
Higher-order algebraic theories

Nathanael Arkor Dylan McDermott

1

First-order theories have

Operators
Γ ` t1 · · · Γ ` tk

Γ ` op(t1, . . . , tk)
(op : k) Equations x1, . . . , xk ` t ≡ u

Example: monoids have e : 0, mul : 2,

Γ ` e

Γ ` t1 Γ ` t2

Γ ` mul(t1, t2)

x ` mul(e, x) ≡ x
x ` x ≡ mul(x, e)

x1, x2, x3 ` mul(mul(x1, x2), x3) ≡ mul(x1,mul(x2, x3))

Non-example: the untyped λ-calculus

Γ ` t1 Γ ` t2

Γ ` app(t1, t2)

Γ, x ` t

Γ ` abs(x. t)
app(abs(x. f), a) ≡ f [x 7→ a]

2

First-order theories have

Operators
Γ ` t1 · · · Γ ` tk

Γ ` op(t1, . . . , tk)
(op : k) Equations x1, . . . , xk ` t ≡ u

Example: monoids have e : 0, mul : 2,

Γ ` e

Γ ` t1 Γ ` t2

Γ ` mul(t1, t2)

x ` mul(e, x) ≡ x
x ` x ≡ mul(x, e)

x1, x2, x3 ` mul(mul(x1, x2), x3) ≡ mul(x1,mul(x2, x3))

Non-example: the untyped λ-calculus

Γ ` t1 Γ ` t2

Γ ` app(t1, t2)

Γ, x ` t

Γ ` abs(x. t)
app(abs(x. f), a) ≡ f [x 7→ a]

2

First-order theories
▶ Presentations/equational logic
▶ Algebraic theories
▶ Finitary monads on Set

Second-order theories: have variable-binding operators
▶ Presentations/equational logic [Fiore and Hur ’10]
▶ Algebraic theories [Fiore and Mahmoud ’10]

This talk:
1. nth-order presentations
2. nth-order algebraic theories
3. a monad–theory correspondence

(n ∈ N ∪ {ω})

3

First-order theories
▶ Presentations/equational logic
▶ Algebraic theories
▶ Finitary monads on Set

Second-order theories: have variable-binding operators
▶ Presentations/equational logic [Fiore and Hur ’10]
▶ Algebraic theories [Fiore and Mahmoud ’10]

This talk:
1. nth-order presentations
2. nth-order algebraic theories
3. a monad–theory correspondence

(n ∈ N ∪ {ω})

3

First-order presentations
A (monosorted) first-order presentation is a signature with a set of equations, where:
▶ First-order arities are natural numbers k

▶ Signatures Σ are families of sets Σ(k) of k-ary operators
▶ Contexts Γ = x1, . . . , xn are lists of variables
▶ Terms t are generated by

x ∈ Γ

Γ ` x

op ∈ Σ(k) Γ ` t1 · · · Γ ` tk

Γ ` op(t1, . . . , tk)

▶ Equations Γ ` t ≡ t′

Example: monoids have e ∈ Σ(0), mul ∈ Σ(2),

Γ ` e

Γ ` t1 Γ ` t2

Γ ` mul(t1, t2)

x ` mul(e, x) ≡ x
x ` x ≡ mul(x, e)

x1, x2, x3 ` mul(mul(x1, x2), x3) ≡ mul(x1,mul(x2, x3))

4

First-order presentations

For STLC with a base type s and operators op ∈ Σ, terms

x1 : s, . . . , xn : s ` t : s

have η-long β-normal forms generated by

(x : s) ∈ Γ

Γ ` x : s

op ∈ Σ(k) Γ ` t1 : s · · · Γ ` tk : s

Γ ` op(t1, . . . , tk) : s

5

Second-order presentations [Fiore and Hur ’10, Fiore and Mahmoud ’10]
A (monosorted) second-order presentation is a signature with a set of equations,
where:
▶ Second-order arities are lists (n1, . . . , nk) of natural numbers
▶ Signatures Σ are families of sets Σ(n1, . . . , nk) of (n1, . . . , nk)-ary operators
▶ Variable contexts Γ and metavariable contexts Θ:

Γ = x1, . . . , xn Θ = α1 : m1, . . . , αp : mp

▶ Terms t are generated by
x ∈ Γ

Θ | Γ ` x

(α : m) ∈ Θ Θ | Γ ` t1 Θ | Γ ` tm

Θ | Γ ` α(t1, . . . , tm)

(op : (n1, . . . , nk)) ∈ Σ
Θ | Γ, x11, . . . , x1n1

` t1 · · · Θ | Γ, x1k, . . . , xknk
` tk

Θ | Γ ` op(~x1. t1, . . . , ~xn. tk)

