Wilf Equivalence of Interval Embeddings

Brian K. Miceli

Permutation Patterns 2013 Université Paris Diderot July 3, 2013

・ロト ・回ト ・ヨト ・ヨト

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >

3 Results & Future Work

★ 同 ▶ ★ 三 ▶

_∢≣≯

• Joint work with Garner Cochran, Jeff Liese, and Jeff Remmel.

・ロト ・回ト ・ヨト ・ヨト

- Joint work with Garner Cochran, Jeff Liese, and Jeff Remmel.
- Follows off the work in three articles:

(4回) (4回) (4回)

- Joint work with Garner Cochran, Jeff Liese, and Jeff Remmel.
- Follows off the work in three articles:
 - "Rationality, irrationality, and Wilf equivalence in g.f.o.," *EJC* (2009), Kitaev, Liese, Remmel, and Sagan.

- Joint work with Garner Cochran, Jeff Liese, and Jeff Remmel.
- Follows off the work in three articles:
 - "Rationality, irrationality, and Wilf equivalence in g.f.o.," *EJC* (2009), Kitaev, Liese, Remmel, and Sagan.
 - "Generating functions for Wilf equivalence under the g.f.o.," *JIS* (2011), Langley, Liese, and Remmel

/⊒ > < ≣ >

- Joint work with Garner Cochran, Jeff Liese, and Jeff Remmel.
- Follows off the work in three articles:
 - "Rationality, irrationality, and Wilf equivalence in g.f.o.," *EJC* (2009), Kitaev, Liese, Remmel, and Sagan.
 - "Generating functions for Wilf equivalence under the g.f.o.," *JIS* (2011), Langley, Liese, and Remmel
 - "Wilf equivalence for g.f.o. modulo k," preprint, by Langley, Liese, and Remmel

< A > < B > <

Let \mathbb{N} denote the set $\{1, 2, 3, \ldots\}$.

・ロト ・回ト ・ヨト ・ヨト

Let \mathbb{N} denote the set $\{1, 2, 3, \ldots\}$. Let \mathbb{N}^* denote the set of all words over \mathbb{N} , where $\epsilon \in \mathbb{N}^*$ denotes the empty word.

- 4 回 2 - 4 回 2 - 4 回 2

Let \mathbb{N} denote the set $\{1, 2, 3, \ldots\}$. Let \mathbb{N}^* denote the set of all words over \mathbb{N} , where $\epsilon \in \mathbb{N}^*$ denotes the empty word.

We say that $u \in \mathbb{N}^*$ is a *factor* of $v \in \mathbb{N}^*$ if there exist $w_1, w_2 \in \mathbb{N}^*$ such that $v = w_1 u w_2$.

< 🗇 > < 🖃 >

Let \mathbb{N} denote the set $\{1, 2, 3, \ldots\}$. Let \mathbb{N}^* denote the set of all words over \mathbb{N} , where $\epsilon \in \mathbb{N}^*$ denotes the empty word.

We say that $u \in \mathbb{N}^*$ is a *factor* of $v \in \mathbb{N}^*$ if there exist $w_1, w_2 \in \mathbb{N}^*$ such that $v = w_1 u w_2$. If $w_1 = \epsilon$ ($w_2 = \epsilon$), then we say that u is a prefix (suffix) of v.

Suppose that $u = u_1 u_2 \cdots u_k \in \mathbb{N}^k$.

イロン イヨン イヨン イヨン

Suppose that $u = u_1 u_2 \cdots u_k \in \mathbb{N}^k$. We define

• the norm of u to be $\Sigma u = \sum_{i=1}^{k} u_i$, and

▲ 御 ▶ → ミ ▶

Suppose that $u = u_1 u_2 \cdots u_k \in \mathbb{N}^k$. We define

- the norm of u to be $\Sigma u = \sum_{i=1}^{k} u_i$, and
- the length of u to be $\ell(u) = k$.

Suppose that $u = u_1 u_2 \cdots u_k \in \mathbb{N}^k$. We define

- the norm of u to be $\Sigma u = \sum_{i=1}^{k} u_i$, and
- the length of u to be $\ell(u) = k$.

