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Abstract. Recent developments in diffusion models, particularly with
latent diffusion and classifier-free guidance, have produced highly realis-
tic images that can deceive humans. In the detection domain, the need
for generalization across diverse generative models has led many to rely
on frequency fingerprints or traces for identifying synthetic images there-
fore often compromising the robustness against complex image degrada-
tions. In this paper, we propose a novel approach that does not rely
on frequency or direct image-based features. Instead, we leverage pre-
trained diffusion models and a sampling technique to detect fake images.
Our methodology is based on two key insights: (i) pre-trained diffusion
models already contain rich information about the real data distribu-
tion, enabling the differentiation between real and fake images through
strategic sampling; (ii) the dependency of textual conditional diffusion
models on classifier-free guidance, coupled with higher guidance weights,
enforces the discernibility between real and diffusion generated fake im-
ages. We evaluate our method across the GenImage dataset, with eight
distinct image generators and various image degradations. Our method
demonstrates its efficacy and robustness in detecting multiple types of
AI-generated synthetic images, setting the new state of the art. Code is
available on our project page1

1 Introduction

The evolution of generative AI models has enabled the production of images that
can deceive humans, raising potential legal and ethical concerns. Consequently,
there is a pressing need for enhanced detection techniques to match the pace
of advancements in image generation. Notably, recent progress has been driven
by diffusion techniques, in contrast to their predecessors, such as Generative
Adversarial Networks (GANs) [12, 30]. Diffusion models aim to learn the data
distribution by adding iterative noise to images and subsequently learning to
denoise them. This approach effectively addresses the mode collapse issue preva-
lent in GAN-based methods. The introduction of classifier-guidance [9] and later,
classifier-free guidance [13] has further enhanced these models by allowing for
complex conditioning and image quality improvement through tuning required
hyperparameter guidance weights ω. The Latent Diffusion Model (LDM) [28]
1 https://www.lix.polytechnique.fr/vista/projects/2024_detector_wang.
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represents a significant advancement, enabling the generation of high-resolution
images at increased speeds by performing diffusion in the latent space of a pre-
trained VAE, a technique foundational to the popular Stable Diffusion series.

Fig. 1: Our main intuition is twofold: (i) since the diffusion model is trained solely
with real images towards the objective of ∥ϵθ(xt, c)−ϵ∥ ∼ 0, images generated by other
methods are likely to elicit a different response; (ii) the prevalent use of classifier-free
guidance for sampling and generation to adhere to textual prompts and improve image
quality facilitates the detection of images generated by diffusion methods, which adding
on the objective an extra guidance term (ω+1) (ϵθ(xt, c)− ϵθ(xt.∅)). By comparing the
response of the diffusion network (i.e., the predicted noise ϵθ(xt, c)) against sampled
noise ϵ, we can detect fake images. Additionally, because our detection method does not
rely on frequency or direct image-based forensic cues, it demonstrates strong robustness
against image degradations such as down-sampling and blurring.

These advancements present new challenges for traditional synthetic image
detection methods, which have primarily focused on GAN-generated images. To
maintain generality across various generative models, many detection methods
rely on local forensic clues or frequency-based analysis [29, 33]. This reliance
on pixel or frequency analysis, however, often results in diminished robustness
against real-world image degradations e.g.: compression, resampling, or blur-
ring, due to their significant impact on the frequency characteristics of images.
To address this, some works [24,37] successfully leverage large-scale pre-trained
models like CLIP [26], originally designed to learn universal text-image embed-
dings. Intuitively, since diffusion models are trained on large-scale datasets of
real images and can generate realistic images, they shall have the potential to
be used as tools for confirming whether an image belongs to real image dis-
tributions. One example is presented in [16], which proposes a sampling-based
method using a pre-trained classifier-guided diffusion model for traditional image
classification tasks. This work showcases the effective zero-shot labelling capabil-
ities of diffusion-based generative models. However, this method is constrained
by the need for prior knowledge of all in-domain class labels to compute relative
information among labels, which limits its direct applicability for fake image
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detection. In the realm of forgery detection, DIRE [34] utilizes the deterministic
nature of DDIM [30] networks to invert images back to their initial Gaussian dis-
tributions. The discrepancy between inversion and generation serves as a measure
of authenticity. While this approach is effective for certain diffusion-based mod-
els [38], its reliance on textual conditioning and inversion information restricts
its generalizability. For example, inverting with different prompts may yield in-
consistent results [38]. Additionally, since the final data representation remains
image-based, it is vulnerable to frequency perturbations, a common limitation
in other image-centric methods.

