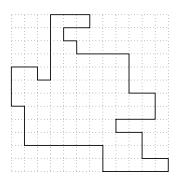
About half permutations

Simone Rinaldi ¹ Samanta Socci ¹

July 3, 2013

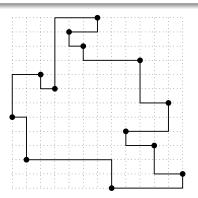
Basic definitions

A permutomino of size n is a polyomino (with no holes) having n rows and n columns, such that for each abscissa (ordinate) between 1 and n+1 there is exactly one vertical (horizontal) bond in the boundary of P with that coordinate.



Basic definitions

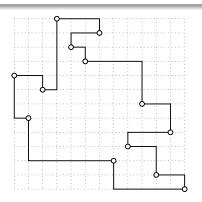
A permutomino P of size n is uniquely defined by a pair of permutations of length n+1, denoted by $\pi_1(P)$ and $\pi_2(P)$, called the *first* and the *second* components of P, respectively.



 $\pi_1 = (6, 3, 9, 8, 12, 11, 13, 1, 5, 10, 4, 7, 2)$

Basic definitions

A permutomino P of size n is uniquely defined by a pair of permutations of length n+1, denoted by $\pi_1(P)$ and $\pi_2(P)$, called the *first* and the *second* components of P, respectively.



 $\pi_2 = (9, 6, 8, 13, 11, 10, 12, 3, 4, 7, 2, 5, 1)$

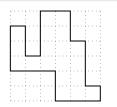
Directed column-convex permutominoes

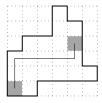
Definition

A permutomino P is said to be *column-convex* if all its columns are connected.

Definition

A permutomino P is said to be *directed column-convex* if it is a column-convex permutomino and all its cells can be reached from a distinguished cell – called *source* – by means of a path, internal to the permutomino, and using only north and east unit steps.





Directed column-convex permutominoes

Proposition (Beaton, Disanto, Guttman, Rinaldi, 2010)

The number of directed column-convex permutominoes of size n is $\frac{(n+1)!}{2}$.

Directed column-convex permutominoes

Proposition (Beaton, Disanto, Guttman, Rinaldi, 2010)

The number of directed column-convex permutominoes of size n is $\frac{(n+1)!}{2}$.

Remark

The authors prove this result analytically.

We present a bijective proof that the number of directed column-convex permutominoes of size n is $\frac{(n+1)!}{2}$.

We present a bijective proof that the number of directed column-convex permutominoes of size n is $\frac{(n+1)!}{2}$.

We prove that:

- every directed column-convex permutomino P is uniquely determined by its second component $\pi_2(P)$;
- the set

```
\{\pi_2(P): P \text{ is a directed column-convex permutomino of size } n \}
```

is in bijective correspondence with its complement in S_{n+1} , where S_{n+1} denotes the set of permutations of length n+1.

Proposition

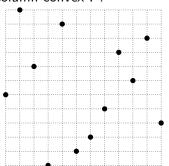
A directed column-convex permutomino P is uniquely determined by its second component $\pi_2(P)$.

Proposition

A directed column-convex permutomino P is uniquely determined by its second component $\pi_2(P)$.

Proof.

Let $\pi = \pi_2(P)$ for some directed column-convex P.



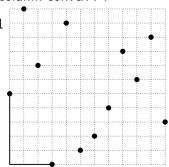
Proposition

A directed column-convex permutomino P is uniquely determined by its second component $\pi_2(P)$.

Proof.

Let $\pi = \pi_2(P)$ for some directed column-convex P.

• $\pi(1)$ is connected with $\pi(i) = 1$ (directed);



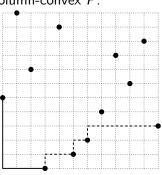
Proposition

A directed column-convex permutomino P is uniquely determined by its second component $\pi_2(P)$.

Proof.

Let $\pi = \pi_2(P)$ for some directed column-convex P.

- $\pi(1)$ is connected with $\pi(i)=1$ (directed);
- the right-to-left minima of π have to be connected in sequence (directed);



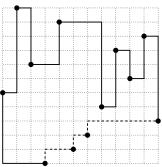
Proposition

A directed column-convex permutomino P is uniquely determined by its second component $\pi_2(P)$.

Proof.

Let $\pi = \pi_2(P)$ for some directed column-convex P.