If u = 1432112, then $\Sigma u = 14$ and $\ell(u) = 7$.

Suppose that $u = u_1 u_2 \cdots u_k \in \mathbb{N}^k$. We define

- the norm of u to be $\Sigma u = \sum_{i=1}^{k} u_i$, and
- the length of u to be $\ell(u) = k$.

If u = 1432112, then $\Sigma u = 14$ and $\ell(u) = 7$.

We then define the weight of u to be $wt(u) = x^{\sum u} t^{\ell(u)}$.

Suppose that $u = u_1 u_2 \cdots u_k \in \mathbb{N}^k$. We define

- the norm of u to be $\Sigma u = \sum_{i=1}^{k} u_i$, and
- the length of u to be $\ell(u) = k$.

If u = 1432112, then $\Sigma u = 14$ and $\ell(u) = 7$.

We then define the weight of u to be $wt(u) = x^{\sum u} t^{\ell(u)}$.

If
$$u = 1432112$$
, then $wt(u) = x^{14}t^7$.

・ロト ・回ト ・ヨト ・ヨト

Given any poset $P = (\mathbb{N}, \leq_P)$ and two words $u, w \in \mathbb{N}^*$, we say that there is an *embedding* u *into* w if there exists a factor $z = z_1 z_2 \cdots z_k$ of w such that for every $1 \leq i \leq k$, $u_i \leq_P z_i$.

Given any poset $P = (\mathbb{N}, \leq_P)$ and two words $u, w \in \mathbb{N}^*$, we say that there is an *embedding* u *into* w if there exists a factor $z = z_1 z_2 \cdots z_k$ of w such that for every $1 \leq i \leq k$, $u_i \leq_P z_i$.

Define $S^P(u)$ to be the set of all words w such that the only embedding of u into w occurs at the right end of w, that is, the embedding of u occurs in a suffix of w.

Given any poset $P = (\mathbb{N}, \leq_P)$ and two words $u, w \in \mathbb{N}^*$, we say that there is an *embedding* u *into* w if there exists a factor $z = z_1 z_2 \cdots z_k$ of w such that for every $1 \leq i \leq k$, $u_i \leq_P z_i$.

Define $S^P(u)$ to be the set of all words w such that the only embedding of u into w occurs at the right end of w, that is, the embedding of u occurs in a suffix of w.

Set
$$S^{P}(u, x, t) = \sum_{w \in S^{P}(u)} wt(w).$$

Given any poset $P = (\mathbb{N}, \leq_P)$ and two words $u, w \in \mathbb{N}^*$, we say that there is an *embedding* u *into* w if there exists a factor $z = z_1 z_2 \cdots z_k$ of w such that for every $1 \leq i \leq k$, $u_i \leq_P z_i$.

Define $S^P(u)$ to be the set of all words w such that the only embedding of u into w occurs at the right end of w, that is, the embedding of u occurs in a suffix of w.

Set
$$S^{P}(u, x, t) = \sum_{w \in S^{P}(u)} wt(w)$$
. We say that words u and v are

P-*Wilf Equivalent*, denoted by $u \sim_P v$, if

$$\mathcal{S}^{P}(u,x,t) = \mathcal{S}^{P}(v,x,t).$$

@▶ 《 臣 ▶

・ロト ・回ト ・ヨト ・ヨト

Let $P = (\mathbb{N}, \leq)$, and denote Wilf equivalence by \sim .

<ロ> (日) (日) (日) (日) (日)

Let $P = (\mathbb{N}, \leq)$, and denote Wilf equivalence by \sim .

For example, let u = 132 and w = 27311231454.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Let
$$P = (\mathbb{N}, \leq)$$
, and denote Wilf equivalence by \sim .

For example, let u = 132 and w = 27311231454.

Then there are three embeddings of u into w:

★ 同 ▶ ★ 三 ▶

æ

- ∢ ≣ ▶

Let $P = (\mathbb{N}, \leq)$, and denote Wilf equivalence by \sim .

For example, let u = 132 and w = 27311231454.