Inspired by these findings, we hypothesize that AI-generated images, espe-
cially from diffusion models, can be distinguished by analyzing their response
to sampled noise, similar to the diffusion training process. This hypothesis com-
prises two key considerations (see Figure 1): (i) diffusion models contain
extensive information about the real data distribution, which can be exploited
to differentiate between real and fake images (e.g., generated by GANs or other
methods) through sampling; (ii) text-to-image diffusion models (e.g. Stable Dif-
fusion [28]) use classifier-free guidance [13] to adhere to textual prompts, which
often requires a higher guidance weight ω, e.g., ω = 7.5 for Stable Diffusion. Con-
sequently, this enhances textual alignment but reduces image fidelity, thereby
amplifying the differences between real and synthetic images in our sampling-
based detection method and making text-to-image diffusion-generated images
more detectable.

Motivated by these observations, our proposed method consists of two steps:
(i) We input noised images into a diffusion model (e.g., Stable Diffusion v1.4 [28])
and collect the unconditional predicted denoising images, combined with sampled
noise over multiple timesteps. This step aims to leverage a pre-trained diffusion
model to gather informative data, helping discern between real and fake images.
The main intuition consists in that real and synthetic images exhibit different
responses to applied noise in the diffusion process, thus providing valuable infor-
mation for identification. (ii) We use a deep network classifier to detect real and
fake images based on the collected information. Given the stochastic sampling
process and latent representation of Stable Diffusion, our method demonstrates
generalized performance across multiple image generators and robustness against
various image degradation techniques.
Contributions: We make the following contributions:

1. We show that pre-trained diffusion models can provide useful discriminative
information for synthetic image detection.

2. We propose a learning-based framework with a novel design that uses un-
conditional model responses to detect fake images, avoiding reliance on fre-
quency cues and prompts.

3. Our method exhibits generalized and robust detection performance across
various AI-generated images and image degradation techniques, as evidenced
by extensive experimental validation.
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2 Related Works

Synthetic Image Detection. Discerning real images from forged ones has been
a critical task even before the advent of deep learning-based generative methods.
Traditional approaches have primarily focused on identifying compression arte-
facts, sampling anomalies, or incorrect physical phenomena such as reflections
or perspectives to detect manipulated images [1, 2, 25, 35]. With the progress of
GAN-based generative techniques, the focus shifted towards employing deep neu-
ral networks for the detection of synthesized images, leveraging the capabilities
of deep network classifiers [22]. Recently, increasing attention has been placed
on the generalization of classifiers, aiming to develop models capable of detect-
ing fake images generated by various methods [6, 7, 15, 36]. Despite this shift,
many strategies continue to rely on frequency analysis to identify characteristic
frequency fingerprints or low-level forensic cues associated with synthetic image
generation [17, 21]. To overcome image degradation such as compression, lower
resolution etc. CNNSpot [33] merged the preprocessing and data augmentation
before the training process to improve the robustness.
Diffusion Models. Diffusion models have recently demonstrated remarkable
capability in generating photorealistic synthetic images, surpassing the perfor-
mance of previous state-of-the-art GAN-based models. Unconditional genera-
tion models, such as DDPM [12], laid the groundwork for image synthesis dif-
fusion models operating in pixel space. DDIM [30] introduced an alternative
approach by relaxing the Markovian assumption in DDPM, enabling faster sam-
pling with minimal quality degradation. Subsequent developments, including
classifier-guided [9] and classifier-free guidance [13], introduced more versatile
textual prompt conditioning, often utilizing textual encoders like CLIP [26]. This
paved the way for numerous text-to-image synthesis models, such as GLIDE [23]
and the Latent Diffusion Model [28], where the diffusion process is executed in
a VAE latent space. VQDiffusion [10] leverages the VQ-VAE [32] space for its
diffusion process. Noteworthy applications, including the Stable Diffusion series
and Midjourney, have also gained significant attention.
Synthetic Detector for Diffusion Models. These powerful generative models
pose new challenges for detection methods, particularly in terms of generaliza-
tion and domain transfer capabilities. Ricker et al. [27] observed that diffusion
models do not exhibit distinct frequency patterns, which are less pronounced
than those of GAN-based methods. DIRE [34] suggested using the distance be-
tween DDIM-inverted and reconstructed images for fake image detection, but
this method struggles with generalization due to its reliance on the conditional
inversion of specific models. Ojha et al. [24] introduced UnivFD, a novel approach
that utilizes the feature space of a frozen pre-trained vision-language model
(CLIP-ViT) to focus on image features rather than frequency information. How-
ever, the discriminative nature of CLIP-based models limits their generalization
across different generative models and degradation types. Concurrently, building
on UnivFD [24], GenDet [37] proposed a teacher-student model to accentuate
subtle differences in the feature space. SSP [5] demonstrated that synthetic im-
ages could be detected using a simple low-variance patch. Although the paper
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does not address degradation and robustness, given the method’s mechanism, it
is plausible to be vulnerable to noise perturbation. It is also worth mentioning,
yet outside the scope of fake image detection, Li et al. [16] proposed a novel
classification method that involves sampling noise on the responses of diffusion
models to input images. This approach demonstrates the versatility of generative
models, particularly diffusion models, in performing classification tasks, high-
lighting their potential beyond image synthesis. However, their method cannot
be directly applied to synthetic image detection, as it requires prior knowledge
of all class labels to compute the relative distance among difference labels, which
is not feasible in real and fake image detection scenarios. Moreover, classification
labels require a strong dependence on the conditioning prompt, which is unsuit-
able for generated image detection scenarios where (i) the conditioning prompt
can be agnostic, and (ii) the performance should be as general as possible across
prompt variations.

