.

Given two consecutive chunks at k and k + 1, we initially align the cam-
eras. The alignment involves determining a scale parameter s and a SE(3) rigid
transformation [B | b]:

[Rk | tk] = [Bk | bk] [Rk+1 | sk tk+1], (3)
[Rk | tk] = [Bk Rk+1 | sk Bk tk+1 + bk], (4)

which simplifies to:

(a) Rk = Bk Rk+1, (5)
(b) tk = sk Bk tk+1 + bk. (6)

Notably, the rotation estimated by SLAHMR remains consistent across chunks,
implying Bk = I, and simplifying Equations 5 and 6 :

(a) Rk = Rk+1, (7)
(b) tk = sk tk+1 + bk. (8)

Subsequently, alignment entails determining the scaling factor s and transla-
tional bias b. These parameters can be accurately estimated using the least-
square method [2], as represented by:[

tk I
] [sk

bk

]
= tk+1, (9)
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which can be further expressed as:txk 1 0 0
tyk 0 1 0
tzk 0 0 1



sk
bxk
byk
bzk

 =

txk+1

tyk+1

tzk+1

 . (10)

We also seek the alignment transform ∆b, such that:

[Rk+1 | sk tk+1 + bk]∆b = [Rk+1 | tk+1], (11)

resulting in:
∆b = [Rk+1 | sk tk+1 + bk]

−1 [Rk+1 | tk+1]. (12)
Considering the inverse of a 4x4 transformation matrix representing a rigid trans-
formation: [

RT −RT t
0 1

]
, (13)

we obtain from Eq. 12:

∆b =

[
RT

k+1 −RT
k+1(stk+1 + bk)

0 1

] [
Rk+1 tk+1

0 1

]
, (14)

∆b =

[
I RT

k+1(tk+1 − (stk+1 + bk))
0 1

]
. (15)

Ultimately, to align the 3D human poses based on their vertices V :[
VT

k

1

]
= ∆b

[
VT

k+1

1

]
=

[
VT

k+1 +RT
k+1(tk+1 − (sktk+1 + bk))

1

]
, (16)

Vk = Vk+1 + (tk+1 − (sktk+1 + bk))
TRk+1. (17)

The alignment process outcome is illustrated in Figure 10b.

Data cleaning. The extracted trajectories have limitations from the data ex-
traction method [50], including discontinuities, ruptures and jerky motions. To
address this, we first clean the data by removing outliers (i.e., discontinuous
segments), with a velocity threshold. Specifically, we eliminate trajectory points
holding velocities greater than the 95th percentile of the overall trajectory veloc-
ity multiplied by a scaling factor. Subsequently, the trajectory is partitioned into
sub-trajectories without outliers. Finally, we use Kalman filter on each chunk to
reduce residual jerkiness and enhance overall smoothness.

B.3 Dataset creation pipeline

Motion tagging. We tune the parameters of our motion tagging method using
the dataset introduced in [8]. This small dataset of 75 short clips includes anno-
tated sequences of pure camera motion. For the character trajectory tagging, we
extended this dataset by annotating human trajectories. We select parameters
(i.e. mainly threshold values) that corresponds to the best classification metrics
described in Section 5 of the main manuscript.
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Caption generation. We show the prompt used for caption generation (see Sec-
tion 3.2 of the main manuscript):

You act as a camera operator writing a technical script for camera
motion descriptions.

Given a rough outline of the camera motion and main character motion,
write the camera motion description according to the main character
motion.

The sentence should be short, and factual. Do not mention frame
indices.

# Examples
Outline: Total frames 209.

[Camera motion] Between frames 0 and 154: boom top, Between
frames 155 and 209: static.
[Main character motion] Between frames 0 and 146: move up,
Between frames 147 and 209: static.

Description: While the character climbs up, the camera follows them
with a boom top, and as soon as the character stops, it remains
static.
# End of examples

Outline: Total frames {CURRENT_NUM_FRAME}.
[Camera motion] {CURRENT_CAMERA_DESCRIPTION}.
[Main character motion] {CURRENT_CAMERA_DESCRIPTION}.

Description:

C Contrastive Language-Trajectory embedding (CLaTr)

Text-trajectory retrieval Trajectory-text retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10↑ MedR ↓

19.73 31.67 40.8 52.08 64.69 5.0 11.15 17.25 20.91 26.5 34.66 28.0

Table 3: CLaTr evaluation. We report the retrieval scores of CLaTr on the E.T.
dataset.

We show in Figure 11a the overview of the CLaTr framework as described in
Section 4.2 of the main manuscript.

Implementation details. We train CLaTr with a batch size of 32 using the
AdamW optimizer with a learning rate of 1e − 5. The set the weight of the
reconstruction loss at 1.0, of the latent loss at 1.0e−5, of the KL loss at 1.0e−5,
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(a) Overview of CLaTr framework. CLaTr projects
both text and camera trajectories into a common latent
space using encoders. Self-similarity is then computed, and
a shared-weight decoder decodes both text and camera tra-
jectory features back into a camera trajectory.
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(b) t-SNE visualization of CLaTr
embedding of text (vivid colors) and
trajectory (pastel colors). Each color
corresponds to a K-Mean cluster of the
text embedding.

and of the contrastive loss at 0.1. The model has 6 layers with a hidden dim
of 256 and 4 attention heads. We use dropout of 0.1. Similar to Director, we
set the default temporal input size to 300 and use masking to handle inputs
with fewer than 300 frames. We represent the camera trajectory with the 6D
continuous representation for rotation [54] combined with the 3D translation
component.

CLaTr Evaluation. Table 3 presents standard retrieval performance measures
from [14,35]. Recall at rank k (R@k) indicates the percentage of times the correct
caption is within the top k results (higher is better). Median rank (MedR) is
also reported, where lower values are better.

As shown in Table 3, text-to-trajectory metrics outperform trajectory-to-
text metrics. This may be because text descriptions are more ambiguous and
varied in describing trajectories, making it easier to match a text description to
a unique trajectory than to match a trajectory to a specific description among
many possibilities.

CLaTr embedding. We show in Figure 11b a t-SNE visualization of CLaTr text
(vivid colors) and trajectory (pastel colors) embeddings. We applied K-Means
clustering to the text embeddings and visualized the corresponding clusters on
the trajectory embeddings to assess the consistency of the joint embedding.
Notably, we find that text clusters are preserved in the trajectory space, with
vivid and pastel clusters overlapping, indicating a robust alignment between text
and trajectory representations.
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