Then there are three embeddings of u into w: $27311231\overline{454}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Some results from that paper:

イロト イヨト イヨト イヨト

Some results from that paper:

•
$$\mathcal{E}^{P}(u, x, t) = \frac{(1-x)\mathcal{E}^{P}(u, x, t)}{1-x-xt}$$
 and
 $\mathcal{A}^{P}(u, x, t) = \frac{1-x}{1-x-xt} - \mathcal{E}^{P}(u, x, t)$

イロト イヨト イヨト イヨト

Some results from that paper:

•
$$\mathcal{E}^P(u,x,t) = \frac{(1-x)\mathcal{E}^P(u,x,t)}{1-x-xt}$$
 and
 $\mathcal{A}^P(u,x,t) = \frac{1-x}{1-x-xt} - \mathcal{E}^P(u,x,t)$

• The functions $\mathcal{E}^P, \mathcal{A}^P, \mathcal{S}^P$ are rational for any choice of u.

・ロト ・回ト ・ヨト

æ

Wilf Equivalence K.L.R.S. Version

Some results from that paper:

•
$$\mathcal{E}^{P}(u,x,t) = \frac{(1-x)\mathcal{E}^{P}(u,x,t)}{1-x-xt}$$
 and
 $\mathcal{A}^{P}(u,x,t) = \frac{1-x}{1-x-xt} - \mathcal{E}^{P}(u,x,t)$

• The functions $\mathcal{E}^P, \mathcal{A}^P, \mathcal{S}^P$ are rational for any choice of u.

• $u \sim u^r$

・ロト ・日下・ ・ ヨト・

æ

Wilf Equivalence K.L.R.S. Version

Some results from that paper:

•
$$\mathcal{E}^{P}(u,x,t) = \frac{(1-x)\mathcal{E}^{P}(u,x,t)}{1-x-xt}$$
 and
 $\mathcal{A}^{P}(u,x,t) = \frac{1-x}{1-x-xt} - \mathcal{E}^{P}(u,x,t)$

• The functions $\mathcal{E}^P, \mathcal{A}^P, \mathcal{S}^P$ are rational for any choice of u.

• $u \sim u^r$

• If
$$u\sim v$$
, then $1u\sim 1v$ and $u^+\sim v^+.$

・ロト ・日下・ ・ ヨト・

A conjecture from that paper:

▲□→ < □→</p>

< ≣⇒

A conjecture from that paper:

• (Rearrangement Conjecture) If $u \sim v$, then u and v are rearrangements of one another.

▲ 御 ▶ → ミ ▶
Wilf Equivalence K.L.R.S. Version

A conjecture from that paper:

• (Rearrangement Conjecture) If $u \sim v$, then u and v are rearrangements of one another. (The converse is not true.)

< A > < 3

Wilf Equivalence K.L.R.S. Version

A conjecture from that paper:

• (Rearrangement Conjecture) If $u \sim v$, then u and v are rearrangements of one another. (The converse is not true.)

A separate conjecture from the first Langley, Liese, and Remmel paper:

< 🗇 > < 🖃 >

Wilf Equivalence K.L.R.S. Version

A conjecture from that paper:

 (Rearrangement Conjecture) If u ~ v, then u and v are rearrangements of one another. (The converse is not true.)

A separate conjecture from the first Langley, Liese, and Remmel paper:

(Strong Rearrangement Conjecture) If u ~ v, then there is a weight-preserving bijection f : N* → N* such that if w ∈ S^P(u, x, t), then f(w) ∈ S^P(v, x, t) and w, f(w) are rearrangements.

→ 同 → → 目 → → 目 →

Wilf Equivalence

・ロト ・回ト ・ヨト ・ヨト

Wilf Equivalence

Fix $m \geq 2$. Let $P_m = (\mathbb{N}, \leq_m)$, and denote P_m -Wilf equivalence by \sim_m .

・ロト ・回ト ・ヨト ・ヨト

Wilf Equivalence L.L.R. Version

Fix $m \ge 2$. Let $P_m = (\mathbb{N}, \le_m)$, and denote P_m -Wilf equivalence by \sim_m .