3 Method

Building upon insights from prior research, we introduce our method. The main
intuition of our method is to train a classifier by noising input images and col-
lecting the predicted noise from diffusion models, mirroring the diffusion training
process. By analyzing the predicted noise responses, we can effectively discern
synthetically generated images from real ones. These images often exhibit devi-
ations from the original data distribution, particularly when conditioned with
techniques like Classifier-Free Guidance (CFG) with high guidance weight. Un-
like many frequency-based detection strategies, our method exhibits resilience to
frequency perturbations and image degradation. This robustness stems from the
stochastic nature of our sampling and noising process and the latent represen-
tation inherent in the VAE framework. Before delving into the specifics of our
proposed method, we first introduce the fundamental background of diffusion
models and guidance methods.

3.1 Background of Diffusion and CFG

Diffusion Models for Image Synthesis. Building upon the foundational work
of DDPM [12], the core objective of the diffusion model is to train a neural
network ϵθ, to effectively denoise data that has been previously noised over
a series of timesteps. As a generative model, the training of DDPM seeks to
approximate generated data towards the entire data distribution, denoted as
pdata.

The model aims to reconstruct the original data instance x0, drawn from
pdata, from its noised counterpart xt. This noised data xt is represented as a
combination of the original data x0 and Gaussian noise ϵ, scaled by the noise
level γ(t): xt =

√
γ(t)x0 +

√
1− γ(t)ϵ, where γ(t) ∈ [0, 1] is a monotonically

decreasing function of the timestep t, and ϵ ∼ N (0, 1) denotes standard Gaus-
sian noise. DDPM [12] also finds that predicting the added noise ϵ rather than
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directly reconstructing x0, and omitting the variational lower bound (VLB) scal-
ing factors, enhances the model’s performance. Consequently, a simpler training
objective for ϵθ is defined by a loss function that minimizes the distance between
the predicted noise and the sampled noise, as follows:

Lsimple = Ex0∼pdata,ϵ∼N (0,1),t∼U [0,1] [∥ϵθ(xt)− ϵ∥] . (1)

Upon completion of the training, the model can generate new data instances
from the distribution of the original dataset, pdata. This is achieved by initiating
with a sample from a standard Gaussian distribution, xT = ϵ ∼ N (0, 1), and
iteratively denoising it to produce a synthetic data instance x̂0 that approximates
to the original data distribution. This denoising process can be implemented
using various sampling strategies, e.g., DDPM [12] and DDIM [30].
Classifier-Free Guidance. To enable conditioning the output of diffusion
models such as p(xt|c), Dhariwal et al. [9] propose Classifier-Guidance (CG)
that utilizes a pre-trained classifier p(c|xt), thereby forming the conditional in-
put as ∇xt

log p(xt|c) = ∇xt
log p(xt)+∇xt

log p(c|xt), in accordance with Bayes’
rule. More importantly, they propose to add a scaling ω on the classifier gra-
dient to make the conditioning process manipulable and amplifiable. However,
CG requires training a noise-dependent classifier, which can be cumbersome,
particularly for novel classes, and poses challenges for more complex condi-
tioning formats, such as textual prompts. To address this, Ho et al. [14] sug-
gest an alternative approach by employing an implicit classifier, expressed as
∇xt

log p(c|xt) = ∇xt
log p(xt, c) − ∇xt

log p(xt). This method involves training
the diffusion network on the joint distribution of data and condition, modi-
fying the loss function Lsimple to include the condition c by replacing ϵθ(xt)
with ϵθ(xt, c). To represent the condition of unconditional generation, during
the training, the condition c is occasionally dropped with a constant probability
pcond, resulting in an unconditional response ϵθ(xt, ∅).

