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Figure 1. While current state-of-the-art video generation approaches offer limited control to users on camera motion, we propose a
dedicated data augmentation framework —AKiRa — to train an optical video generation model that provides users with a panel of controls
on camera motions (top row), camera focal length (second row), lens distortion (third row), or bokeh (camera aperture an in/out of focus
regions in bottom row). See more in our project page.

Abstract

Recent advances in text-conditioned video diffusion have
greatly improved video quality. However, these methods
offer limited or sometimes no control to users on camera
aspects, including dynamic camera motion, zoom, distorted
lens and focus shifts. These motion and optical aspects are
crucial for adding controllability and cinematic elements to
generation frameworks, ultimately resulting in visual con-
tent that draws focus, enhances mood, and guides emotions
according to filmmakers’ controls. In this paper, we aim
to close the gap between controllable video generation and
camera optics. To achieve this, we propose AKiRa (Aug-
mentation Kit on Rays), a novel augmentation framework
that builds and trains a camera adapter with a complex
camera model over an existing video generation backbone.

It enables fine-tuned control over camera motion as well
as complex optical parameters (focal length, distortion,
aperture) to achieve cinematic effects such as zoom, fish-
eye effect, and bokeh. Extensive experiments demonstrate
AKiRa’s effectiveness in combining and composing cam-
era optics while outperforming all state-of-the-art methods.
This work sets a new landmark in controlled and optically
enhanced video generation, paving the way for future opti-
cal video generation methods.

1. Introduction
Creating high-quality video sequences has always been a
complex interplay between the content itself and the means,
the camera, by which it is portrayed. A powerful narra-
tive or stunning visual concept can only reach its full po-
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tential when the camera effectively translates it into moving
images, capturing nuances through cinematic effects such
as dynamic camera motions, zooms, distorted lenses, or
intentional focus shifts. Such techniques add texture and
depth, drawing the viewer’s eye to specific details, enhanc-
ing mood, and subtly guiding emotions. When mastered,
they allow filmmakers to transform raw content into a rich,
immersive experience that feels artful and purposeful.

Recently, video generation have gained notable popular-
ity in the community [5, 18]. Researchers have focused
on various aspects, such as improving generation qual-
ity [13, 40, 70], increasing resolution [24, 43] or enhanc-
ing the efficiency [1, 6, 54]. Despite the remarkable results
of modern work in most aforementioned aspects, they of-
ten overlook the cinematic techniques, crucial for achieving
realistic and immersive storytelling. To tackle this, some
recent approaches [21, 56] provide some control over cam-
era motion. Specifically, given raw camera poses and text,
these methods generate video following the specified cam-
era trajectory. However, all these approaches simplify the
camera model to its motion alone and neglect crucial opti-
cal effects like focal length (for zoom), lens distortion (fish-
eye effect), aperture and focus point (for focus shifts) for
three reasons. First, most methods do not use any underly-
ing camera model [13, 40, 70], and instead, they treat videos
as a sequence of pixels; hence, despite excessive training,
the underlying representations still lack visual coherency.
Second, some recent works [21, 56] use simplistic cam-
era models, treating videos as a sequence of posed cameras
without lens effects; hence, lack control. Third, there is no
adequate training data with optical effects or optical param-
eters meaning that methods cannot use the data to train for
optical camera effects directly. Accounting for such optical
parameters attached to the camera is essential, and their ab-
sence limits the generation of optically coherent video con-
tent and reduces the potential for cinematic quality.

To address the above limitations, we introduce the con-
cept of optical video generation models — video generation
models which are optically coherent and over which users
can control the motion of the camera as well as its opti-
cal parameters such as focal length, lens distortion, aperture
and focus point. Such a model requires the integration of
optical effects into the generation pipeline so that camera
and optical parameters are directly leveraged by the model.

To achieve this, we first propose to rely on a Plücker
coordinates to represent an image as a collection of cam-
era rays [39, 64] to ensure coherency. We extend the
diffusion-based video generation model of [21] by propos-
ing an optically-enhanced camera representation with lens
distortion and a dedicated aperture map to encode in- and
out-of-focus regions in the screen. Second, we propose
a dedicated framework, named AKiRa (Augmentation Kit
on Rays), which exploits these extended camera ray rep-

resentations to augment the training dataset, by simulating
optical effects on input frames paired with corresponding
optical parameters. With this data augmentation method,
we then train a camera adapter on top of a pre-trained and
frozen video generation backbone. As a result, we provide
the first optical video generation framework capable of con-
trolling optical camera parameters in addition to camera tra-
jectories, allowing the creation of complex cinematographic
effects. The work contributes to closing the gap between
the level of control offered to designers in computer graph-
ics worlds and the visual quality of video generative frame-
works. We evaluate the generalization of our method across
various video generation backbones and on a comprehen-
sive benchmark with robust metrics. We show that our
method disentangles camera parameters, specifically sepa-
rating zoom from translational motion—an achievement not
possible with other approaches, where these parameters re-
main intertwined. Finally, AKiRa outperforms state-of-the-
art methods —MotionCtrl [56] and CameraCtrl [21].

Our contributions are: (1) the first optical video gen-
eration framework, which offers the ability to control
both camera motions and optics, enabling the generation of
videos with complex optical effects (e.g. zoom, fisheye, fo-
cus shifts), (2) the design of a camera model representa-
tion including optical parameters expressed in a Plücker
map, extended with an aperture map to model in- and out-
of-focus effect; (3) a joint camera-frame Augmentation
Kit on Rays (AKiRa) modelling optical effects to enable
the training of more controllable video generation models.

