
Sergi Elizalde and Yuval Roichman

Dartmouth College

Bar-Ilan University

Permutation Patterns Paris '13

A. Grid Classes

[a la Albert, Atkinson, Bouvel, Ruskuc, Vatter]

Baby case: Left Unimodal Permutations

A permutation $\pi \in S_n$ is left unimodal if its inverse is a unimodal sequence; namely, there exists j such that

$$\pi^{-1}(1) > \dots > \pi^{-1}(j) < \dots < \pi^{-1}(n)$$

Baby case: Left Unimodal Permutations

A permutation $\pi \in S_n$ is left unimodal if its inverse is a unimodal sequence; namely, there exists j such that

$$\pi^{-1}(1) > \dots > \pi^{-1}(j) < \dots < \pi^{-1}(n)$$

 L_n - the set of left unimodal permutations in S_n

Baby case: Left Unimodal Permutations

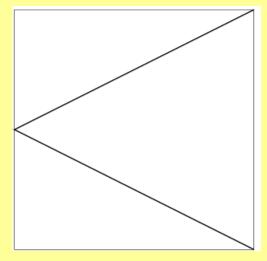
A permutation $\pi \in S_n$ is left unimodal if its inverse is a unimodal sequence; namely, there exists j such that

$$\pi^{-1}(1) > \dots > \pi^{-1}(j) < \dots < \pi^{-1}(n)$$

 L_n - the set of left unimodal permutations in S_n

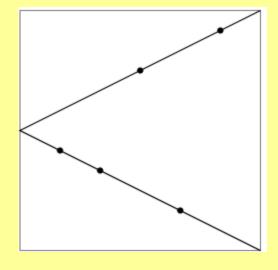
Example.
$$\pi = 435621 \in L_6$$

 $\pi^{-1} = 652134$


TFAE

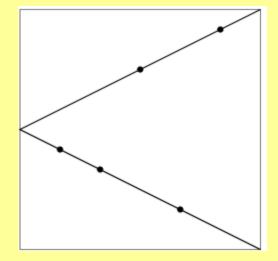
- (i) $\pi \in L_n$
- (ii) every prefix of π forms an interval in $\mathbb Z$

TFAE


- (i) $\pi \in L_n$
- (ii) every prefix of π forms an interval in $\mathbb Z$
- (iii) π may be drawn on the grid

TFAE

- (i) $\pi \in L_n$
- (ii) every prefix of π forms an interval in $\mathbb Z$
- (iii) π may be drawn on the grid



32415

TFAE

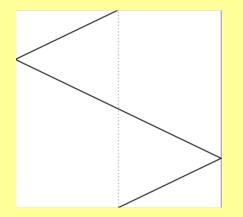
- (i) $\pi \in L_n$
- (ii) every prefix of π forms an interval in $\mathbb Z$
- (iii) π may be drawn on the grid

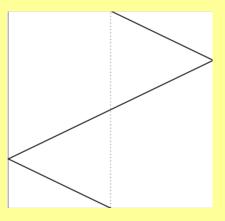
• (iv) $\pi \in Avoid\{132, 312\}$

A permutation $\pi \in S_n$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_n

 A_n - the set of arc permutations in S_n

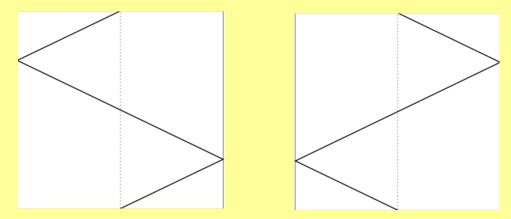
Example.


$$\pi = 435612 \in A_6$$


Prop. TFAE

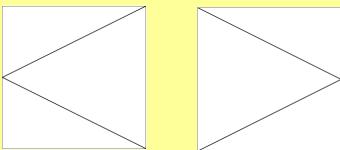
• (i) $\pi \in A_n$, that is every prefix of π forms an interval in \mathbb{Z}_n

Prop. TFAE


- (i) $\pi \in A_n$, that is every prefix of π forms an interval in \mathbb{Z}_n
- (ii) π may be drawn on one of the the grids

Prop. TFAE

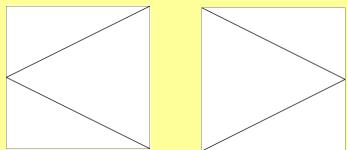
- (i) $\pi \in A_n$, that is every prefix of π forms an interval in \mathbb{Z}_n
- (ii) π may be drawn on one of the the grids



• (iii) $\pi \in Avoid\{\sigma \in S_4 : |\sigma(1) - \sigma(2)| = 2\}$

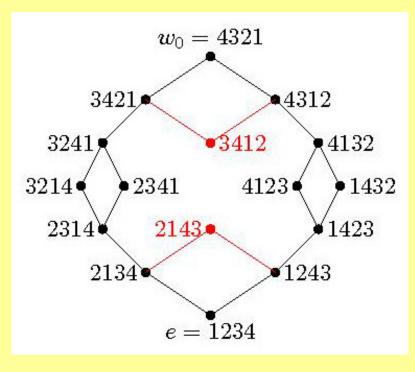
Unimodal Permutations

Prop. TFAE


• (i) π may be drawn on one of the grids

Unimodal Permutations

Prop. TFAE


• (i) π may be drawn on one of the grids

• (ii)

$$\pi \in Avoid\{\{\sigma \in S_4 : |\sigma(1) - \sigma(2)| = 2\} \cup \{2143, 3412\}\}$$