Lsimple cfg = Ex0∼pdata,ϵ∼N (0,1),t∼U [0,1] [∥ϵθ(xt, c)− ϵ∥]
c = ∅ with pcond.

(2)

With a single network learns both conditional predicted noise ϵθ(xt, c) and
unconditional predicted noise ϵθ(xt.∅), we can formulate the predicted noise
for generation process of classifier-free guidance (CFG), also controlled by a
guidance weight ω:

ϵ̂θ(xt, c) = ϵθ(xt, c) + ω (ϵθ(xt, c)− ϵθ(xt.∅)) . (3)

Or an alternative form:

ϵ̂θ(xt, c) = ϵθ(xt, ∅) + (ω + 1) (ϵθ(xt, c)− ϵθ(xt.∅)) . (4)

In practice, the guidance weight ω is often set to a higher value, such as
ω = 7.5 for Stable Diffusion 1.5, to ensure adherence to conditional inputs and
empirically improve image quality.
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Latent Diffusion Model Instead of operating directly in the pixel space as in
DDPM [12], subsequent developments such as the Latent Diffusion Model [28]
suggest conducting the diffusion process within a pre-trained VAE-like latent
space. This approach not only accelerates training and generation times but also
shifts the model’s focus towards capturing perceptual content rather than merely
replicating low-level pixel details. This design is used in various architectures of
text-to-image applications e.g. Stable Diffusion, which leverages a pre-trained
VAE space and CLIP [26] embeddings with classifier-free guidance to generate
images from textual prompts.

3.2 Your diffusion model is an implicit synthetic image detector

Our main intuition of this paper is to leverage the diffusion model’s sampled
responses for determining whether an image belongs to the distribution of real
images or originates from the generated models.
Hypothesis. For a given image (or the image latent from VAE) x, the noised
image xt at a specific timestep t can be achieved using a noise schedule and
by sampling standard Gaussian noise ϵ ∼ N (0, 1): xt =

√
γ(t)x0 +

√
1− γ(t)ϵ.

When the noised image xt is input into a diffusion model, such as Stable Diffu-
sion, with a known condition c or unconditional label ∅, we can compute both
the conditional and unconditional predicted noise, denoted as ϵθ(x̂t,ϵ, c) and
ϵθ(x̂t,ϵ, ∅) (recall that ∅ is computed by dropping the condition, therefore can be
treated as a special label), respectively. We refer to these two ϵθ(x̂t,ϵ, ·) as the
model’s response at a given timestep.

Our main hypothesis is that a diffusion model can be effectively transformed
into a detector when collecting sampled responses. Given that the diffusion model
is trained on the real dataset, the sampled noise ϵ should be close to the predicted
response ϵ ≈ ϵθ(x̂t,ϵ, c) or ϵ ≈ ϵθ(x̂t,ϵ, ∅), indicating the model’s proficiency in
handling real data of the training loss, i.e. minimizing : ∥ϵθ(xt, c)−ϵ∥ (see Eq. 2).

However, for fake images, two distinct cases arise: (1) Images from non-
diffusion-based methods (e.g., GANs or direct editing) often show less adherence
to the objective loss, since they are never trained in this manner, leading to
a distinct model response from that of real images; (2) Images from diffusion
models are expected to behave as ϵ ≈ ϵθ(x̂t,ϵ, c), since using the same objective
function. However, to enhance generation quality and textual alignment, the
majority of generation methods employ guidance strategies (e.g., CFG [13]) with
high guidance weights ω: ϵ̂θ(xt, c) = ϵθ(xt, c)+ω (ϵθ(xt, c)− ϵθ(xt, ∅)). The extra
guidance term skews the generation away from the real dataset distribution,
causing the synthetic images to diverge from the sampled noise ϵ, and leading
to a different behaviour that ϵ ̸= ϵθ(x̂t,ϵ, c).
Validation. To validate our hypothesis, especially the diffusion with CFG case,
we use the COCO dataset [18] along with its associated prompts to generate
a series of images using Stable Diffusion v1.4 [28], each with varying guidance
weights. Figure 2a showcases the VAE-encoded and then re-decoded images pro-
duced under different guidance settings with the original images. The corre-
sponding prompts for these images, arranged from left to right, are as follows:
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(a) Comparison of the real and generated
image with different ω from same prompt
(ω = 7 is recommended by Stable Diffusion).
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(b) Optimised ω∗ from real images and Sta-
ble Diffusion generated images with different
classifier-free guidance scales.