2. Related work
Our work contributes to the field of controllable video gen-
eration, which can be approached in two ways: in the first,
the generation is guided by text, while in the second way,
the generation is guided by camera and text. Another re-
lated area is virtual cinematography, which does not gener-
ate videos but instead focuses on entities within an existing
environment, e.g. camera angles, lighting, and composition.
Text-to-video generation (T2V). The first video diffusion
model is introduced by [25], building on the success of im-
age diffusion [14, 23, 45, 46]. Later, Imagen-Video [24]
and Make-A-Video [43] introduced cascaded pixel-based
diffusion models for high-definition video generation. To
reduce training costs, some works [1, 6, 54] perform diffu-
sion in latent space. Others [5, 7, 18, 51] fine-tune tempo-
ral adapters on 2D layers of pre-trained text-to-image mod-
els [41] using video datasets [3]. Recently, [34, 35, 70] ex-
plored transformer backbones (DiT) for scalability, while
RIVER [13] and MovieGen [40] moved to flow matching,
achieving state-of-the-art performance. These methods rely
solely on text guidance, which is often sufficient for image
generation. However, video generation requires additional
complexity, incorporating temporal dynamics and camera
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behavior (motion and optics). To address this, we focus on
enhancing camera controllability for video generation.
Camera-based T2V. First approaches of T2V [5, 18]
fine-tune the video generation model using LoRA [26]
to achieve categorical camera motion. Drawing inspira-
tion from the conditional generation problem with auxil-
iary modules [15, 16, 50, 63, 65], some works [27, 53]
condition models on motion maps to manage camera mo-
tion, while [57, 61] are restricted to predefined motion di-
rections. Recent works [2, 10, 21, 56, 58, 69] directly
integrate precise camera pose parameters into video gen-
eration: MotionCtrl [56] initiated by feeding raw camera
poses into the model with a trainable adapter; CameraC-
trl [21] expanded this work with Plücker coordinates, ef-
fectively linking camera intrinsic and extrinsic parameters
to image content through ray-based modelling. However,
most research [21, 56, 58] focuses solely on camera mo-
tion, neglecting factors like focal length, distortion, aper-
ture and focus point. Ignoring focal length, for example,
causes current methods to confuse zoom effects with for-
ward and backward translation, resulting in geometric dif-
ferences [19]. Moreover, most work assumes a distortion-
free camera model, limiting generation capacity, as lens
distortions (e.g., fisheye effects) are common in artistic
videos [4]. Finally, the aperture and focus point are also
neglected, despite being powerful effects for guiding image
focus. To address these, we propose an optical video gener-
ation model that incorporates a complex camera model into
a video generation backbone and enables control of camera
motion, focal length, distortion, aperture and focus point.
Virtual cinematography. Recent works explore methods
for integrating cinematic and aesthetics into content gener-
ation, via camera control. For instance, [29, 30] synthesize
camera trajectories with cinematic styles for 3D animations
using reference clips. Cinematic transfer adapts cinematic
features from reference clips to new scenes. JAWS [52]
pioneered this by optimizing camera trajectories directly
within a neural radiation field [36] to match visual cinematic
features from a reference clip; follow-up works [8, 32, 55]
further refined this, notably adding character re-targetting.
Other recent works [12, 31] focus on camera trajectory gen-
eration using diffusion models conditioned on text prompts
and character motion. In [12] they introduce a dataset
of camera trajectories with text extracted from movies,
grounding generated trajectories in cinematic features. Yet,
these approaches require existing content (e.g. 3D envi-
ronments [29, 30], clips [52]), thus limiting creative pos-
sibilities. This may prevent creators from generating new
content, limiting stylistic exploration by encouraging repli-
cating cinematic features from references. Instead, we pro-
pose a method that enables cinematic control directly within
video generation, removing the need for pre-existing con-
tent and expanding users’ creative freedom.

Figure 2. Overview of AKiRa training. The camera adapter
is trained by jointly augmenting camera data and frames using
AKiRa augmentations. The adapter processes multiple camera
parameters—motion, focal length, distortion, aperture, and focus
point. This adapter is integrated into a pre-trained, frozen back-
bone, resulting in an optical video generation model.

3. Method
In this section, we present our approach for training an op-
tical video generation model, enabling users to manipulate
the camera’s motion as well as optics to produce cinematic
effects such as zoom, distortion, and bokeh.
Overview. To train an optical video generation model ca-
pable of controlling both camera motion and optics, we
require training data with associated camera parameters.
Here, optics refer to the camera’s optical characteristics,
including focal length, lens distortion, aperture and fo-
cus point, which together shape how the camera captures
field-of-view (zoom), lens characteristics (distortion), and
light exposure (in- or out-of-focus). Although some recent
datasets pair videos with camera trajectories [12, 71], to our
knowledge, there are no datasets that include videos with
rich varying optical information. Hence, we propose a set
of data augmentations based on a complex camera model
that parameterizes optics (Section 3.1). To better disentan-
gle each parameter, we design a highly expressive repre-
sentation for our model (Section 3.2). Finally, we describe
the augmentations to generate videos paired with optical pa-
rameters (Section 3.3). As illustrated in Figure 2, with these
augmentations, we extend prior works [21, 56], by training
a camera adapter that controls camera motion and optics on
top of a pre-trained, frozen video generation backbone.

3.1. Camera model

To train an optical video generation model, we need a cam-
era model to represent the camera parameters. Here we pro-
pose a camera model by relying on and extending the pin-
hole camera model to represent not only camera motion and
focal length (pinhole camera model) but also the lens dis-
tortion and the aperture and focus point (distorted pinhole
camera model with aperture), as described below.
Pinhole camera model. We build our camera model upon
the standard pinhole camera model [20], which includes
extrinsic and intrinsic camera parameters. The extrinsic
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(a) Base (b) Focal length - Zoom (c) Lens - Distortion (d) Aperture - Bokeh

Figure 3. Optical effect overview. Visualization of various optical effects proposed in our system —zoom, distortion, and bokeh—and
their impacts on both the camera parameters (top row) and visual output (bottom row). In addition, as with state-of-art techniques, we
enable the control of the camera motion (not displayed here).

parameters P → R3→4 describe the position and orienta-
tion of the camera. They are composed of a rotation ma-
trix R → SO(3) and translation vector t → R3, giving
P = [R|t] → SE(3). The intrinsic parameters K → R3→3

include the principal point (cx, cy) and the focal length
f → R+. Specifically, f controls the zoom-in (high f ) and
zoom-out (low f ) capabilities of the camera (different from
forward or backward translation), as shown in Figure 3b.
Using this pinhole model, a 3D world point X → R3 is pro-
jected to 2D pixel coordinates (u, v) → R2 as follows:
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Distorted pinhole camera model. The pinhole model does
not inherently account for lens distortion, as it assumes
a lens-free setup. To represent more realistic cameras,
we extend this model by adding radial distortion parame-
ters D → R3 [44] (e.g., the well-known fisheye lens with
ultra-wide-angle distortion as shown in Figure 3c). These
parameters adjust the pixel coordinates (u, v) radially to
(uD, vD) → R2 with r =

√
(u↑ cx)2 + (v ↑ cy)2, follow:
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2
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4
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, (2)

Distorted pinhole camera model with aperture. The
standard pinhole model, with infinitely small aperture, does
not capture depth-of-field effects. To simulate the bokeh ef-
fect—the appearance of in-focus and out-of-focus regions,
as illustrated in Figure 3d—we introduce an aperture pa-
rameter ω → R. This parameter, along with focus point
(uin, vin) → R2, controls bokeh intensity and location.