▶ Equations Θ | Γ ` t ≡ t′

6

Second-order presentations [Fiore and Hur ’10, Fiore and Mahmoud ’10]

(op : (n1, . . . , nk)) ∈ Σ
Θ | Γ, x11, . . . , x1n1 ` t1 · · · Θ | Γ, x1k, . . . , xknk

` tn

Θ | Γ ` op(~x1. t1, . . . , ~xn. tk)

Example: untyped λ-calculus has operators app ∈ Σ(0, 0) and abs ∈ Σ(1)

Θ | Γ ` t1 Θ | Γ ` t2

Θ | Γ ` app(t1, t2)

Θ | Γ, x ` t

Θ | Γ ` abs(x. t)

and equations

α1 : 1, α2 : 0 | � ` app(abs(x. α1(x)), α2()) ≡ α1(α2()) (β)
α : 0 | � ` abs(x. app(α(), x)) ≡ α() (η)

7

Second-order presentations [Fiore and Hur ’10, Fiore and Mahmoud ’10]
Normal forms of STLC terms

α1 : (s
m1 ⇒ s), . . . , αp : (s

mp ⇒ s) ` t : sn ⇒ s

with
(op : (n1, . . . , nk)) ∈ Σ Γ ` t1 : s

n1 ⇒ s · · · Γ ` tk : snk ⇒ s

Γ ` op(t1, . . . , tk) : s

are in bijection with terms

α1 : m1, . . . , αp : mp | x1, . . . , xn ` t

generated by
x ∈ Γ

Θ | Γ ` x

(α : m) ∈ Θ Θ | Γ ` t1 Θ | Γ ` tm

Θ | Γ ` α(t1, . . . , tm)

(op : (n1, . . . , nk)) ∈ Σ Θ | Γ, x11, . . . , x1n1
` t1 · · · Θ | Γ, x1k, . . . , xknk

` tn

Θ | Γ ` op(~x1. t1, . . . , ~xn. tn)

8

Moving to higher orders

Use part of STLC for the equational logic:
▶ First-order: no functions
▶ Second-order: only first-order functions
▶ order (n+ 1): only nth-order functions
▶ order ω: all of STLC [Lambek and Scott ’88]

9

Higher-order presentations
Fix a set S of sorts (base types) s

A,B ::= s ord s = 0

| 1 ord 1 = −1

| A1 ×A2 ord (A1×A2) = max{ordA1, ordA2}
| A ⇒ B ord (A ⇒ B) = max{ordA+ 1, ordB}

Definition
For n ∈ N ∪ {ω}, an nth-order signature Σ consists of a set

Σ(A ; s)

for each s ∈ S and A such that ordA < n

Example: untyped λ-calculus (S = {tm}, n = 2)

Σ(tm × tm ; tm) = {app} Σ((tm ⇒ tm) ; tm) = {abs}
10

Higher-order presentations

Given an nth-order signature, generate STLC terms t with

op ∈ Σ(A ; s) Γ ` t : A

Γ ` op t : s

Definition
An nth-order presentation consists of:
▶ An nth-order signature Σ

▶ A set of equations
x1 : A1, . . . , xk : Ak ` t ≡ u : s

such that max{ordA1, . . . , ordAk} < n.

11

Examples

Monoids are first-order, with S = {elem}
▶ Operators

e ∈ Σ(1 ; elem) mul ∈ Σ(elem× elem ; elem)

▶ Equations

x : elem ` mul(e(), x) ≡ x : elem x : elem ` mul(x, e()) ≡ x : elem

x1 : elem, x2 : elem, x3 : elem ` mul(mul(x1, x2), x3) ≡ mul(x1,mul(x2, x3)) : elem

12

Examples

Untyped λ-calculus is second-order, with S = {tm}
▶ Operators

app ∈ Σ(tm × tm ; tm) abs ∈ Σ((tm ⇒ tm) ; tm)

▶ Equations

f : tm ⇒ tm, x : tm ` app (abs(f), x) ≡ f x : tm (β)

f : tm ` abs (λx : tm. app (f, x)) ≡ f : tm (η)