Fig. 2: Figure of comparison of real images from the COCO dataset with Stable
Diffusion v1.4 generated ones under different Classifier-Free Guidance weight: ω = 3
and ω = 7 (recommended value to ensure textual alignment). and (b) the histogram
of the optimized ω∗ from 10 real and generated images by sampling method,
reveals that images generated with higher guidance (i.e. ω = 7) can be successfully
retrieved as higher optimised ω than the real image’s results. This pattern underscores
the feasibility of utilizing the model’s response and the associated sampled noise as
reliable indicators to distinguish between real and synthesized images.

"Two birds sitting on a narrow branch next to each other, looking in opposite
directions", "A bunch of bicycles parked on the street, surrounded by various
items", "Several trains parked next to a platform, beneath an overhead ceiling",
and "A kitchen area featuring a white refrigerator, a stove, other appliances, and
brown cabinets.". We see clearly when ω = 7, the results are visually and textual
better than when ω = 3, justifying the default recommended higher guidance.

We can then optimise and retrieve the ω by re-injecting the generated or real
images back to the diffusion model and collect their conditional and uncondi-
tional response by defining an optimisation problem (see also algorithm 1):

w∗
x =argmin

ω∈R
Eϵ∼N (0,1),t∼U[0,1][

∥ϵ− (ϵθ (x̂t,ϵ, c) + ω (ϵθ (x̂t,ϵ, c)− ϵθ (x̂t,ϵ, ∅)))∥2
] (5)

Ideally, an optimized guidance weight ω∗ ≈ 0 indicates that the image closely
resembles a real image, as the diffusion model is trained according to the equation
given in Eq. 2. Figure 2b presents the distribution of optimized ω∗ values for 10
images, where it is evident that synthetically generated images (represented in
green and orange) exhibit higher ω∗ values. This observation strongly suggests
that the conditional or unconditional responses from the diffusion model do not
match the sampled noise ϵ, thereby differentiating generated images from real
ones. In other words, for real images we could hypothesise ϵ ≈ ϵθ(x̂t,ϵ, c) or
ϵ ≈ ϵθ(x̂t,ϵ, ∅), which is not the case for fake images using higher CFG guidance
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weight, where ϵ ̸= ϵθ(x̂t,ϵ, c). More interestingly, this behaviour does not take any
shortcut from frequency analysis or recognizing special frequency fingerprints.
Instead, it only exploits the pre-trained diffusion model to stochastically judge
if an image lies on the real data distribution; hence, theoretically, it should be
robust against perturbations and degradation.

Algorithm 1 Optimisation of guidance scale from generated images
1: Input: test image x̂, conditioning inputs c (e.g., text embeddings), number of loop

N per input
2: for i = 1, . . . , N do
3: Sample t ∼ Uniform(0, 1), ϵ ∼ N (0, I)
4: x̂t =

√
αtx̂+

√
1− αtϵ

5: ϵθ(x̂t, c) = UNet(x̂t, t, c)
6: ϵθ(x̂t, ∅) = UNet(x̂t, t, ∅)
7: Errors[N ].append(∥ϵ− (ϵθ (x̂t,ϵ, c) + ω (ϵθ (x̂t,ϵ, c)− ϵθ (x̂t,ϵ, ∅)))∥2)
8: end for
9: return argminω mean(Errors)

Method. Optimizing ω for each image individually presents a significant com-
putational challenge, requiring the sampling of numerous ϵ values for accurate
estimation. Furthermore, this approach fails to leverage the rich information in
the model’s response (with the size of 4 × 64 × 64 per sample) but reduces it
instead to scalar data (estimated ω∗). Consequently, we propose a method that
directly distinguishes between real and fake images by analyzing the diffusion
model’s informative response from input images using a DNN classifier.

The framework of our method consists of two main components: a Model
Response Sampler and a Classifier, depicted in Figure 3 in the left and right
panels respectively.

The Model Response Sampler operates by leveraging a pre-trained diffusion
model, such as Stable Diffusion, to sample and collect the corresponding uncon-
ditional response ϵθ(xt, ∅). Although one might consider using both conditional
and unconditional responses, our empirical findings suggest that relying on the
conditional response ϵθ(xt, c) can lead to overfitting to the specific generative
model used for training (see Ablation study in section 4.3). In addition, sampling
the conditional response requires a semantic condition or prior label information
which are often not available in real-world cases.