3.2. Camera model representation

Ray-based camera model representation. To train our op-
tical video generation model, we require an effective cam-
era representation that connects the optical properties of the
camera to the generated visual content. For this, we map
the geometric camera model (P,K,D) to screen pixels
(u, v) → R2 (or patches in practice) using a ray represen-
tation r, where each pixel is associated with a ray (a line)
passing through the camera’s centre O → R3.
Plücker map. We adopt the Plücker coordinates [39] to
represent our camera model, as in [21, 64]. A ray r =
↓d,m↔ → R6 is represented by its direction d and its mo-
ment m about any point p on the ray, such that m = p↗d.
The direction d is computed by reprojecting the pixel co-
ordinates (u, v) with camera parameters P and K, and the
moment m is calculated by taking the camera centre O as
the point p since all rays pass through O:

d = R
↑
K

↓1
[
uD, vD, 1

]↑
, m = (↑R

↑
t)↗ d . (3)

Plücker coordinates m and d encode both information
about the focal length K and lens distortion D, as these pa-
rameters are inherently linked to ray orientations, as shown
in Figures 3b and 3c. For each frame, we derive direction
and moment maps with the same dimensions as the frame,
associating each pixel with a specific moment and direction.
Aperture map. The camera’s aperture parameter ω is not
captured by Plücker coordinates, as it is not directly ray-
related in the Pinhole model, as shown in Figure 3d. To
address this, we introduce an aperture map with the same
structure and dimensions as the direction and moment maps,
assigning an aperture parameter to each pixel in the frame.
To achieve this, we first define the coordinates of the focus
point (uin, vin) representing the sharpest point in the frame.
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(a) Animatediff [18] (b) SVD [5]

Figure 4. Qualitative results of AKiRa on Animatediff [18] and SVD [5] backbones. We recommend viewing the supplementary video.

We then define the per-pixel aperture map as a → R3 for
any point (u, v) on the frame as:

a =

(u↑ uin), (v ↑ vin), ↘(u, v)↑ (uin, vin)↘

1
ω(ε)

↑
.

(4)
where ε is the sigmoid function. We will discuss the aper-
ture map in the supplementary materials.

Finally, each frame encodes camera information — di-
rection, moment, and aperture (d,m,a) — into a 9-
dimensional camera map R9→H→W matching the video
frame dimensions.

3.3. AKiRa: Augmentation Kit on Rays

To augment and disentangle optical features in our extended
Plücker camera model, we propose AKiRa, an Augmenta-
tion Kit on Rays. It contains augmentation techniques for
both video frames and corresponding optical parameters:

Zooming - focal length. For the zooming effect, we aug-
ment the focal length f in Equation 1 using a zooming fac-
tor s → R+: s > 1 represents a zoom-in effect, and s < 1
represents zoom-out, both proportional to s.

In image space, changing the focal length can be simu-
lated by a center cropping and resizing the image back to its
original resolution. This transformation modifies the image
coordinates to (ufl, vfl) after the focal length change:

ufl = s (u↑ cx) + cx, vfl = s (v ↑ cy) + cy, (5)

where (cx, cy) is the principal point of Equation 1. With the
Plücker map aligned to image pixels, its augmentation can
be performed using Equation 5 (see Figure 3b).

Focal length changes (zoom) are often mistaken for for-
ward/backward movement. While zoom affects only the
cropping area, translation induces perspective changes (see
Figure 5). Such ambiguities can hinder the accurate inter-
pretation of focal length changes and translational motion
during training. Thus, augmenting focal length is essential
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Figure 5. Difference between zoom and push forward. Zooming
(change of focal length) is similar to image cropping and resizing
while pushing forward changes the perspective of the scene.

to disambiguate these effects, reducing confusion between
zooming and movement, and enabling richer optical com-
positionality: e.g. moving right while zooming in or mov-
ing forward while zooming out (commonly referred to as a
dolly zoom), which are popular in modern cinematography.
Distortion - lens. Augmentation on distortion involves
modifying the radial distortion coefficients Das defined in
Equation 2. In alignment with focal-length augmentation,
this transformation is applied simultaneously to both the im-
age and Plücker coordinates, as shown in Figure 3c.

Directly augmenting distortion in image space can create
undefined areas as the image stretches to a non-rectangular
shape. To resolve this, we compute a zooming factor s to
ensure the image can be cropped without undefined borders
and incorporate this into the zooming augmentation.
Bokeh - aperture. The Bokeh effect depends on the aper-
ture ω, the depth information of the scene and a focus point
(uin, vin). More precisely, larger depth distances result in a
larger blur radius br → R, which can be approximately de-
scribed as [38, 62] with din the disparity value (invert depth)
of the focus point: br = ω |d↑ din|. We estimate depth [60]
and then use virtual bokeh rendering [38, 62] based on br

to augment both the aperture ω and focus point (uin, vin) to
simulate bokeh effects (Figure 3d).
Augmentation Algorithm Sampling. In our augmentation
kit, we randomly sample parameters for every frame inde-
pendently. However, direct random sampling may intro-
duce flickering artifacts as between frames the number may
change too fast, which is uncommon in the real-world and
can harm the learning. To prevent this, we limit the rate
of change between frames and ensure smooth transitions by
applying spline interpolation to the sampled parameters.
Dropout. We also apply augmentation dropout to ensure
that: (1) a certain percentage of the original video frames
are used during training, and (2) the model learns specific
combinations of augmentations effectively.
Algorithm. Our augmentation starts with bokeh using the
pre-estimated depth, then applies distortion on the original
images to use the maximum resolution, and followed by fo-
cal length changes, see more in the supplementary material.

4. Experiments
4.1. Evaluation metrics

For video quality of generated videos, we report the
commonly used Fréchet Inception Distance (FID) [22],
Fréchet Video Distance (FVD) [49]. Given that recent
works [17, 59] point out that the FVD tends to be bi-
ased toward content while overlooking the temporal as-
pects, we propose to report the Content-Debiased FVD
(CD-FVD) [17], considered more relevant.
Evaluating camera motion fidelity is challenging for gen-
erated content. Some approaches use SLAM and pose esti-
mation methods [37, 42, 67] to evaluate the estimated trajec-
tory from generated video content (MotionCtrl [56], Cam-
eraCtrl [21]). However, these often assume (partial) static
consistency, which is hard to maintain in the generated con-
tent due to flickering or unrealistic motion artefacts but ir-
relevant to motion quality; (ii) the absence of precise cam-
era model definitions (e.g., focal length, distortion) further
complicates trajectory-based assessments [33, 47] given
that optic parameters greatly influence motion interpreta-
tion; (iii) trajectory-based methods are computationally in-
tensive (can reach ≃10 minutes per 16-frame video [67])
and struggle to scale efficiently for large-scale video assess-
ments. See motion evaluation in supplementary materials.