We say that there is an embedding of u into w if there exists a factor z of w such that for every $1 \leq i \leq k$

| 4 回 2 4 U = 2 4 U =

・回 ・ ・ ヨ ・ ・ ヨ ・

2

Wilf Equivalence L.L.R. Version

Fix $m \ge 2$. Let $P_m = (\mathbb{N}, \le_m)$, and denote P_m -Wilf equivalence by \sim_m .

We say that there is an embedding of u into w if there exists a factor z of w such that for every $1 \leq i \leq k$

① $<math>u_i \leq z_i, \text{ and }$

・ 回 と ・ ヨ と ・ ヨ と

æ

Wilf Equivalence

Fix $m \ge 2$. Let $P_m = (\mathbb{N}, \le_m)$, and denote P_m -Wilf equivalence by \sim_m .

We say that there is an embedding of u into w if there exists a factor z of w such that for every $1 \leq i \leq k$

 $u_i \leq z_i, \text{ and }$

 $u_i \equiv z_i \mod m.$

Let $\mathcal{P} = (\mathbb{N}, \leq_{\mathcal{P}})$ be any poset and let $m, n \in \mathbb{N}$.

- 4 回 🕨 - 4 国 🕨 - 4 国 🕨

Let $\mathcal{P} = (\mathbb{N}, \leq_{\mathcal{P}})$ be any poset and let $m, n \in \mathbb{N}$. We define

•
$$\mathcal{I}_{m,n}^{\mathcal{P}} = \{j \in \mathbb{N} \mid m \leq_{\mathcal{P}} j \leq_{\mathcal{P}} n\}$$
, and

Let $\mathcal{P} = (\mathbb{N}, \leq_{\mathcal{P}})$ be any poset and let $m, n \in \mathbb{N}$. We define

•
$$\mathcal{I}_{m,n}^{\mathcal{P}} = \{j \in \mathbb{N} \mid m \leq_{\mathcal{P}} j \leq_{\mathcal{P}} n\}$$
, and

•
$$\mathcal{I}_{m,\infty}^{\mathcal{P}} = \{j \in \mathbb{N} \mid m \leq_{\mathcal{P}} j\}.$$

・ロ・ ・ 日・ ・ 田・ ・ 田・

▲御≯ ★ 理≯ ★ 理≯

3

Interval Embeddings Definitions

Let $\mathcal{P} = (\mathbb{N}, \leq_{\mathcal{P}})$ be any poset and let $m, n \in \mathbb{N}$. We define

•
$$\mathcal{I}_{m,n}^{\mathcal{P}} = \{j \in \mathbb{N} \mid m \leq_{\mathcal{P}} j \leq_{\mathcal{P}} n\}$$
, and

•
$$\mathcal{I}_{m,\infty}^{\mathcal{P}} = \{j \in \mathbb{N} \mid m \leq_{\mathcal{P}} j\}.$$

Define $\vec{U} = \{\mathcal{I}_{m_1,n_1}^{\mathcal{P}}, \mathcal{I}_{m_2,n_2}^{\mathcal{P}}, \dots, \mathcal{I}_{m_k,n_k}^{\mathcal{P}}\}$, where for each $1 \leq i \leq k$, $m_i \leq_{\mathcal{P}} n_i$ with either $m_i, n_i \in \mathbb{N}$ or $m_i \in \mathbb{N}$ and $n_i = \infty$.

We say that w contains an *interval embedding of* \vec{U} relative to \mathcal{P} if there is a factor z of w such that for every $1 \leq i \leq k$, $z_i \in \mathcal{I}_{m_i,n_i}^{\mathcal{P}}$.

We say that w contains an *interval embedding of* \vec{U} relative to \mathcal{P} if there is a factor z of w such that for every $1 \leq i \leq k$, $z_i \in \mathcal{I}_{m_i,n_i}^{\mathcal{P}}$.