The sampler is shown in Figure 3 left panel, we sample these responses from
the diffusion model across a predefined number of timesteps N (e.g., 10) to
across the entire generation process. For each image, this sampling procedure
is repeated K times (e.g., 20) and averaged to mitigate stochastic variabil-
ity from the diffusion model and sampling. The sampled model responses are
then aggregated into a triplet of (ϵ, ϵθ(xt, ∅), |ϵ− ϵθ(xt, ∅)|) as the input for the
image detector. Consequently, the input dimension for the classifier becomes
(B,N,C,W,H), where B is the batch size, N is the number of timesteps, C is
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Fig. 3: The pipeline of our method contains two parts: a sampler (left) and a
classifier (right), the job of the sampler is to sample and collect model response from
a pre-trained diffusion model. The collected data are inputted into a classifier with
ResNet50 backbone to predict if an image is real or fake.

the stacked channel of the triplet, and W and H are the width and height of
the encoded images (64 in the case of VAE-encoder). Once we have the sampled
data, we employ our classifier backboned by a ConvNet and a ResNet-50 [11]
(see Figure 3 right panel). This network is trained with a Binary Cross-Entropy
loss and outputs binary predictions, discerning between real and fake images.

4 Experiments

4.1 Dataset

For our experiments, we utilized the GenImage [38] dataset, which comprises
real images sourced from ImageNet [8] and their corresponding labels, along-
side synthetically generated images produced by eight distinct generative meth-
ods, include: Stable Diffusion V1.4 [28], Stable Diffusion V1.5 [28], GLIDE [23],
VQDM [10], Wukong, BigGAN [4], ADM [9], and Midjourney (V5). The textual
prompts used for generating images adhere to the format "Photo of {label}",
with labels drawn from the same set of 1,000 categories used in ImageNet. See
Figure 4 for some snippets of the dataset on various methods.

Each generative method holds both the real and fake subsets of the training
and validation sets. In total, the GenImage dataset encompasses 1,331,167 real
images and 1,350,000 fake images, distributing approximately 160,000 images
for each generative model.

4.2 Benchmark and results

We conduct two experiments: cross-domain performance and robustness assess-
ment. For cross-domain, in line with GenImage [38], we train exclusively on
images generated by Stable Diffusion V1.4 (SD V1.4) and test on different sub-
sets from other generative methods. This aims to assess the detection capability
and generalizability of the classifiers. For robustness, following [38], both the
training and test phases are conducted using images generated by SD V1.4 and
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Fig. 4: Image samples from GenImage [38] dataset of real images from ImageNet
and synthetic images generated by different methods.

real subset. To evaluate the robustness of detection methods, we include vari-
ous degradations in the test images: Lower-resolution (LR): The resolution of
input images is reduced to either 112 or 64 pixels; JPEG compression: Images
are compressed using JPEG with quality settings of 65 or 30; Gaussian blur: Im-
ages are blurred using a Gaussian filter with σ=3 or σ=5. We report the binary
classification accuracy for all degraded images.

Method Midjourney SDV1.4 SDV1.5 ADM GLIDE Wukong VQDM BigGAN Avg Acc. Rank
ResNet-50 [11] 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1 4
DeiT-S [31] 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6 5
Swin-T [19] 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8 2
CNNSpot [33] 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2 10
Spec [36] 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8 8
F3Net [29] 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7 9
GramNet [20] 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9 7
DIRE [34] 60.2 99.9 99.8 50.9 55.0 99.2 50.1 50.2 70.7 6
UnivFD [3] 73.2 84.2 84.0 55.2 76.9 75.6 56.9 80.3 73.3 3
Ours 57.8 91.9 90.4 52.7 83.7 89.4 61.1 78.9 75.7 1
Table 1: Results of different methods trained on SDV1.4 and cross-testing with other
models generated test set of GenImage Dataset.