Therefore, to show the camera motion fidelity towards
the control we report two metrics: first, following [21, 56]
reporting trajectory errors, we estimate dense camera poses
using ParticleSfM [67] but calculate scale-corrected rota-
tional and translational relative pose errors between frames
(RPE-R and RPE-t, respectively). The choice of using scale
correction and relative pose aims at reducing the unstable
estimation of trajectory-based metrics [33, 47].

Additionally, to measure motion alignment between
reference and generated videos we propose a flow similarity
metric (FlowSim). This metric relies less on camera model
parameters and focuses primarily on frame-to-frame mo-
tion. Moreover, the optical flow-based approach is compu-
tationally efficient and scalable with GPU parallelism. For
this, we estimate the optical flow of both videos Fr and Fg

using RAFT [48], then extract the flow magnitude ↘F↘ and
direction ω. To filter out residual noise, we consider only
flow components with a magnitude above a set threshold
t, and we compute the cosine similarity of the directional
components as follows, with 1 an indicator function:

FlowSim(Fr,Fg) = 1↔Fr↔&↔Fr↔>t ·ωr
·ω

g
, (6)

Dynamic consistency (VBench). We also assess the tem-
poral dynamic consistency of generated videos with the
subject consistency (Consistency), smoothness (Smooth-
ness) and temporal flickering (Flickering) metrics proposed
in the video benchmark suite VBench [28].
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Method Video quality Camera motion fidelity Dynamic consistency (VBench)
Backbone Camera control FID ⇐ FVD ⇐ CD-FVD ⇐ RPE-R (deg)⇐ RPE-t (cm)⇐ FlowSim ⇒ Consistency ⇒ Smoothness ⇒ Flickering⇒

An
im

ate
Di

ff
[1

8]

- 65.09 835.2 768.6 4.354 3.048 0.00 0.845 0.843 0.792
MotionCtrl [56] 104.64 822.9 449.7 0.443 1.857 58.50 0.961 0.965 0.939
CameraCtrl [21] 61.62 384.5 355.2 0.730 1.807 53.74 0.965 0.960 0.942
AKiRa (ours) 61.52 332.3 328.7 0.438 1.480 70.97 0.969 0.974 0.957

SV
D

[5
] - 29.94 351.0 440.8 1.837 2.541 0.56 0.916 0.959 0.930

MotionCtrl [56] 57.09 217.3 460.8 1.705 1.343 11.96 0.916 0.979 0.950
CameraCtrl [21] 32.32 173.8 424.9 0.329 1.322 79.64 0.972 0.991 0.969
AKiRa (ours) 32.58 162.8 398.3 0.295 1.321 80.11 0.981 0.993 0.975

Table 1. Comparison with the state-of-the-art. Comparison of AKiRa and concurrent methods with different backbones on WebVid
dataset, evaluating video quality, camera motion fidelity, and dynamic consistency. First best and second best .

Optical consistency. To evaluate zoom (ZoomSim) and dis-
tortion (DistortSim), we use FlowSim to measure the simi-
larity between generated and theoretical optical flow (see
supplementary materials). For evaluating bokeh effects, in-
spired by [11], we use an off-the-shelf defocus detector [68]
and report the in-focus area (FocusArea) across varying
aperture levels: a low aperture results in a wide in-focus
area (everything appears in focus), while a high aperture
produces a narrow in-focus area, showing selective focus.

4.2. Quantitative comparison

Comparison to the state of the art. Table 1 reports the
performance of AKiRa against state-of-the-art camera con-
trol approaches for video generation: MotionCtrl [56] and
CameraCtrl [21]. We evaluate video quality, camera motion
fidelity and temporal dynamic consistency metrics (Sec-
tion 4.1) for text-to-video (T2V) backbone Animatediff [18]
and image-to-video (I2V) backbone SVD [5], also report-
ing baselines without any camera control module (-). All
metrics are computed on 1, 000 generated samples using
random text prompts or conditioning frames from the We-
bVid dataset [3]. For AKiRa, as we explicitly control the
bokeh, to improve the realism of the generated results, we
set ω = 50 (see discussion in supplementary materials).
In video quality, AKiRa achieves leading performance
across quality, camera motion fidelity, and dynamic con-
sistency metrics, outperforming other state-of-the-art meth-
ods. Especially, for FVD and CD-FVD, AKiRa scores best
with both AnimateDiff (332.3, 328.7) and SVD (162.8,
398.3), outperforming CameraCtrl’s 384.5 and 355.2 on
AnimateDiff, and 173.8 and 424.9 on SVD.
For camera motion fidelity, we observe that: (1) AKiRa
achieves the highest FlowSim scores (AnimateDiff: 70.97;
SVD: 80.11), ahead of MotionCtrl 58.50 with AnimateDiff,
and CameraCtrl 79.64 with SVD, and lowest motion errors,
both translational and rotational (0.438 and 1.480 on Ani-
matediff); (2) the proposed metric, FlowSim, assigned close
to zero values to random motion, thus proportionally reflect-
ing camera pose errors with improved interpretability.
For dynamic consistency, AKiRa leads in VBench scores,

e.g. achieving 0.969, 0.974, 0.957 on AnimateDiff, and
0.981, 0.993, 0.975 on SVD. These results validate that
disentangling camera components during training enables
high-quality and consistent video synthesis.
Optical comparison. In Table 3, we show the optical con-
sistency performances (Section 4.1). We focus on Camer-
aCtrl [21] since its ray-based representation supports zoom
and distortion effects, though does not account for bokeh,
whereas MotionCtrl [56] lacks these effects due to its cam-
era model. We also report raw Animatediff [18] as the
baseline without any control module (-). We generate ded-
icated datasets of 1,000 samples for each category. For
zoom and distortion, we create static motion videos with
random zoom-in/zoom-out effects and distortions. For
bokeh, we generate 1,000 samples with varying apertures
(ω=0/30/100). Table 3 highlights that AKiRa outperforms
both AnimateDiff and CameraCtrl in optical coherence met-
rics, achieves the highest ZoomSim and DistortSim scores
(86.82 and 81.19), showing superior zoom and distortion
handling compared to CameraCtrl. In terms of bokeh, we
observe a decreasing trend of the FocusArea with increas-
ing aperture ω from 0 to 100, confirming the controllability
of the aperture feature (a larger aperture results in a big-
ger bokeh area). These results highlight AKiRa’s ability to
control zoom, distortion, and focus effects.
User study. We conducted a user study with 25 partici-
pants, evaluating (1) video, (2) text-to-video, (3) motion, (4)
zoom, (5) distortion effect, and (6) bokeh effect qualities.
Participants viewed 10 samples, with each generated by:
the baseline (no camera control module), MotionCtrl [56],
CameraCtrl [21], and our AKiRa, both the Animatediff [18]
and SVD [5] backbones. For each criterion, participants
ranked the methods from 1 (best) to 4 (worst).

