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First-order theories have

THt, -~ Tkt ,
Operators (op: k) Equations x1,..., o, Ft=u
'+ Op(tl, ce ,tk)

Example: monoids have e : 0, mul : 2,

x
mul(z, e)
mul(zy, mul(z2, x3))

Tt Tty x b mul(e, =)

x bk z
'te Tk mul(ty,ts) x1,x2,x3 = mul(mul(zq, z2), z3)




First-order theories have

THt, -~ Tkt ,
Operators (op: k) Equations x1,..., o, Ft=u
'+ Op(tl, ce ,tk)

Example: monoids have e : 0, mul : 2,

x
mul(z, e)
mul(zy, mul(z2, x3))

Tkt Tty x mul(e, x)

x bk z
'te Tk mul(ty,ts) x1,x2,x3 = mul(mul(zq, z2), z3)

Non-example: the untyped A-calculus

't I'Ft ekt
't app(t1,t2) I'Fabs(z.t)

app(abs(z. f),a) = flx + a]



First-order theories
> Presentations/equational logic
» Algebraic theories
» Finitary monads on Set

Second-order theories: have variable-binding operators
» Presentations/equational logic [Fiore and Hur '10]
» Algebraic theories [Fiore and Mahmoud '10]



First-order theories
> Presentations/equational logic
» Algebraic theories
» Finitary monads on Set

Second-order theories: have variable-binding operators
» Presentations/equational logic [Fiore and Hur '10]
» Algebraic theories [Fiore and Mahmoud '10]

This talk:
1. nth-order presentations
2. nth-order algebraic theories

3. a monad-theory correspondence
(n e NU{w})



First-order presentations

A (monosorted) first-order presentation is a signature with a set of equations, where:
» First-order arities are natural numbers k
» Signatures X are families of sets ¥ (k) of k-ary operators

» Contexts I' = z1,...,x, are lists of variables
> Terms t are generated by

zel op € X(k) Tkt | R 8
| R I'top(t1,...,t)

» Equations '+t =1t
Example: monoids have e € ¥(0), mul € £(2),
x

mul(z, e)
mul(z1, mul(z2, 3))

Fl_t]_ Fl_tg T+ mul(e,x)

x k- x
e T'Fmul(ty,tz) x1,x0, 23 F  mul(mul(zq, z2), z3)




First-order presentations

For STLC with a base type s and operators op € X, terms
T1:8...,kp:SkHt:s
have n-long B-normal forms generated by

(x:s)eTl op € X(k) F'Hty:s

Fktk:s

I'kaxz:s T'Fop(ty,... tx):



Second-order presentations [Fiore and Hur '10, Fiore and Mahmoud '10]
A (monosorted) second-order presentation is a signature with a set of equations,

where:
» Second-order arities are lists (ny,...,n) of natural numbers
» Signatures X are families of sets ¥(nq,...,ng) of (n1,...,nk)-ary operators

» Variable contexts I' and metavariable contexts ©:
'=2x1,...,2, O=a1:my,...,0p:my
> Terms t are generated by

zel (a:m) €O Ok O|TFty
O|TFx O|TFa(ty,...,tm)

(op: (n1,...,ng)) €X
@|F,x11,...,aj1n1}—t1 @|F,J)1k,...,$knk|—tk

O|T'Fop(#i.t1,... 2. tg)

» Equations © |[T'H¢ =+



Second-order presentations [Fiore and Hur '10, Fiore and Mahmoud '10]

(op: (n1,...,ng)) €X
@|F,$11,...,(L’1n1|—t1 @|F,$1k,...,$knk|—tn

O | T Fop(ai.ty,..., 40 tk)

Example: untyped A-calculus has operators app € 3(0,0) and abs € (1)

@‘Fl—tl @|F|—t2 @\F,xl—t
O | I' - app(t1,t2) © |I'F abs(z.t)

and equations

ap:1l,az: 0] ot app(abs(z. a1 (z))

~—
Il
Q
—~~
~—
3

a:0|oF abs(z.app(a(),z)