- $\pi(1)$ is connected with $\pi(i) = 1$ (directed);
- the right-to-left minima of π have to be connected in sequence (directed);
- the remaining entries of π have to be connected in sequence (column-convex).



Definition

We define

$$\mathcal{P}_n'' = \{\pi : \pi = \pi_2(P) \text{ for some } P \in \mathcal{D}_{n-1}\}.$$

The permutations of \mathcal{P}''_n will be called *dcc-permutations*.

Definition

We define

$$\mathcal{P}''_n = \{\pi : \pi = \pi_2(P) \text{ for some } P \in \mathcal{D}_{n-1}\}.$$

The permutations of \mathcal{P}''_n will be called *dcc-permutations*.

We provide

- a characterization of dcc-permutations of size *n*;
- a bijective correspondence between dcc-permutations of length n and non dcc-permutations of length n.

Definition

We define

$$\mathcal{P}''_n = \{\pi : \pi = \pi_2(P) \text{ for some } P \in \mathcal{D}_{n-1}\}.$$

The permutations of \mathcal{P}''_n will be called *dcc-permutations*.

We provide

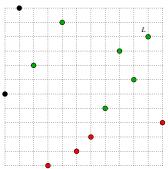
- a characterization of dcc-permutations of size *n*;
- a bijective correspondence between dcc-permutations of length n and non dcc-permutations of length n.

And so we prove in a bijective way that

$$|\mathcal{D}_{n-1}|=\frac{n!}{2}.$$

Definition

- $\mathcal{R}(\pi)$: right-to-left minima of π ;
- $\overline{\mathcal{R}}(\pi)$: $(\pi(j-1), \pi(j), \dots, \pi(n))$ of π minus the points of $\mathcal{R}(\pi)$, where $\pi \in S_n \ (n > 1)$ with $\pi(1) \neq 1$ and $\pi(j) = 1$;
- $L(\pi)$: the rightmost element of $\overline{\mathcal{R}}(\pi)$.

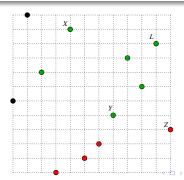


Definition

Let $\pi \in S_n$ such that $\pi(1) \neq 1$, for each $X \in \overline{\mathbb{R}} - \{L\}$,

- Y: the leftmost point of $\overline{\mathcal{R}}$ on the right of X;
- Z: the leftmost point of \mathcal{R} on the right of Y.

We set $C_X = (X, Y, Z)$.



Theorem

A permutation $\pi \in S_n$ is a dcc-permutation if and only if the following properties hold:

- i) $\pi(1) \neq 1$;
- ii) $\forall X \in \overline{\mathcal{R}}(\pi) \{L\}$, $C_X = (X, Y, Z)$, we have X > Z;
- iii) $L > \pi(n)$.

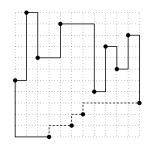
Theorem

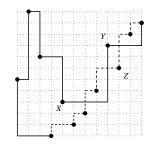
A permutation $\pi \in S_n$ is a dcc-permutation if and only if the following properties hold:

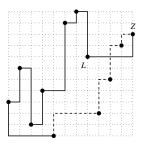
- i) $\pi(1) \neq 1$;
- ii) $\forall X \in \overline{\mathcal{R}}(\pi) \{L\}$, $C_X = (X, Y, Z)$, we have X > Z;
- iii) $L > \pi(n)$.

The conditions *ii*) and *iii*) express formally when the boundary of the permutomino crosses itself.

The conditions ii) and iii) express formally when the boundary of the permutomino crosses itself.







Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

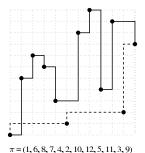
Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

S.Rinaldi, S.Socci

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 1) $\pi(1) = 1$



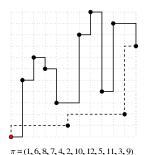
(Università di Siena)

Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 1) $\pi(1) = 1$

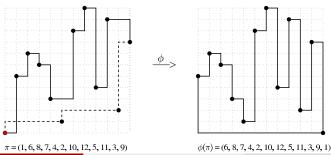


Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 1) $\pi(1) = 1$

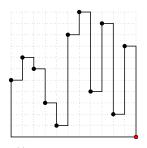


Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 1) $\pi(1) = 1$

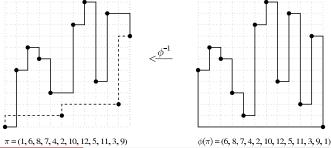


Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 1) $\pi(1) = 1$

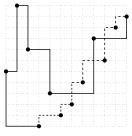


Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 2) π satisfies i) but not ii)



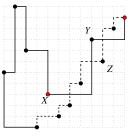
 $\pi = (6, 12, 8, 1, 4, 2, 3, 5, 9, 7, 10, 11)$

Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 2) π satisfies i) but not ii)



Let X be the leftmost of the elements which do not satisfy ii).