In both experiments, we benchmark our method against models from the
GenImage dataset and other state-of-the-art diffusion detection methods, in-
cluding ResNet-50 [11], DeiT-S [31], and Swin-T [19], as well as specialized
synthetic image detection methods including some frequency or low-level-based
CNNSpot [33], Spec [36], F3Net [29]; more global feature-based GramNet [20],
diffusion-inversion-based DIRE [34], and CLIP pre-trained model UnivFD [3].
Cross-Domain Results Table 1 reports the results of our cross-domain ex-
periment. When trained on SD V1.4, most frequency-based methods and naive
backbones suffer overfitting and fail to generalize to other methods. Our method
achieves an accuracy of 91.9% on the test set of SD v1.4, indicating robust per-
formance within the same domain. However, it does not reach 99.9%, as other
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methods do, mainly due to the stochasticity of the sampling process. Compa-
rable results are observed on SD v1.5 and Wukong, since these models share a
similar framework and use classifier-free guidance to generate images, attributed
to the consistent performance. For the in-domain evaluation, our method outper-
forms another latent embedding-based approach with no usage of direct image
information, UnivFD [3], which reports an accuracy of 84.0% for SDV1.4.

For the image generated from different frameworks, our approach also leads
the accuracy on GLIDE (83.7%) than UnivFD [3] (76.9%) and significantly
surpassing other methods. We believe this is due to the guidance setting dur-
ing the generation of GLIDE. A similar trend is observed with the BigGAN
generator, where our method ranks second in accuracy, slightly behind Uni-
vFD [3]. We report a leading average accuracy of 75.7% and showed good
cross-domain performance, especially GLIDE and BigGAN. Many frequency-
based methods [29, 33] including generative model-based detection approaches
DIRE [34], despite achieving high in-domain accuracy (SDV1.4), often fail to
generalize to other AI-generated content.

Compared to UnivFD [3], we attribute the reasons for lower performance
on Midjourney (57.8% vs. 73.2%) as follows: (i) the potentially more discrim-
inative embedding space provided by the CLIP model to general images; (ii)
Methods like Midjourney may present less guidance phenomenon and yield bet-
ter fidelity performance to the original image, makes them hard to be noticed by
our sampling-based model. Notice also that we did not optimize the architecture
or the hyper-parameters of the classifier which is a simple ResNet-50. Better re-
sults are to be expected by exhaustively searching for better classifiers, without
deviating from the core idea proposed in this paper.

Method LR (112) LR (64) JPEG (q=65) JPEG (q=30) Blur (σ=3) Blur (σ=5) Avg Acc. Rank
ResNet-50 [11] 96.2 57.4 51.9 51.2 97.9 69.4 70.6 5
DeiT-S [31] 97.1 54 55.6 50.5 94.4 67.2 69.8 6
Swin-T [19] 97.4 54.6 52.5 50.9 94.5 52.5 67.0 8
CNNSpot [33] 50.0 50.0 97.3 97.3 97.4 77.9 78.3 3
Spec [36] 50.0 49.9 50.8 50.4 49.9 49.9 50.1 10
F3Net [29] 50.0 50.0 89 74.4 57.9 51.7 62.1 9
GramNet [20] 98.8 94.9 68.8 53.4 95.9 81.6 82.2 2
DIRE [34] 64.1 53.5 85.4 65.0 88.8 56.5 68.9 7
UnivFD [3] 88.2 78.5 85.8 83.0 69.7 65.7 78.5 4
Ours 89.2 78.5 82.6 74.4 90.6 89.5 84.1 1
Table 2: Results of different methods trained on SD v1.4 and tested on degraded
images of SD v1.4 testset from GenImage Dataset.

Robustness Results In Table 2, we detail the findings from our robustness ex-
periment. This experiment involved training our model with images generated by
SDV1.4 and subsequently testing it on degraded images within the same domain
to assess the robustness. The results, as shown in Table 2, highlight our method’s
consistently high robustness across various image degradation techniques. While
our method’s average robustness also leads all the compared methods, it also
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exhibits lower variability and more consistent performance across all forms of
image degradation. The second best method, GramNet [20] (a global texture
method) robustness is significantly compromised by JPEG compression, with
its accuracy dropping to approximately 50% when the compression quality is
reduced to 30. Note that UnivFD [3] exhibits commendable robustness due to
its use of clip-based information. This corroborates our argument that relying
directly on image information makes it vulnerable to degradation.

4.3 Ablation

As discussed in Section 3, using conditional responses may compromise the gen-
eralization of the model, e.g., erroneous or imprecise prompts could deteriorate
the detection. Additionally, extra efforts are required to analyze the semantics
of the image to create appropriate conditions. Here, we ablate different condi-
tional and unconditional inputs. To obtain the conditional prompts, we follow
the approach used in the GenImage Dataset [38] and generate captions for image
generation using the textual prompt format "Photo of {label}", where the labels
are sourced from the same 1,000 categories in ImageNet.