As an example, if $\mathcal{P} = (\mathbb{N}, \leq)$, then w = 33962435112 contains an interval embedding of $\vec{U} = \{[2, 4], [7, 12], [3, 7]\}$, but avoids $\vec{V} = \{[4, 4], [2, 7], [6, 9]\}$

We then define $\mathcal{E}^{\mathcal{P}}(\vec{U})$ to be the set of all words $w \in \mathbb{N}^*$ such that w contains an interval embedding of \vec{U} .

We then define $\mathcal{E}^{\mathcal{P}}(\vec{U})$ to be the set of all words $w \in \mathbb{N}^*$ such that w contains an interval embedding of \vec{U} .

We define

$$\mathcal{E}^{\mathcal{P}}(\vec{U}, x, t) = \sum_{w \in \mathcal{E}^{\mathcal{P}}(\vec{U})} wt(w).$$

A (1) > (1) > (1)

We then define $\mathcal{E}^{\mathcal{P}}(\vec{U})$ to be the set of all words $w \in \mathbb{N}^*$ such that w contains an interval embedding of \vec{U} .

We define

$$\mathcal{E}^{\mathcal{P}}(\vec{U},x,t) = \sum_{w \in \mathcal{E}^{\mathcal{P}}(\vec{U})} wt(w).$$

We say that \vec{U} and \vec{V} are *interval-Wilf equivalent* with respect to \mathcal{P} , denoted at $\vec{U} \sim_{\mathcal{P}} \vec{V}$, if

$$\mathcal{E}^{\mathcal{P}}(\vec{U},x,t) = \mathcal{E}^{\mathcal{P}}(\vec{V},x,t).$$

Relation to Previous Models

If $\mathcal{P} = (\mathbb{N}, \leq)$ and $\vec{U} = \{\mathcal{I}_{m_1,n_1}^{\mathcal{P}}, \mathcal{I}_{m_2,n_2}^{\mathcal{P}}, \dots, \mathcal{I}_{m_k,n_k}^{\mathcal{P}}\}$ with $n_i = \infty$ for all *i*, then this is the K.L.R.S. version of embedding the word $u = m_1 m_2 \cdots m_k$.

Relation to Previous Models

If $\mathcal{P} = (\mathbb{N}, \leq)$ and $\vec{U} = \{\mathcal{I}_{m_1,n_1}^{\mathcal{P}}, \mathcal{I}_{m_2,n_2}^{\mathcal{P}}, \dots, \mathcal{I}_{m_k,n_k}^{\mathcal{P}}\}$ with $n_i = \infty$ for all *i*, then this is the K.L.R.S. version of embedding the word $u = m_1 m_2 \cdots m_k$.

If $\mathcal{P}^m = (\mathbb{N}, \leq)$ and $\vec{U} = \{B_{m_1}^{\mathcal{P}}, B_{m_2}^{\mathcal{P}}, \dots, B_{m_k}^{\mathcal{P}}\}$ with $B_{m_j} = \{m_j + qm \mid q \in \{0\} \cup \mathbb{N}\}$ for each *j*, then this is the L.L.R. version of (modular) embedding the word $u = m_1 m_2 \cdots m_k$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

We say that \vec{U} and \vec{V} are *interval-Wilf equivalent* with respect to \mathcal{P} , denoted at $\vec{U} \sim_{\mathcal{P}} \vec{V}$, if

$$\mathcal{E}^{\mathcal{P}}(\vec{U},x,t) = \mathcal{E}^{\mathcal{P}}(\vec{V},x,t).$$

We say that \vec{U} and \vec{V} are *interval-Wilf equivalent* with respect to \mathcal{P} , denoted at $\vec{U} \sim_{\mathcal{P}} \vec{V}$, if

$$\mathcal{E}^{\mathcal{P}}(\vec{U},x,t) = \mathcal{E}^{\mathcal{P}}(\vec{V},x,t).$$

As an example, suppose $\mathcal{P} = (\mathbb{N}, \leq)$, $\vec{U} = \{\mathcal{I}_{3,8}^{\mathcal{P}}, \mathcal{I}_{1,8}^{\mathcal{P}}, \mathcal{I}_{2,8}^{\mathcal{P}}\}$, and $\vec{V} = \{\mathcal{I}_{2,8}^{\mathcal{P}}, \mathcal{I}_{1,8}^{\mathcal{P}}, \mathcal{I}_{3,8}^{\mathcal{P}}\}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