In Table 2 we report the proportion of participants rank-
ing each method as 1st across various criteria (with 25% as
a random baseline). Results show that AKiRa consistently
ranks highest, with an average ranking proportion of 44.2%,
compared to 29.2% for the next best method, CameraC-
trl [21]. Specifically, 43.6% of participants preferred Cam-
eraCtrl’s zoom effect, followed closely by AKiRa at 35.6%.
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Figure 6. Comparison of dolly zoom effect on SVD (I2V) [5] backbone
between AKiRa, CameraCtrl[21] and the reference from Guardians of the
Galaxy Vol. 2 (Gunn, 2017). Note that the background recedes while the
character remains static.
Method Video Text Motion Zoom Distortion Bokeh Average

Baseline [5, 18] 13.2 11.2 7.2 4.0 8.4 7.2 8.5
MotionCtrl [56] 27.6 6.4 21.6 16.8 18.8 17.6 18.1
CameraCtrl [21] 19.6 27.2 23.6 43.6 29.6 31.6 29.2
AKiRa (ours) 39.6 55.2 47.6 35.6 43.2 43.6 44.2

Table 2. Results of user study. % participants ranking each method as
1st for: Video quality, Text-to-video consistency, motion fidelity, and optical
coherence (Zoom, Distortion, Bokeh). First best and second best .

Method ZoomSim → DistortSim → FocusArea
ω=0 ω=30 ω=100

AnimateDiff [18] 0.00 0.00 0.90 - -
CameraCtrl [21] 78.98 62.13 0.69 - -
AKiRa (ours) 86.82 81.19 0.72 0.64 0.61

Table 3. Optical comparison of AKiRa and CameraC-
trl [21] with Animatediff [18] backbone on WebVid, evalu-
ating optical coherence (zoom, distortion and bokeh).

Focal Lens Aperture CD-FVD ↑ FlowSim →

355.2 53.74
↭ 351.2 67.25

↭ 360.1 71.82
↭ 375.8 73.27

↭ ↭ 359.4 66.86
↭ ↭ 332.7 62.93

↭ ↭ 331.0 71.97
↭ ↭ ↭ 328.7 70.97

Table 4. Ablation of augmentations. Ablation of each aug-
mentation combination in AKiRa. All models are trained on
Animatediff [18] backbone.

This preference likely stems from CameraCtrl’s overly fast
and impactful zoom effect, though it lacks subject consis-
tency upon closer inspection (see Section 4.3 and Figure 4).
Overall, AKiRa notably enhances the aesthetic quality of
the backbone, with 39.6% and 55.2% of participants rank-
ing it 1st for video quality and text-video consistency, com-
pared to only 13.2% and 11.2% for the baselines.
Ablation study. In Table 4, we analyze the impact of each
augmentation in AKiRa on overall model performance. For
each augmentation combination, we train a model using the
Animatediff [18] backbone. The results show that applying
all augmentations yields the best performances in both vi-
sual (CD-FVD) and motion (FlowSim) quality. The strong
performance of distortion with bokeh (second-to-last row)
is due to the cropping and rescaling process intrinsic to dis-
tortion augmentation (see Sec. 3), which implicitly works
as a focal length adjustment, leading to comparable results.
Additionally, the high FlowSim score for bokeh-only aug-
mentation (fourth row) might be due to overly smoothed
content, which implicitly improves the similarity measure.

4.3. Qualitative results

Qualitative comparison. In Figure 4 we present a qualita-
tive comparison of the various effects—motion, zoom, dis-
tortion, and bokeh—between AKiRa and CameraCtrl [21],
using both the Animatediff [18] and SVD [5] backbones.
For motion (first part), AKiRa accurately reproduces refer-
ence motion from the RealEstate dataset [71] across both
backbones. In zooming (second part), our method demon-
strates better consistency, while CameraCtrl struggles; for
example, in the SVD examples (second part, second col-

umn), AKiRa maintains the boat’s position and orientation,
unlike CameraCtrl, where the boat shows deformation. In
terms of distortion (third part), CameraCtrl fails to achieve
this effect, whereas AKiRa successfully applies it; for in-
stance, in the Animatediff example (third part, first column),
the tree trunks visibly distort. Lastly, for the bokeh effect
(fourth part), AKiRa adds adjustable out-of-focus blur. In
the Animatediff example (fourth part, first column), for in-
stance, the foreground of the chessboard displays varying
blur levels depending on the aperture.
A special case: dolly zoom. A dolly zoom is an iconic
cinematic effect that produces a dramatic perspective shift,
achieved by simultaneously pulling while zooming in re-
verse direction. We show in Figure 6 that AKiRa success-
fully reproduces the dolly zoom effect, whereas CameraC-
trl [21] achieves only a pure zoom-out effect. This is due
to AKiRa ’s precise disentangling of key camera parame-
ters, especially focal length and camera position. We rec-
ommend viewing the supplementary video.

5. Conclusion
In this paper, we introduce the concept of optical video gen-
eration, a framework that allows users to control camera
motions as well as optical parameters. We trained a dedi-
cated camera adapter using a set of data augmentation tech-
niques —AKiRa — that pairs camera/lens parameters with
corresponding videos. Results show that our framework
generates optically coherent content, outperforming state-
of-the-art approaches while offering extra control. AKiRa
expands the possibilities of video generation and bridges the
gap between synthetic and real-world capabilities.
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AKiRa: Augmentation Kit on Rays for optical
video generation

Supplementary Material

In this supplementary material, we include:
A.. Additional quantitative results
B.. Additional analysis of bokeh map
C.. Ethical discussion
D.. Algorithm of AKiRa
E.. Details about user study
F.. Discussion about metrics
G.. Additional qualitative results

F. Additional quantitative results
In this section, we present additional quantitative results on
the RealEstate10K dataset [71], comparing the performance
of AKiRa with state-of-the-art camera control approaches
for video generation: MotionCtrl [56] and CameraCtrl [21],
incorporating the corresponding LoRA [26] module to en-
sure domain consistency.