Second-order presentations [Fiore and Hur '10, Fiore and Mahmoud '10]
Normal forms of STLC terms
ap: (s =s),...,0p: ("= s)Ftis" =5
with
(op:(n1,...,ng)) €X F'Ft:s" =5 FFtp:s"™ =5
I'Fop(ty,...,tx) : s

are in bijection with terms

Q1 iMl, ., Qp i My | X1, ., Ty L
generated by
zel (:m) €O O|TFt O|TFty,
O[TFa O[Tk alt, .. tm)
(op:(ny,...,nE)) €X O, 211,..., &1, Ft1 O, 21k, .-, Tk, F ity

O |TFop(ai.t1,...,Tn.ts)



Moving to higher orders

Use part of STLC for the equational logic:
» First-order: no functions
» Second-order: only first-order functions
» order (n+ 1): only nth-order functions
» order w: all of STLC [Lambek and Scott '88]



Higher-order presentations
Fix a set S of sorts (base types) s

A B:i=s ords =0
| 1 ordl = —1
| A1 x Ay ord (A; x Ag) = max{ord A;,ord Az}
| A= B ord (A = B) = max{ord A + 1,ord B}
Definition

For n € NU {w}, an nth-order signature ¥ consists of a set
%(4; 8)
for each s € S and A such that ord A < n

Example: untyped A-calculus (S = {tm}, n = 2)
Y(tm x tm; tm) = {app} E((tm = tm); tm) = {abs}

10



Higher-order presentations

Given an nth-order signature, generate STLC terms ¢ with

op e X(A;s) FHt: A
I'opt:s

Definition
An nth-order presentation consists of:
» An nth-order signature X
> A set of equations
1A, xp A Ft=u s

such that max{ord Ay, ...,ord Ax} < n.

11



Examples

Monoids are first-order, with S = {elem}

» Operators

e € X(1; elem) mul € X(elem X elem; elem)

» Equations

x : elem - mul(e(),z) =z : elem x : elem - mul(z,e()) = x : elem

x1 : elem, zo : elem, x5 : elem F mul(mul(z1, z9), z3)

mul(x1, mul(zg, x3))

: elem
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Examples

Untyped A-calculus is second-order, with S = {tm}
» Operators

app € X(tm X tm; tm) abs € ¥((tm = tm); tm)
» Equations

fitm=tm,z:tmF app (abs(f),x)
f:tmbE abs (Az:tm.app (f,z))

fz :tm
ftm

13



Examples
Simply typed A-calculus is second-order, with S = {tm, | T is a type}

Ti=b|T~ 7

» Operators
app; s € X(tmeopr, tmy 5 tmy) abs, . € X((tm; = tmy); tmy./)

for each 7,7/

» Equations

Jz tmy (B)
/ Ctmp (77)

fitme = tmy, z:tmy - app,, . (abs, ./ (f), )

frotmeo = abs. v (Ax i tmg.app, . (f, 7))

for each 7,7/

14



Examples

Typed Ap-calculus is third-order [Abel '01], with sorts S = {tm; | 7 is a type} U {nam}

app, » € X(tmrop,tmy 5 tmy) tu is app, . (t,u)
abs, . € X((tm; = tmy); tmy./) Ax 7.t is abs;(Az:tm,.t)
mu, € X(((tm; = nam) = nam); tm,) pet is mur(Aac:tmy = nam.t)

The named term [a]t is at (a:tm;=nam,t:tm;)

(u: (tm; = nam) = nam,

The mixed substitution u[[a](—) — v(—)] v tm, = nam)

is uwv
A third-order equation:
p: (tMro;r = nam) = nam,z : tm, F

app‘r,T/(muTWT’(p)’x)
= muy(AB s tme=nam. p (Af 1 tmopv. B (app, - (f,7)))) : tm

(which means (pa. p)x = pp. plla](—) — [B]((—) x)])
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Examples

Propositional logic/boolean algebras, with .S = {prop}
» Operators

TL € ¥(1; prop) (zeroth-order)
AV € X(prop X prop; prop) (first-order)
— : X(prop; prop) (first-order)

> Many equations
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Examples
First-order logic, with S = {prop, thing}
» Operators
TL € ¥(1; prop)
AV € X(prop x prop; prop)

- : X(prop; prop)
vV € X((thing = prop) ; prop)

> Many equations

(zeroth-order)
(first-order)
(first-order)

(second-order)

16



Examples

Second-order logic, with S = {prop, thing}
» Operators

TL € ¥(1; prop) (zeroth-order)
AV € X(prop X prop; prop) (first-order)
— : X(prop; prop) (first-order)
vV € X((thing = prop) ; prop) (second-order)
Vo : X((thing = prop) = prop) ; prop) (third-order)