13

Examples
Simply typed λ-calculus is second-order, with S = {tmτ | τ is a type}

τ := b | τ ⇝ τ ′

▶ Operators

appτ,τ ′ ∈ Σ(tmτ⇝τ ′ , tmτ ; tmτ ′) absτ,τ ′ ∈ Σ((tmτ ⇒ tmτ ′) ; tmτ⇝τ ′)

for each τ, τ ′

▶ Equations

f : tmτ ⇒ tmτ ′ , x : tmτ ` appτ,τ ′ (absτ,τ ′(f), x) ≡ f x : tmτ ′ (β)

f : tmτ⇝τ ′ ` absτ,τ ′ (λx : tmτ . appτ,τ ′(f, x)) ≡ f : tmτ⇝τ ′ (η)

for each τ, τ ′

14

Examples
Typed λµ-calculus is third-order [Abel ’01], with sorts S = {tmτ | τ is a type} ∪ {nam}

appτ,τ ′ ∈ Σ(tmτ⇝τ ′ , tmτ ; tmτ ′) t u is appτ,τ ′(t, u)
absτ,τ ′ ∈ Σ((tmτ ⇒ tmτ ′) ; tmτ⇝τ ′) λx : τ. t is absτ,τ ′(λx : tmτ . t)

muτ ∈ Σ(((tmτ ⇒ nam) ⇒ nam) ; tmτ) µα. t is muτ (λα : tmτ ⇒ nam. t)

The named term [α]t is α t (α : tmτ ⇒ nam, t : tmτ)

The mixed substitution u[[α](−) 7→ v(−)] is u v
(u : (tmτ ⇒ nam) ⇒ nam,
v : tmτ ⇒ nam)

A third-order equation:

ρ : (tmτ⇝τ ′ ⇒ nam) ⇒ nam, x : tmτ `
appτ,τ ′(muτ⇝τ ′(ρ), x)

≡ muτ ′(λβ : tmτ ′⇒nam. ρ (λf : tmτ⇝τ ′ . β (appτ,τ ′(f, x)))) : tmτ ′

(which means (µα. ρ) x ≡ µβ. ρ[[α](−) 7→ [β]((−) x)])
15

Examples
Propositional logic/boolean algebras, with S = {prop}
▶ Operators

>⊥ ∈ Σ(1 ; prop) (zeroth-order)
∧∨ ∈ Σ(prop× prop ; prop) (first-order)
¬ : Σ(prop ; prop) (first-order)

∀ ∈ Σ((thing ⇒ prop) ; prop) (second-order)
∀2 : Σ((thing ⇒ prop) ⇒ prop) ; prop) (third-order)

▶ Many equations

Formula ∀P.∀x. (Px) ∨ ¬(Px) encoded as

∀2 (λP : thing ⇒ prop. ∀ (λx : thing. Px ∨ ¬(Px)))

16

Examples
First-order logic, with S = {prop, thing}
▶ Operators

>⊥ ∈ Σ(1 ; prop) (zeroth-order)
∧∨ ∈ Σ(prop× prop ; prop) (first-order)
¬ : Σ(prop ; prop) (first-order)
∀ ∈ Σ((thing ⇒ prop) ; prop) (second-order)

∀2 : Σ((thing ⇒ prop) ⇒ prop) ; prop) (third-order)

▶ Many equations

Formula ∀P.∀x. (Px) ∨ ¬(Px) encoded as

∀2 (λP : thing ⇒ prop. ∀ (λx : thing. Px ∨ ¬(Px)))

16

Examples
Second-order logic, with S = {prop, thing}
▶ Operators

>⊥ ∈ Σ(1 ; prop) (zeroth-order)
∧∨ ∈ Σ(prop× prop ; prop) (first-order)
¬ : Σ(prop ; prop) (first-order)
∀ ∈ Σ((thing ⇒ prop) ; prop) (second-order)
∀2 : Σ((thing ⇒ prop) ⇒ prop) ; prop) (third-order)

▶ Many equations

Formula ∀P.∀x. (Px) ∨ ¬(Px) encoded as

∀2 (λP : thing ⇒ prop. ∀ (λx : thing. Px ∨ ¬(Px)))

16

Examples

▶ Every parameterized algebraic theory [Staton ’13] is a two-sorted second-order
theory

▶ Partial differentiation has a monosorted second-order presentation [Plotkin ’20]

17

nth-order presentations ' nth-order algebraic theories

18

First-order algebraic theories
For S = {s}, first-order arities form a category A1, which:
▶ is the opposite of a skeleton of FinSet
▶ is the free strict cartesian category on S
▶ has objects sk for k ∈ N, morphisms t : sk → sm are STLC terms

x : sk ` t : sm

up to βη (with no operators)

A first-order algebraic theory is a strict cartesian identity-on-objects functor
L : A1 → L