We evaluate video quality, camera motion fidelity, and
temporal dynamic consistency metrics (same as in Table 1
of the main manuscript) for the text-to-video (T2V) back-
bone Animatediff [18] and the image-to-video (I2V) back-
bone SVD [5].

All metrics are computed on 1,000 generated samples
using text prompts from the RealEstate10K dataset or con-
ditioning frames from the WebVid dataset [3]. For AKiRa,
as it explicitly controls the bokeh, we set ω = 0 to align
with the aperture behavior of the RealEstate10K dataset,
where videos are recorded using small apertures and wide-
angle cameras. The impact of aperture on performance is
discussed in Section G and detailed in Table 6.

In Table 6, we present the performance of AKiRa in
comparison with two state-of-the-art methods: MotionC-
trl [56] and CameraCtrl [21]. In terms of video quality,
AKiRa outperforms both SoTA methods on FVD and CD-
FVD metrics for both the Animatediff and SVD backbones,
achieving scores of 128.55 and 89.16 for Animatediff, and
54.83 and 41.55 for SVD. A similar trend is observed in
dynamic consistency, where AKiRa leads across all met-
rics on both backbones. It achieves the highest scores for
Consistency (0.9851), Smoothness (0.9933), and Flickering
(0.9733), demonstrating superior temporal coherence. In
terms of motion fidelity, AKiRa demonstrates significantly
better motion controllability on the Animatediff backbone,
achieving superior performance as evidenced by the highest
FlowSim and lowest RPE errors. AKiRa competes closely
with CameraCtrl on SVD, with only a narrow difference.
We attribute this to the overfitting of CameraCtrl on the
real-estate dataset, where intrinsic parameters and optical
features remain unchanged during this experiment.
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Method Video quality Camera motion fidelity Dynamic consistency (VBench)
Backbone Camera control FVD ⇐ CD-FVD ⇐ RPE-R (deg)⇐ RPE-t (cm)⇐ FlowSim ⇒ Consistency ⇒ Smoothness ⇒ Flickering⇒

AnimateDiff
[18]

MotionCtrl [56] 237.22 543.24 0.387 1.536 67.83 0.9779 0.9834 0.9712
CameraCtrl [21] 177.70 106.24 0.377 1.555 77.08 0.9779 0.9834 0.9712
AKiRa (ours) 128.55 89.16 0.323 1.347 84.04 0.9809 0.9882 0.9745

SVD
[5]

MotionCtrl [56] 122.67 330.75 1.030 1.326 24.14 0.9516 0.9814 0.9404
CameraCtrl [21] 55.55 50.18 0.312 1.268 92.19 0.9836 0.9928 0.9695
AKiRa (ours) 54.83 41.55 0.312 1.236 91.51 0.9851 0.9933 0.9733

Table 5. Comparison with the state-of-the-art. Comparison of AKiRa and concurrent methods with different backbones on RealEstate
dataset, evaluating video quality, camera motion fidelity, and dynamic consistency. Best .

G. Additional analysis of bokeh map
Controllability of Bokeh - Aperture We propose a
bokeh map with the same structure and dimensions as the
direction and moment maps, assigning an aperture and fo-
cus (depth-of-field) parameter to each pixel in the frame.
More specifically, we define the coordinates of the focus
point (uin, vin) representing the sharpest point in the frame.
We then define the per-pixel bokeh map as a → R3 for any
point (u, v) on the frame as:

a =




u↑ uin
v ↑ vin

↘(u, v)↑ (uin, vin)↘
1

ω(ε)



 , (7)

We first present the visualization of the bokeh map and
demonstrate how it influences the generated videos. We ex-
amine two groups of bokeh variations: the effect of varying
the aperture ω in Figure 7a, and the effect of adjusting the
focus point fin in Figure 7b (see the zoomed image in the
second row highlighted the red rectangle).

In Figure 7a, we progressively increase the aperture level
over time, with the focus fixed at the center of the image.
As a result, the visualization of the bokeh map shrinks, and
it shows that the blur area expands proportionally with in-
creasing aperture ω.

In Figure 7b, we shift the focus point fin from the upper-
left corner to the lower-right corner. This causes the center
of the bokeh map to move accordingly, effectively shifting
the blur area in generated videos. The results confirm our
ability to dynamically control the blur area based on the fo-
cus point.

Both experiments validate the effectiveness and control-
lability of AKiRa in manipulating the depth of field.

Bokeh influence on T2V performance We analyze the
influence of bokeh on video quality, flow similarity, and
dynamic consistency using Animatediff, with the experi-
mental settings identical to those in Table 1 of the main
manuscript. By varying the aperture value ω from 0 to 100,
we measure its impact on the corresponding metrics.

Table 6 reports the results for different aperture set-
tings. When the aperture is small and bokeh is weak (i.e.,

Apert. Video quality Motion fidelity Dynamic consistency (VBench)
FVD ⇐ CD-FVD ⇐ FlowSim ⇒ Consistency ⇒ Smoothness ⇒ Flickering⇒

0 350.05 333.61 70.82 0.9697 0.9702 0.9525
5 353.09 337.48 70.94 0.9695 0.9705 0.9528

10 354.94 334.95 71.15 0.9692 0.9709 0.9534
30 341.31 327.02 71.23 0.9686 0.9728 0.9559
50 332.27 328.74 70.97 0.9686 0.9735 0.9572

100 342.77 328.13 70.82 0.9683 0.9737 0.9574

Table 6. Influence of aperture. Influence of aperture effect on
AKiRa’s performances with Animatediff backbone on RealEstate
dataset. Best .

ω = 0), the generated videos exhibit better consistency.
Conversely, when the aperture is large (i.e., ω = 100), the
videos demonstrate greater smoothness and reduced flicker-
ing. Notably, the optimal video generation metrics are ob-
served around ω = 30 and ω = 50. This can be attributed
to the intrinsic bokeh present in the WebVid [3] dataset,
where adding an appropriate amount of bokeh enhances
realism, resulting in improved FVD and CD-FVD perfor-
mance.

H. Ethical discussion
Our paper proposes a method to generate videos based on
camera and optical control, enabling better alignment of the
generation process with user intentions and geometric in-
formation. On the positive side, this approach can enhance
the AIGC (AI-Generated Content) creative process by re-
ducing biases introduced by training data, more accurately
reflecting user intentions, and minimizing trial-and-error in
content generation. This efficiency can also contribute to re-
ducing the carbon footprint associated with the generation
process. On the negative side, however, it may reduce the
labour required for video production, potentially leading to
job losses, and could stifle creativity if individuals become
overly reliant on generative tools.