B. Graph Structure

The Graph Γ_n

- Vertices: A_n
- Edges: $\{(\pi, \sigma) : \pi^{-1}\sigma \in S\}$ $S := \{(i, i+1) : 1 \le i < n\}$

The Graph Γ_n

- Vertices: A_n
- Edges: $\{(\pi, \sigma) : \pi^{-1}\sigma \in S\}$ $S := \{(i, i+1) : 1 \le i < n\}$

Remark. This is an induced subgraph of the Cayley graph $X(S_n, S)$

- Vertices: A_n
- Edges: $\{(\pi, \sigma) : \pi^{-1}\sigma \in S\}$ $S := \{(i, i+1) : 1 \le i < n\}$

Remark. This is an induced subgraph of the Cayley graph $X(S_n, S)$

Theorem

$$Diameter(\Gamma_n) = Diameter(X(S_n, S)) = \binom{n}{2}$$

The graph $X(S_n, S)$

Antipodes
$$e = 1, 2, ..., n$$
 and $w_0 = n, n-1, ..., 1$

Theorem [Stanley]

- # vertices in geodesics from e to w_0 a)
 - = n!
- # geodesics from e to w_0 b)

geodesics from
$$e$$
 to w_0

$$= \binom{n}{2}! \prod_{i=0}^{n-2} \frac{1}{(2i+1)^{\binom{n}{2}-i-1}}$$

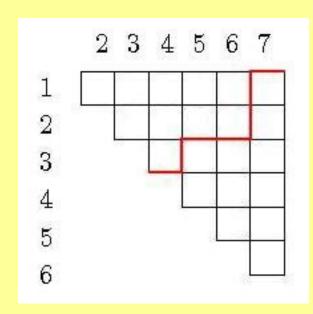
$$= # SYT$$

The graph Γ_n

Antipodes
$$e = 1, 2, ..., n$$
 and $w_0 = n, n-1, ..., 1$

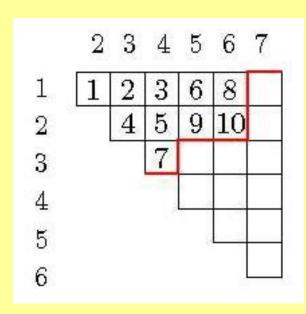
Theorem

a) # vertices in geodesics from e to w_0


$$= 2^{n} - 2$$

b) # geodesics from e to w_0

$$= 2\binom{n}{2}! \prod_{i=0}^{n-2} \frac{i!}{(2i+1)!}$$
= 2 # SYT


Step 1. Bijection from shifted shapes to L_n

 \rightarrow 4356217

Step 2. Bijection from SYT to subset of reduced words

 $\rightarrow 4356217$

Step 2. Bijection from SYT to subset of reduced words

 $\rightarrow 4356217$

$$= (4,5)(3,4)(5,6)(1,2)(4,5)(2,3)(1,2)(3,4)(2,3)(1,2)$$

Cor. 1. (description of $Weak(L_n)$)

$$\pi < \sigma \Leftrightarrow shape(\pi) \subset shape(\sigma)$$

Cor. 1. (description of $Weak(L_n)$)

$$\pi < \sigma \Leftrightarrow shape(\pi) \subset shape(\sigma)$$

Cor 2. # maximal chains in $Weak(L_n) = \# SYT$

Cor. 1. (description of $Weak(L_n)$)

$$\pi < \sigma \Leftrightarrow shape(\pi) \subset shape(\sigma)$$

Cor 2. # maximal chains in $Weak(L_n) = \# SYT$

Lemma.

$$\pi \in [e, w_0] \Leftrightarrow \pi \in L_n \cup R_n$$

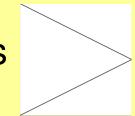
where

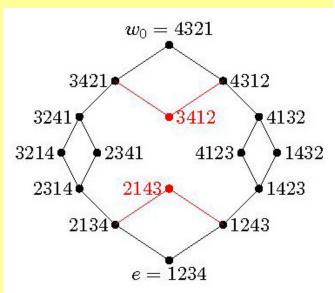
$$R_n := w_0 L_n w_0 = \text{grid class}$$

Cor. 1. (description of $Weak(L_n)$)

$$\pi < \sigma \Leftrightarrow shape(\pi) \subset shape(\sigma)$$

Cor 2. # maximal chains in $Weak(L_n) = \# SYT$




Lemma.

$$\pi \in [e, w_0] \Leftrightarrow \pi \in L_n \bigcup R_n$$

where

$$R_n := w_0 L_n w_0 = \text{grid class}$$

C. Descents

Fact

$$\sum_{\pi \in L_n} X^{Des(\pi)} = \sum_{\pi \in R_n} X^{Des(\pi)} = \sum_{T \in hook} X^{Des(T)}$$

C. Descents

Fact

$$\sum_{\pi \in L_n} X^{Des(\pi)} = \sum_{\pi \in R_n} X^{Des(\pi)} = \sum_{T \in hook} X^{Des(T)}$$

Theorem

$$\sum_{\pi \in A_n \setminus (L_n \cup R_n)} X^{Des(\pi)} = \sum_{T \in hook + box} X^{Des(T)}$$

- Proof of Regev's conjectured character formula for induced exterior algebras
- Schur positivity of certain quasi-symmetric functions (a la Gessel-Reutenauer).

- Multivariate statistics
- Other subsets of permutations
 whose descent set is equidistributed with SYT of given shapes
- Other grid classes
- Other Coxeter types
- Characters and spectra

MERCI

GRACIAS

THANK YOU

תודה