An element t ∈ L(sk, sm) “is” a term
x : sk ` t : sm

(possibly with operators, more equations)
19

Higher-order algebraic theories
Category of n-order arities An, for n ∈ N+ ∪ {ω}:
▶ Objects are some representative subset of types A such that ordA < n, with

strict products and exponentials:

1×A = A = A× 1 (A1 ×A2)×A3 = A1 × (A2 ×A3)

1 ⇒ A = A A ⇒ (A′ ⇒ A′′) = A×A′ ⇒ A′′

A ⇒ 1 = 1 A ⇒ (B1 ×B2) = (A ⇒ B1)× (A ⇒ B2)

▶ Morphisms A → B are STLC terms x : A ` t : B up to βη

Some facts:
▶ An+1 has exponentials A ⇒ B for A ∈ An, B ∈ An+1

▶ An+1 is the “free strict cartesian category on S in which S is exponentiable n
times”

▶ for n ≤ n′ there is a fully faithful functor An ↪→ An′

(n′th-order STLC is a conservative extension of nth-order STLC)
20

Higher-order algebraic theories

Definition
For n ∈ N+ ∪ {ω}, an nth-order algebraic theory is a strict structure-preserving
identity-on-objects functor

L : An → L

Morphisms F : L → L′ are commuting triangles

L L′

An

F

L L′

Form a category Lawn.

21

Theories from presentations
Given an nth-order presentation (Σ, E), have an nth-order algebraic theory
L : An → L:
▶ Objects of L are same as An

▶ Morphisms t : A → B in L are terms

x : A ` t : B

over Σ, up to equivalence relation generated by E

▶ LA,B : An(A,B) → L(A,B) is the inclusion

So we have:
Presn ' Lawn

Also for n = 0, where Law0 = SetS

22

A universal characterization of Lawn

Lawn ' Cart(An+1,Set) for n ∈ N+ ∪ {ω}:

product-preserving functor
G : An+1 → Set

7→
nth-order algebraic theory
LG : An → LG

LG(A,B) = G(A ⇒ B)

nth-order algebraic theory
L : An → L 7→

product-preserving functor
GL : An+1 → Set
GL(A ⇒ B) = L(A,B)

Also for n = 0:
Law0 = SetS ' Cart(A1,Set)

23

A universal characterization of Lawn

Since
Lawn ' Cart(An+1,Set)

Lawn is the free completion of Aop
n+1 under sifted colimits:

functors
Aop

n+1 → C
sifted-colimit-preserving functors
Lawn → C

LanJn

−◦Jn
'

when C has sifted colimits, where

Jn : Aop
n+1

A 7→An+1(A,−)−−−−−−−−−→ Cart(An+1,Set) ' Lawn

So Lawn is:
▶ locally strongly finitely presentable
▶ complete and cocomplete

24

A universal characterization of Lawn

Since
Lawn ' Cart(An+1,Set)

Lawn is the free completion of Aop
n+1 under sifted colimits:

functors
Aop

n+1 → C
sifted-colimit-preserving functors
Lawn → C

LanJn

−◦Jn
'

when C has sifted colimits, where

Jn : Aop
n+1

A 7→An+1(A,−)−−−−−−−−−→ Cart(An+1,Set) ' Lawn

So Lawn is:
▶ locally strongly finitely presentable
▶ complete and cocomplete

24

Semantics
An algebra of an (n+ 1)th-order algebraic theory

L : An+1 → L

is a cartesian functor
L → Set

In terms of presentations, for n ≥ 1:
▶ an nth-order algebraic theory L′

▶ with an interpretation

JopKΓ :
∏

i L′(Γ×Ai, si) → L′(Γ, s′)

of each op ∈ Σ((A1 ⇒ s1)× · · · × (Ak ⇒ sk) ; s′)

▶ natural in Γ ∈ An, and satisfying equations

25

Semantics

For the second-order presentation of STLC:

Jappτ,τ ′KΓ : L′(Γ, tmτ⇝τ ′)× L′(Γ, tmτ) → L′(Γ, tmτ ′)Jabsτ,τ ′KΓ : L′(Γ× tmτ , tmτ ′) → L′(Γ, tmτ⇝τ ′)

satisfying βη

For example:

L′(tmτ1 × · · · × tmτk , tmτ ′) = STLC terms x1 : τ1, . . . , xk : τk ` t : τ ′ up to βη

or
L′(tmτ1 × · · · × tmτk , tmτ ′) = C(

∏
iJτiK, Jτ ′K)

for C a CCC with JsK ∈ |C|

26

Monad–theory correspondence

(n+ 1)th-order algebraic theories

' a class of relative monads

' a class of monads on Lawn

27

Monad–theory correspondence

(n+ 1)th-order algebraic theories
' a class of relative monads
' a class of monads on Lawn