We exchange X with $\pi(n)$.

Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 2) π satisfies i) but not ii)



Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

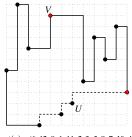
Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 2) π satisfies i) but not ii)

Let U be the rightmost right-to-left minimum of $\phi(\pi)$ different from $\phi(\pi)(n)$.

Let V be the rightmost element in $\overline{R}(\phi(\pi))$ on the left of U.

We exchange V with $\phi(\pi)(n)$.



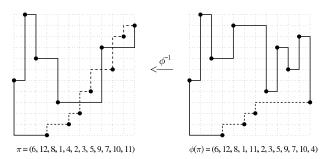
 $\phi(\pi) = (6, 12, 8, 1, 11, 2, 3, 5, 9, 7, 10, 4)$

Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 2) π satisfies i) but not ii)

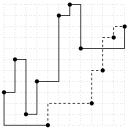


Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 3) π satisfies i) and ii) but not iii)



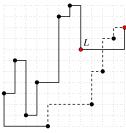
 $\pi = (4, 7, 2, 5, 1, 11, 12, 8, 3, 6, 9, 10)$

Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 3) π satisfies i) and ii) but not iii)



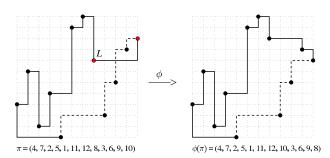
We exchange L with $\pi(n)$.

Theorem

The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 3) π satisfies i) and ii) but not iii)



A bijection for dcc-permutations

Theorem

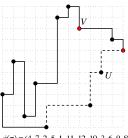
The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 3) π satisfies i) and ii) but not iii)

Let U be the rightmost right-to-left minimum of $\phi(\pi)$ different from $\phi(\pi)(n)$. Let V be the rightmost element in $\overline{R}(\phi(\pi))$ on the left of U.

We exchange V with $\phi(\pi)(n)$.



 $\phi(\pi) = (4, 7, 2, 5, 1, 11, 12, 10, 3, 6, 9, 8)$

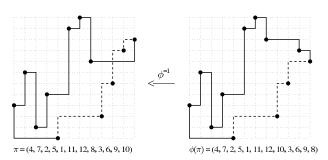
A bijection for dcc-permutations

Theorem

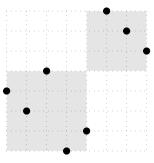
The number of dcc-permutations of length n is $\frac{n!}{2}$.

Proof.

We determine a bijective correspondence $\phi: S_n \setminus \mathcal{P}''_n \to \mathcal{P}''_n$. case 3) π satisfies i) and ii) but not iii)

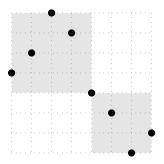


 π decomposable: there is an index i < n s.t. $(\pi(1), \ldots, \pi(i))$ is a permutation.



$$\pi = (4, 3, 5, 1, 2, 8, 7, 6)$$
decomposable

 π *m-decomposable*: if its mirror image π^{M} is decomposable.

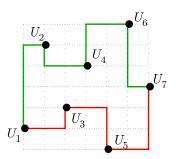


$$\pi = (5, 6, 8, 7, 4, 3, 1, 2)$$

 m - decomposable

Let P be a *column-convex* permutomino of size n, let π_1 be the first component of P, and let $U_i = (i, \pi_1(i))$, $1 \le i \le n+1$, be the points of the graphical representation of π_1 .

We call *upper* (resp. *lower*) path of P the part of the boundary of P running from U_1 to U_{n+1} and starting with a north step (resp. east step).

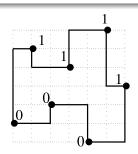


We define a valuation v on the points of a permutation $\pi = \pi_1(P)$ for some column-convex permutomino P of size n in this way:

- $v(U_i) = 1$ iff U_i belongs to the upper path or i = n + 1;
- $v(U_i) = 0$ iff U_i belongs to the lower path or i = 1;

Remark

A column-convex permutomino P of size n is uniquely determined by $\pi_1(P)$, and by the array $\nu(\pi_1) = (\nu(U_1), \dots, \nu(U_{n+1}))$.