Method Midjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM BigGAN Avg Acc. (%)
C&N 54.2 93.9 93.9 47.3 53.1 93.0 51.9 45.4 68.4
C&U&N 55.7 94.1 94.2 49.4 49.9 91.3 56.0 44.3 66.9
C&U&N-Sub 53.2 91.6 91.6 48.6 50.7 91.7 55.9 43.8 65.9
U&N (Ours) 57.8 91.9 90.4 52.7 83.7 89.4 61.1 78.9 75.7
Table 3: Generalization ablation of different input types: C&N (Conditional
and Noise), C&U&N (Conditional, unconditional and Noise) and ours chosen U&N
(Unconditional and Noise). The model is trained on SDv1.4 and tested on different
generators. We observe that the conditional response often leads to overfitting to Stable
Diffusion and Wukong model, whereas using only unconditional response (U&N) helps
to improve the generalization to unseen models.

We evaluate four distinct combinations of input triplets including conditional
and unconditional input to assess their impact and justify the design of using
unconditional response for our method:

1. C&N: (ϵθ(x̂t,ϵ, c), ϵ, ∥ϵθ(x̂t,ϵ, c) − ϵ∥), a triplet incorporates the conditional
response ϵθ(x̂t,ϵ, c, sampled random noise ϵ and their difference.

2. U&N: (ϵθ(x̂t,ϵ, ∅), ϵ, ∥ϵθ(x̂t,ϵ, ∅) − ϵ∥), a triplet utilizing the unconditional
response ϵθ(x̂t,ϵ, ∅) and sampled random noise ϵ and their difference.

3. U&C&N: (ϵθ(x̂t,ϵ, ∅), ϵθ(x̂t,ϵ, c), ϵ), a triplet includes both conditional and
unconditional responses alongside the sampled random noise.

4. U&C&N-sub: (∥ϵθ(x̂t,ϵ, ∅)− ϵ∥, ∥ϵθ(x̂t,ϵ, c)− ϵ∥, ∥ϵθ(x̂t,ϵ, c)− ϵθ(x̂t,ϵ, ∅)∥), a
triplet also integrating both conditional and unconditional responses with the
sampled random noise, focusing on the differences between these responses.
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In line with the experimental setup described earlier, we evaluate the perfor-
mance of different input configurations in terms of cross-domain generalization
and robustness, with results detailed in Table 3 and Table 4. For cross-domain
generalization, it is evident that configurations incorporating conditional re-
sponses (C&N, U&C&N, and U&C&N-sub) tend to overfit, relying predom-
inantly on the model’s conditional response. This is highlighted by the notable
performance on the Stable Diffusion series (including Wukong) across these con-
figurations, while performance significantly drops for other generator methods.

Method LR (112) LR (64) JPEG (q=65) JPEG (q=30) Blur (σ=3) Blur (σ=5) Avg Acc(%)
C&N 50.4 48.2 84.4 72.1 48.7 50.0 59.0
C&U&N 51.2 48.3 83.9 76.2 49.2 46.9 59.3
C&U&N-Sub 48.7 46.6 83.5 69.9 47.0 45.9 56.9
U&N (Ours) 89.2 78.5 82.6 74.4 90.6 89.5 84.1
Table 4: Robustness ablation of different input types: C&N (Conditional and
Noise), C&U&N (Conditional, unconditional and Noise) and ours chosen U&N (Un-
conditional and Noise). The model is trained on SDv1.4 and tested on SDv1.4 with
different types of image degradations.

Table 4 further shows the impact of input design on robustness against var-
ious types of image degradation. Except for JPEG compression, all conditional
response-inclusive configurations exhibit diminished robustness. This aligns with
our hypothesis that the sampling method and latent representation inherently
mitigate shortcuts based on image information, thus showing less susceptibility
to JPEG compression artefacts. In contrast, our chosen U&N configuration,
which leverages only the unconditional response and sampled noise, consistently
maintains both high generalization and robustness across different scenarios.

5 Conclusion

In conclusion, we proposed a novel method for detecting AI-generated images
by harnessing the capabilities of pre-trained diffusion models and a sampling
technique focused on the unconditional response of the model. Our approach
transforms diffusion models into implicit detectors of synthetic images. The sam-
pling process and the latent representation encoded within the models enable
our method to achieve broad generalizability across various image generators.
More importantly, we have demonstrated that our method exhibits uniformly
superior robustness against various image degradations, a frequent challenge in
real-world cases. Future efforts will concentrate on reducing the number of re-
quired timesteps and sampling iterations, aiming to improve the efficiency and
speed of fake image detection, which remains a current limitation of our method.
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