27

Theories from arities
There is a fully faithful functor

Jn : Aop
n+1

X 7→An+1(X,−)−−−−−−−−−−→ Cart(An+1,Set) ' Lawn

▶ JnA is the nth-order theory An → L where

L(B,B′) = An+1(A×B,B′)

▶ Objects A ∈ An+1 correspond to finite nth-order signatures(
(tm × tm ⇒ tm) ×
((tm ⇒ tm) ⇒ tm)

)
∈ A3 corresponds to app ∈ Σ(tm × tm ; tm)

abs ∈ Σ(tm ⇒ tm ; tm)

and JnA is the theory presented by A with no equations
28

Relative monads [Altenkirch, Chapman, Uustalu ’10]

Definition
A relative monad T on J : A → C consists of
▶ An object T : |A| → |C|
▶ A morphism ηX : JA → TA for A ∈ A
▶ Kleisli extension

f : JA → TB

f † : TA → TB

subject to laws: f † ◦ ηA = f ηA
† = idTA (g† ◦ f)† = g† ◦ f †

Each T has a Kleisli category Kl(T):
▶ Objects of Kl(T) are objects of A
▶ Morphisms are given by Kl(T)(A,B) = C(JA, TB)

and a Kleisli inclusion
KT : A → Kl(T) KTA = A KTf = ηB ◦ Jf

29

Relative monads [Altenkirch, Chapman, Uustalu ’10]

Definition
A relative monad T on J : A → C consists of
▶ An object T : |A| → |C|
▶ A morphism ηX : JA → TA for A ∈ A
▶ Kleisli extension

f : JA → TB

f † : TA → TB

subject to laws: f † ◦ ηA = f ηA
† = idTA (g† ◦ f)† = g† ◦ f †

Each T has a Kleisli category Kl(T):
▶ Objects of Kl(T) are objects of A
▶ Morphisms are given by Kl(T)(A,B) = C(JA, TB)

and a Kleisli inclusion
KT : A → Kl(T) KTA = A KTf = ηB ◦ Jf

29

Theories from relative monads

If T is a relative monad on Jn : Aop
n+1 → Lawn, then

Kop
T : An+1 → (Kl(T))op

is an (n+ 1)th-order algebraic theory exactly when

TA+ JnB ∼= T (A×B) (for all A ∈ An+1, B ∈ An)

Where (L+ JnB) ∈ Lawn is given for B ∈ An by

(L+ JnB)(C,C ′) = L(B × C,C ′)

30

Relative monads from theories

Given an (n+ 1)th-order algebraic theory L : An+1 → L, define

TL : Aop
n+1 → Lawn

TLA (B,B′) = L(A×B, B′)
∼= L(A, B ⇒ B′)

Then
Kl(TL)(B,A) = Lawn(JnB, TLA) ∼= L(A,B)

so TL forms a relative monad on Jn : Aop
n+1 → Lawn:

idA : A → A in L

ηA : JnA → TLA in Lawn

f : JnB → TLA in Lawn

A → B in L
f † : TLB → TLA in Lawn

31

A monad–theory correspondence
If J : A → C is a completion under Φ-colimits, then:

relative monads
on J : A → C

Φ-colimit-preserving
monads on C

LanJ

−◦J
'

Theorem
There are equivalences between
▶ (n+ 1)th-order algebraic theories
▶ Relative monads T on Jn : Aop

n+1 → Lawn such that

TA+ JnB ∼= T (A×B) (for all A ∈ An+1, B ∈ An)

▶ Sifted-colimit-preserving monads T on Lawn such that

TL+ JnB ∼= T (L+ JnB) (for all L ∈ Lawn, B ∈ An)

32

For n ∈ N ∪ {ω}, have notions of
▶ nth-order presentation
▶ nth-order algebraic theory

which:
▶ model syntax with variable binding operators
▶ are equivalent
▶ form locally strongly presentable categories
▶ correspond to a class of relative monads
▶ correspond to a class of monads
▶ have free algebras

(Slighly outdated) draft at https://dylanm.org/drafts/hoat.pdf

33

Coreflective subcategories of theories

Since
In,n′ : An → An′ (n ≤ n′)

is fully faithful and product-preserving, there are coreflections

Lawn Lawn′

d−e

b−c

a

Explicitly:
▶ d−e : Lawn ' Presn ↪→ Presn′ ' Lawn′

▶ For n ≥ 1, if L : An′ → L is an n′th-order algebraic theory, then

bLc : An → bLc bLc(A,B) = L(A,B)

34