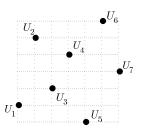
$$\pi_1$$
= (2, 6, 3, 5, 1, 7, 4)

$$v(\pi_1) = (0, 1, 0, 1, 0, 1, 1)$$

Definition

The pair (U_i, U_j) forms an *inversion* if and only i < j and $\pi(i) > \pi(j)$.

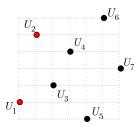
The array $[U_i, U_j] = (U_i, U_{i+1}, \dots, U_j)$ is a locally decomposable (m-decomposable) permutation if the normalization of $(\pi(i), \pi(i+1), \dots, \pi(j))$ is a decomposable (m-decomposable) permutation.



Definition

The pair (U_i, U_j) forms an *inversion* if and only i < j and $\pi(i) > \pi(j)$.

The array $[U_i, U_j] = (U_i, U_{i+1}, \dots, U_j)$ is a locally decomposable (m-decomposable) permutation if the normalization of $(\pi(i), \pi(i+1), \dots, \pi(j))$ is a decomposable (m-decomposable) permutation.

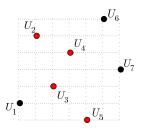


[U1, U2] locally decomposable permutation

Definition

The pair (U_i, U_j) forms an *inversion* if and only i < j and $\pi(i) > \pi(j)$.

The array $[U_i, U_j] = (U_i, U_{i+1}, \dots, U_j)$ is a locally decomposable (m-decomposable) permutation if the normalization of $(\pi(i), \pi(i+1), \dots, \pi(j))$ is a decomposable (m-decomposable) permutation.



[U1, U2] locally decomposable permutation

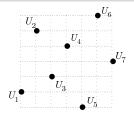
[U2, U5] locally m-decomposable permutation

Given $\pi \in S_n$ we define a set of logic implication formulas $\mathcal{F}(\pi)$ on the variables $\mathcal{U} = \{U_1, \dots, U_n\}$ in this way:

Definition

For any pair $U_i, U_i \in \mathcal{U}$ we have that $U_i \to U_i \in \mathcal{F}(\pi)$ if and only if

- (U_i, U_j) is an inversion;
- the array $[U_i, U_j]$ is a locally m-decomposable permutation.



$$\pi = (2, 6, 3, 5, 1, 7, 4)$$

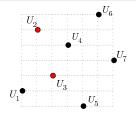
$$F(\ \pi \) = \{ U_3 \rightarrow \ U_2 \ , U_4 \rightarrow U_2 \ , U_5 \rightarrow U_1 \\ U_2 \\ U_3 \\ U_4 \ , U_7 \rightarrow U_6 \}$$

Given $\pi \in S_n$ we define a set of logic implication formulas $\mathcal{F}(\pi)$ on the variables $\mathcal{U} = \{U_1, \dots, U_n\}$ in this way:

Definition

For any pair $U_i, U_j \in \mathcal{U}$ we have that $U_j \to U_i \in \mathcal{F}(\pi)$ if and only if

- (U_i, U_j) is an inversion;
- the array $[U_i, U_j]$ is a locally m-decomposable permutation.



$$\pi = (2, 6, 3, 5, 1, 7, 4)$$

$$F(\pi) = \{ \frac{U_3}{} \to \frac{U_2}{}, U_4 \to U_2, U_5 \to U_1 U_2 U_3 U_4, U_7 \to U_6 \}$$

We define:

$$C_n' = \{\pi_1(P) : P \text{ column-convex permutomino of size } n-1\}$$

We define:

$$C_n' = \{\pi_1(P) : P \text{ column-convex permutomino of size } n-1\}$$

Theorem

A permutation $\pi \in \mathcal{C}'_n$ if and only if $\mathcal{F}(\pi)$ is satisfiable.

We define:

$$C'_n = \{\pi_1(P) : P \text{ column-convex permutomino of size } n-1\}$$

Theorem

A permutation $\pi \in \mathcal{C}'_n$ if and only if $\mathcal{F}(\pi)$ is satisfiable.

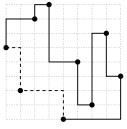
Remark

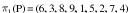
Each valuation v that satisfies $\mathcal{F}(\pi)$ corresponds to a column-convex permutomino P of size n-1 such that $\pi=\pi_1(P)$.