I. Algorithm of AKiRa
We present the complete AKiRa algorithm in Algorithm 1.
As discussed in the main manuscript, random sampling is
implemented using spline sampling. Augmentation dropout
with a probability p is applied to all the optical features,
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(a) Example of increasing apertures along video time (b) Example of shifting focus point (red dot) along video time

Figure 7. Qualitative Results. We demonstrate the qualitative performance of AKiRa on bokeh variations for both (a) aperture levels and
(b) focus points. The results are generated using Animatediff [18]. In (a), we observe that the blur area and intensity increase proportionally
with the aperture parameter ω. In (b), the blur area shifts dynamically following changes in the focus point, showing the effectiveness of
AKiRa in handling variations in depth of field.

both collectively and individually.
Since augmentation is performed on-the-fly during the

training process, the augmentation order is carefully de-
signed to optimize computational efficiency. Specifically,
we first augment the bokeh aperture to leverage the pre-
computed depth map derived from the original frames.
Next, distortion augmentation is applied, which may im-
plicitly alter the focal length due to a necessary cropping
operation to avoid undefined borders during image warp-
ing. Finally, we augment the zoom aspect, incorporating
the results of the distortion augmentation.

During training, the augmentation parameters are sam-
pled as follows: the dropout probability p is set to 0.2; the
bokeh aperture is sampled uniformly between 0 and 100;
the distortion parameters are sampled uniformly within the
range [↑0.1, 0.1] for all three parameters in D; and the
zoom factor is sampled between 1.0 and 3.0, as zoom fac-
tors below 1.0 are ill-defined due to the difficulty to generate
outpainting content through augmentation.

J. Details about user study
In this section, we elaborate on the specifics of our user
study setup corresponding to Section 4.2 in our main
manuscript.

For the evaluation, each participant was presented with a
total of 10 video sets, 5 with Animatediff backbone (T2V)

Algorithm 1 AKiRa augmentation algorithm
Require: I: frames, Z: depth maps, p: aug. dropout.

if True with probability p then
if True with probability p then

{ω} = RANDOMAPERTURESPLINE()
{(u, v)} = RANDOMINFOCUSSPLINE()
I ⇑ BOKEHAUGMENTER(I, Z, {ω}, {(u, v)})

end if
if True with probability p then

{D} = RANDOMDISTORTIONSPLINE()
I ⇑ DISTORTIONAUGMENTER(I, {D})

end if
if True with probability p then

{f} = RANDOMFOCALSPLINE()
I ⇑ ZOOMAUGMENTER(I, {f})

end if
return I

else return I

end if

and 5 with SVD backbone (I2V). Each set comprised 4
generated videos from (i) the baseline (backbone without
camera control), (ii) MotionCtrl, (iii) CameraCtrl, and (iv)
AKiRa (ours), we shuffled the results and displayed them in
random order.
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Figure 8. Illustrates the instability of Absolute Pose Error
(APE), purple when measuring trajectory accuracy, compared to
the robustness of Relative Pose Error (RPE), cyan. APE tends
to accumulate errors, especially at later frames. In contrast, RPE
calculates errors based on relative transformations between con-
secutive frames, making it less sensitive to single-frame errors and
more robust for trajectory evaluation.

Subsequently, participants were prompted with 6 ques-
tions for each comparison:
1. Rank the consistency of the video with the text prompt

(Only for Animatediff backbone).
2. Rank the video quality (i.e. temporal consistency).
3. Rank the camera motion consistency with the reference.
4. Rank the best zoom-in or -out effect.
5. Rank the best distortion effect (e.g. fisheye).
6. Rank the best bokeh (in- or out-of-focus effect).

In total, we recorded 25 participants with each partici-
pant responding to 55 questions. We analyzed the results
by examining responses to each question individually, sum-
marizing the collective feedback.

K. Discussion about metrics
K.1. Drawbacks of SfM-based metrics
Absolute Pose Error Many recent works [21, 56, 58]
on camera motion-controlled video generation rely on
Structure-from-Motion (SfM) or SLAM-based metrics to
evaluate the effectiveness of camera control. The primary
metric utilized in these works is similar to the Absolute Pose
Error (APE) used in SLAM and SfM applications [42, 47],
which computes the average trajectory error for translation
and rotation separately. These errors are defined as follows:

For translation error in R3:

APEtrans =
1

N

N

i=1

↘t̂i ↑ t
↗
i
↘,

where N is the total number of frames, t̂i → R3 is the esti-
mated camera translation vector for frame i, and t

↗
i
→ R3 is

the ground truth translation vector for the same frame.
For rotation error in SO(3), the error is often computed

as the angle of the relative rotation:

APErot =
1

N

N

i=1

arccos




trace


R̂i(R↗

i
)↑


↑ 1

2



 ,

where R̂i → SO(3) is the estimated rotation matrix for
frame i, and R

↗
i
→ SO(3) is the ground truth rotation ma-

trix for the same frame. However, APE is highly sensitive
to errors in individual frames, which is a common issue in
generated videos due to flickers or sudden object move-
ments. These artifacts, often irrelevant to the quality of
motion control, can disproportionately affect the evalua-
tion.

Relative Pose Error To address the APE limitation, re-
lated domains often rely on the Relative Pose Error (RPE),
which reduces the impact of accumulated errors caused
by single-frame inaccuracies, especially when such errors
occur at the early stages of the trajectory.

RPE is computed by comparing the relative transforma-
tions between consecutive frames, rather than the absolute
poses. It is defined separately for translation and rotation as
follows:

For translation error in R3:

RPEtrans =
1

N ↑ 1

N↓1

i=1

↘!t̂i ↑!t
↗
i
↘,

where !t̂i = t̂i+1 ↑ t̂i is the estimated relative translation,
and !t

↗
i
= t

↗
i+1↑t

↗
i

is the ground truth relative translation.
For rotation error in SO(3), the relative error is defined

as:

RPErot =
1

N ↑ 1

N↓1

i=1

arccos




trace


!R̂i!R

↗
i


↑ 1

2



 ,

where !R̂i = R̂i+1R̂
↑
i

is the estimated relative rotation,
and !R

↗
i
= R

↗
i+1R

↗→

i
is the ground truth relative rotation.

We demonstrate this phenomenon in Figure 8. When the
first frame exhibits a high APE (purple), even if the subse-
quent trajectory is relatively accurate, the error is accumu-
lated throughout the trajectory. In contrast, RPE is com-
puted between relative poses (cyan), making it less biased
by errors in previous estimations, therefore providing a
more robust assessment of motion control quality.

Scaling Ambiguity Another challenge when using 3D
metric errors to evaluate video camera control quality arises
from unknown intrinsic parameters. Similar camera mo-
tions in image frames can have different interpretations in
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(a) Ground-truth optical flow. (b) Generated optical flow

Figure 9. Comparison of optical flow for different content and similar camera motion.