> Many equations

Formula VPVz. (Px) V —(Pz) encoded as

Va (AP : thing = prop.V (Az : thing. Px vV =(Px)))
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Examples

» Every parameterized algebraic theory [Staton '13] is a two-sorted second-order
theory

» Partial differentiation has a monosorted second-order presentation [Plotkin '20]

17



nth-order presentations ~ nth-order algebraic theories

18



First-order algebraic theories
For S = {s}, first-order arities form a category .A;, which:
» is the opposite of a skeleton of FinSet
> is the free strict cartesian category on S
> has objects s* for k € N, morphisms ¢ : s* — s™ are STLC terms

x:sF b g™

up to Bn (with no operators)

A first-order algebraic theory is a strict cartesian identity-on-objects functor
L: .Al — L

An element t € L(s¥,s™) “is” a term
z:sP -t s™

(possibly with operators, more equations)

19



Higher-order algebraic theories
Category of n-order arities A,,, for n € Ny U {w}:

» Objects are some representative subset of types A such that ord A < n, with
strict products and exponentials:

1xA=A4A=Ax1 (A1XA2)><A3:A1X(A2XA3)
l1=2A=A A=A =4")=AxA = A"
A=1=1 A= (B1 xBy) = (A= B;) x (A= Bs)

» Morphisms A — B are STLC terms z: A+t : B up to fn

Some facts:
» A, .1 has exponentials A = B for A€ A, B € A,11
> A, 11 is the “free strict cartesian category on S in which S is exponentiable n
times”

» for n < n’ there is a fully faithful functor A, — A,
(n'th-order STLC is a conservative extension of nth-order STLC)

20



Higher-order algebraic theories

Definition
For n € Ny U {w}, an nth-order algebraic theory is a strict structure-preserving
identity-on-objects functor

L:A,—L

Morphisms F': L — L’ are commuting triangles

L £ s L

N

An

Form a category Law,,.

21



Theories from presentations

Given an nth-order presentation (X, E'), have an nth-order algebraic theory
L:A,— L:

» Objects of L are same as A,
» Morphisms t: A — B in L are terms

z:AFt: B

over 3, up to equivalence relation generated by F
» Lap:An(A,B) = L(A, B) is the inclusion

So we have:
Pres,, ~ Law,,

Also for n = 0, where Lawg = Set®

22



A universal characterization of Law,,

Law,, ~ Cart(A,1,Set) for n € Ny U {w}:

nth-order algebraic theory
La(A,B)=G(A= B)

product-preserving functor
G: A,11 — Set

product-preserving functor
Gr : Ap+1 — Set
Gr(A= B)=L(A,B)

nth-order algebraic theory
L:A,— L

Also for n = 0:
Law, = Set® ~ Cart(A;, Set)

23



A universal characterization of Law,,

Since
Law,, ~ Cart(A, 1, Set)

Law,, is the free completion of AZI—)H under sifted colimits:

L . _ :
functors A n sifted-colimit-preserving functors
op =

A —C T, Law, — C

when C has sifted colimits, where

A—Api1(A,-)

Jn Affjrl Cart(A,1,Set) ~ Law,,
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A universal characterization of Law,,

Since
Law,, ~ Cart(A, 1, Set)

Law,, is the free completion of AZI—)H under sifted colimits:

L . _ :
functors A n sifted-colimit-preserving functors
op =

A —C T, Law, — C

when C has sifted colimits, where

A—Api1(A,-)

Jn Affjrl Cart(A,1,Set) ~ Law,,

So Law,, is:
> locally strongly finitely presentable

> complete and cocomplete
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Semantics
An algebra of an (n + 1)th-order algebraic theory
L: AnJrl — L

is a cartesian functor
L — Set

In terms of presentations, for n > 1:
» an nth-order algebraic theory L’

P> with an interpretation
loplr : IL; £/(T x A;,s5) — L(T', s)

of each op € ((A1 = s1) X -+ x (Ap = s) ; §)
» natural in I" € A, and satisfying equations

25



Semantics

For the second-order presentation of STLC:

[app, /Jr : £/(T,tmrr) x L(T,tmy) — L'(D, tm)
labs; - ]r : £'(T x tm,tm.) — L'(T, tm,..)