Remark

Given a permutomino P, the first component of P is just the mirror image of the second component of the polyomino P^M obtained by reflecting P with respect to the y-axis. Namely,

$$\pi_1(P) = (\pi_2(P^M))^M.$$







$$\pi_2(P^M) = (4, 7, 2, 5, 1, 9, 8, 3, 6)$$

The valuation \hat{v} of π is defined as follows:

 $\hat{v}(U_i) = 0$ if and only if U_i is a left-to-right minimum.

The valuation \hat{v} of π is defined as follows:

 $\hat{v}(U_i) = 0$ if and only if U_i is a left-to-right minimum.

Proposition

A permutation π is a dcc-permutation if and only if the valuation \hat{v} satisfies $\mathcal{F}(\pi^M)$.

Theorem

A permutation π of length n is a dcc-permutation if and only if:

- $\pi(1) \neq 1$,
- $\mathcal{F}(\pi^M)$ is satisfiable,
- for every implication $U_i \to U_1$ belonging to $\mathcal{F}(\pi^M)$, we have that U_i is a left-to-right minimum.

Theorem

A permutation π of length n is a dcc-permutation if and only if:

- $\pi(1) \neq 1$,
- $\mathcal{F}(\pi^M)$ is satisfiable,
- for every implication $U_i \to U_1$ belonging to $\mathcal{F}(\pi^M)$, we have that U_i is a left-to-right minimum.

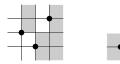
Corollary

A permutation π of length n is a dcc-permutation if and only if $\pi(1) \neq 1$ and there is no point U_i of π such that $[U_i, U_n]$ is a locally decomposable permutation and U_i is not a right-to-left minimum.

The previous result can be used to provide a characterization of the class of dcc-permutations in terms of *mesh patterns*.

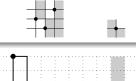
Theorem

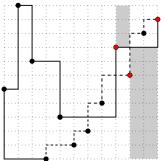
A permutation π is a dcc-permutation if and only if π avoids the mesh patterns represented below



Theorem

A permutation $\pi \in S_n$ is a dcc-permutation if and only if π avoids the mesh patterns represented below





The class \mathcal{B}_n and its enumeration

Let \mathcal{B}_n be the class of permutations avoiding the mesh pattern

The class \mathcal{B}_n and its enumeration

Let \mathcal{B}_n be the class of permutations avoiding the mesh pattern

Proposition

We have that:

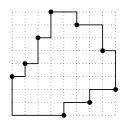
$$|\mathcal{B}_n|=1+\sum_{i=2}^n\frac{i!}{2}.$$

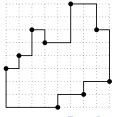
Enumeration of directed column-convex permutominoes according to the semi-perimeter

Let P be directed column-convex permutomino of size n.

$$\deg\left(P\right)=sp(P)-2n.$$

 $\mathcal{D}_{n,k}$: directed column-convex permutominoes of size n and degree k.





• $\mathcal{D}_{n,0}$: directed convex permutominoes of size n, whose number is given by $\binom{2n-1}{n}$ (Disanto, Duchi, Pinzani, Rinaldi, 2012).

- $\mathcal{D}_{n,0}$: directed convex permutominoes of size n, whose number is given by $\binom{2n-1}{n}$ (Disanto, Duchi, Pinzani, Rinaldi, 2012).
- We have proved that $|\mathcal{D}_{n,1}| = \frac{(2n-3)(n-2)}{n} {2n-4 \choose n-2}$.

- $\mathcal{D}_{n,0}$: directed convex permutominoes of size n, whose number is given by $\binom{2n-1}{n}$ (Disanto, Duchi, Pinzani, Rinaldi, 2012).
- We have proved that $|\mathcal{D}_{n,1}| = \frac{(2n-3)(n-2)}{n} {2n-4 \choose n-2}$.

Open problem

Enumerate $\mathcal{D}_{n,k}$ for k > 1.

- $\mathcal{D}_{n,0}$: directed convex permutominoes of size n, whose number is given by $\binom{2n-1}{n}$ (Disanto, Duchi, Pinzani, Rinaldi, 2012).
- We have proved that $|\mathcal{D}_{n,1}| = \frac{(2n-3)(n-2)}{n} {2n-4 \choose n-2}$.

Open problem

Enumerate $\mathcal{D}_{n,k}$ for k > 1.

Thank you!!