(a) Animatediff [18] (b) SVD [5]

Figure 10. Qualitative results of AKiRa on Animatediff [18] and SVD [5] backbones. We recommend viewing the supplementary video.

3D metrics; for example, a leftward motion with similar
visual displacement can correspond to varying metric dis-

tances depending on the scale of the scene [20]. While
some Structure-from-Motion (SfM) methods estimate cam-
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era intrinsics, these estimates are often unreliable due to
limited frame numbers (often around 15) and the typically
smooth nature of camera motion, with a short stereo base-
line needed for accurate intrinsic estimation.

To address this issue, in our paper, we report the scale-
corrected camera trajectory by normalizing the trajectory
length to match the ground truth. Formally, this is done by
rescaling the estimated trajectory T̂ such that:

T̂scaled =
↘T↗↘
↘T̂↘

· T̂,

where ↘T↗↘ is the length of the ground truth trajectory and
↘T̂↘ is the length of the estimated trajectory.

In our paper, all computations are performed using
evo1, a standard trajectory evaluation toolbox widely used
for SLAM and visual odometry evaluations.

Computational Efficiency Unfortunately, the computa-
tion time for SfM is relatively long and, most importantly,
difficult to parallelize on GPU due to the sequential nature
of the optimization problem. For instance, processing a sin-
gle video with 16 frames using ParticleSfM [67] can take
up to 4 minutes on average, including feature extraction and
the optimization pipeline required for convergence. In our
study, computing SfM for 1000 generated videos required
an average of 66 hours on a single CPU.

K.2. FlowSim metric

Flow Similarity. As detailed in Section 4.1 and Equa-
tion 6 of the main manuscript, we introduce the flow sim-
ilarity metric. Similar to RPE, the concept of optical flow
involves computing the relative on-image pixel motion be-
tween frames, which is widely used as an intermediate fea-
ture in SLAM and dense SfM processes [9, 66].

Compared to other on-image features, optical flow is less
content-dependent and can serve as a robust metric for com-
paring video similarity. Unlike SfM trajectory features, op-
tical flow does not rely on prior knowledge or precise esti-
mation of the ground truth scaling of the scene. This makes
it inherently robust to scaling ambiguities.

In our implementation, we measure the alignment of
two optical flow directions while ignoring magnitudes to
avoid content bias, as magnitudes are often influenced by
disparity (i.e., differences in depth). Additionally, we ex-
clude low-magnitude components because their directions
are typically unreliable.

Figure 9 highlights the robustness of optical flow in com-
paring camera motion between videos. Despite differing
content, similar flows indicate similar camera motion.

1https://github.com/MichaelGrupp/evo

Zoom flow similarity. To evaluate the quality of the
zooming effect, we compute the flow similarity between the
theoretical zooming flow and the generated one. The theo-
retical zooming flow is derived from Equation 5 in the main
manuscript as:

[
ufl
vfl

]
↑

[
ufl↑

vfl↑

]
= (s↑ s

↘)

[
u↑ cx

v ↑ cy

]
, (8)

where s and s
↘ denote the zooming scales, and (cx, cy) are

the principal point coordinates (i.e. the screen center). As
illustrated in Figure 11a, the flow direction for a zoom-in
effect converges toward the principal point (or diverges out-
ward for a zoom-out effect), aligning with Equation 8. The
generated flow, shown in Figure 11b, closely matches the
theoretical flow, with minor deviations caused by variations
in frame content.

(a) Theoretical flow (b) Generated flow

Figure 11. Theoretical vs. generated zooming flows.

(a) Theoretical flow (b) Generated flow

Figure 12. Theoretical vs. generated distorted flows.

Distortion flow similarity. To evaluate the quality of the
distortion effect, we compute the flow similarity between
the theoretical distortion flow and the generated one. The
theoretical distortion flow is derived from Equation 2 in the
main manuscript as:

[
uD

vD

]
↑

[
uD↑

vD↑

]
=

[
u

v

]
(D↑D

↘)




r
2

r
4

r
6



 , (9)

where D and D
↘ denote the distortion parameters and

r =
√
(u↑ cx)2 + (v ↑ cy)2 distance of each pixel to-

wards image center. As illustrated in Figure 12a, the flow
direction for a distortion effect also converges toward the
principal point —or diverges outward depending on the sign
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of D↑D
↘—, aligning with Equation 9. The generated flow,

shown in Figure 12b, closely matches the theoretical flow,
again, with minor deviations caused by variations in frame
content.

Computational Efficiency During implementation, we
use RAFT [48], a fast deep optical flow estimator with
GPU-based implementation, which significantly speeds up
the flow estimation process compared to SfM and can be
easily parallelized on GPU. For example, computing opti-
cal flows for 1000 generated videos takes approximately 10
minutes on a GPU, compared to 66 hours required by SfM
on a single CPU.

As a result, our key messages concerning the evaluation
metrics are:
1. Pose metrics for assessing camera control in generated

videos are intrinsically less accurate, particularly when
directly computing APE.

2. Using RPE with scale correction techniques improves
robustness; however, the computational cost is pro-
hibitively high for scaling to AI-generated videos.

3. We propose optical flow similarity (FlowSim), based on
flow direction, offers a viable alternative. It serves as a
good approximation of RPE while being computation-
ally efficient, fast to compute, and scalable for large-
scale AI-generated videos.

4. The flow similarity metric can also be used to confirm
other optic features than motion, such as focal length
change (zoom) and distortions.

L. Additional qualitative results
We provide additional qualitative results in Figure 10,
demonstrating that AKiRa method performs well in sev-
eral key aspects: accurately capturing camera motion (trees)
with high video quality (the middle stormtrooper’s head
cf. CameraCtrl); maintaining consistency during zooming
(mountain peak, cat’s frame); effectively reflecting distor-
tion effects (gift, bird’s-eye view of Barcelona city); and
rendering various aperture and bokeh effects (surfing on the
beach, grass) with controllability.

17


	. Introduction
	. Related work
	. Method
	. Camera model
	. Camera model representation
	. AKiRa: Augmentation Kit on Rays

	. Experiments
	. Evaluation metrics
	. Quantitative comparison
	. Qualitative results

	. Conclusion
	. Additional quantitative results
	. Additional analysis of bokeh map 
	. Ethical discussion
	. Algorithm of AKiRa
	. Details about user study
	. Discussion about metrics
	. Drawbacks of SfM-based metrics
	. FlowSim metric

	. Additional qualitative results