satisfying O

For example:

L'(tmy X -+ X tm,, ,tmy) = STLC terms z1 : 74,..

or

L xp:TeEt:T upto fAn

L'(tmy x - xtmy, tmy) = C(IL[R] [7])

for C a CCC with [[s] € |C|

26



Monad-theory correspondence

(n + 1)th-order algebraic theories

~ a class of monads on Law,,

27



Monad-theory correspondence

(n + 1)th-order algebraic theories
~ a class of relative monads

~ a class of monads on Law,,

27



Theories from arities
There is a fully faithful functor

XH.An+1(X,7)

In Afﬁrl Cart(A,+1,Set) ~ Law,,

» J,A is the nth-order theory A,, — L where
L(B,B") = A,11(Ax B,B")
» Objects A € A,,41 correspond to finite nth-order signatures

app € X(tm X tm ;tm)

abs € ¥(tm = tm ;tm)

(tm X tm = tm) X
( ((tm = tm) = tm)

) € A3 corresponds to

and J, A is the theory presented by A with no equations

28



Relative monads [Altenkirch, Chapman, Uustalu '10]
Definition
A relative monad T on J : A — C consists of
» An object T': |A| — [C|
» A morphism nx : JA —>TAfor Aec A

» Kileisli extension
f:JA—>TB

ft.17A > TB

subject to laws: ffona=f nal =idgrg

(gt o f)f =gt o ft

29



Relative monads [Altenkirch, Chapman, Uustalu '10]
Definition
A relative monad T on J : A — C consists of
» An object T': |A| — [C|
» A morphism nx : JA —>TAfor Aec A

» Kileisli extension
f:JA—>TB

ft.17A > TB

subject to laws: ffona=f nal =idra (g7 o f)T =glofT

Each T has a Kleisli category KI(T):

» Objects of KI(T) are objects of A

» Morphisms are given by K1(T)(A, B) =C(JA,TB)
and a Kleisli inclusion

KT:.A—>K1(T) KTA:A KTf:T]BOJf

29



Theories from relative monads

If T is a relative monad on J, : A;)EH — Law,,, then
K Apyp — (KI(T))P
is an (n + 1)th-order algebraic theory exactly when
TA+ J,B=T(Ax B) (forall Ae A, 41, Be A,)
Where (L + J,B) € Law,, is given for B € A,, by

(L + J,B)(C,C") = L(B x C,C")

30



Relative monads from theories

Given an (n + 1)th-order algebraic theory L : A, 11 — L, define

Tp: A%, — Law,
T,A(B,B) = L(AxB,B
~ [L(A, B=DB)

Then
KI(T1)(B,A) = Law,(J,B,T.A) = L(A,B)

so T, forms a relative monad on J,, : A% | — Law,,:
f:JduB—TrA in Law,,

A— Bin L
ft:TyB — Tr A in Law,,

idg:A—AinL

na: JnA — Tp A in Law,

31



A monad-theory correspondence
If J: A— Cis a completion under ®-colimits, then:

relative monads Lan, ®-colimit-preserving

onJ: A—=C % monads on C

Theorem
There are equivalences between

» (n + 1)th-order algebraic theories
» Relative monads T on J, .AOH — Law,, such that

TA+ J,B>=T(Ax B) (forall Ae A,4+1, B€ A,)
» Sifted-colimit-preserving monads T on Law,, such that

TL+ J,B=T(L+ J,B) (for all L € Law,,, B € A,,)
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For n € NU{w}, have notions of

>
>

nth-order presentation

nth-order algebraic theory

which:

| 2

vvYVvyyvyy

(Slighly outdated) draft at https://dylanm.org/drafts/hoat.pdf

model syntax with variable binding operators
are equivalent

form locally strongly presentable categories
correspond to a class of relative monads
correspond to a class of monads

have free algebras
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Coreflective subcategories of theories

Since
Iy o Ay — Ay (n<n')

is fully faithful and product-preserving, there are coreflections

-1
Law, A 1 " Law,,
=)
Explicitly:
» [—]: Law, ~ Pres, — Pres,, ~ Law,,

» Forn >1,if L: A, — L is an n’th-order algebraic theory, then

[L] = An = L] [£](A,B) = L(A, B)
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