We say that \vec{U} and \vec{V} are *interval-Wilf equivalent* with respect to \mathcal{P} , denoted at $\vec{U} \sim_{\mathcal{P}} \vec{V}$, if

$$\mathcal{E}^{\mathcal{P}}(\vec{U},x,t) = \mathcal{E}^{\mathcal{P}}(\vec{V},x,t).$$

As an example, suppose $\mathcal{P} = (\mathbb{N}, \leq)$, $\vec{U} = \{\mathcal{I}_{3,8}^{\mathcal{P}}, \mathcal{I}_{1,8}^{\mathcal{P}}, \mathcal{I}_{2,8}^{\mathcal{P}}\}$, and $\vec{V} = \{\mathcal{I}_{2,8}^{\mathcal{P}}, \mathcal{I}_{1,8}^{\mathcal{P}}, \mathcal{I}_{3,8}^{\mathcal{P}}\}$. Then $\vec{U} \sim_{\mathcal{P}} \vec{V}$.

・回 と く ヨ と く ヨ と

We say that \vec{U} and \vec{V} are *interval-Wilf equivalent* with respect to \mathcal{P} , denoted at $\vec{U} \sim_{\mathcal{P}} \vec{V}$, if

$$\mathcal{E}^{\mathcal{P}}(\vec{U},x,t) = \mathcal{E}^{\mathcal{P}}(\vec{V},x,t).$$

As an example, suppose $\mathcal{P} = (\mathbb{N}, \leq)$, $\vec{U} = \{\mathcal{I}_{3,8}^{\mathcal{P}}, \mathcal{I}_{1,8}^{\mathcal{P}}, \mathcal{I}_{2,8}^{\mathcal{P}}\}$, and $\vec{V} = \{\mathcal{I}_{2,8}^{\mathcal{P}}, \mathcal{I}_{1,8}^{\mathcal{P}}, \mathcal{I}_{3,8}^{\mathcal{P}}\}$. Then $\vec{U} \sim_{\mathcal{P}} \vec{V}$.

Theorem

If
$$\mathcal{P} = (\mathbb{N}, \leq)$$
, then $\vec{U} \sim_{\mathcal{P}} \vec{U}^r$.

▲ 御 ▶ → ミ ▶

Theorem Rationality of Generating Functions

Theorem

If $\mathcal{P} = (\mathbb{N}, \leq)$ and \vec{U} is a sequence of "continuous" intervals, then the functions $\mathcal{S}^{\mathcal{P}}(\vec{U}, x, t)$, $\mathcal{E}^{\mathcal{P}}(\vec{U}, x, t)$, and $\mathcal{A}^{\mathcal{P}}(\vec{U}, x, t)$ are all rational.

A (1) > (1) > (1)

Theorem Rationality of Generating Functions

Theorem

If $\mathcal{P} = (\mathbb{N}, \leq)$ and \vec{U} is a sequence of "continuous" intervals, then the functions $\mathcal{S}^{\mathcal{P}}(\vec{U}, x, t)$, $\mathcal{E}^{\mathcal{P}}(\vec{U}, x, t)$, and $\mathcal{A}^{\mathcal{P}}(\vec{U}, x, t)$ are all rational.

A proof of this fact follows from the K.L.R.S. results.

Theorem Rationality of Generating Functions

Theorem

If $\mathcal{P} = (\mathbb{N}, \leq)$ and \vec{U} is a sequence of "continuous" intervals, then the functions $\mathcal{S}^{\mathcal{P}}(\vec{U}, x, t)$, $\mathcal{E}^{\mathcal{P}}(\vec{U}, x, t)$, and $\mathcal{A}^{\mathcal{P}}(\vec{U}, x, t)$ are all rational.

A proof of this fact follows from the K.L.R.S. results.

A counterexample in the case of "noncontinuous" intervals can be found in the modulo k L.L.R. paper.

< 🗇 > < 🖃 >

Theorem Rearrangment

Theorem

Let
$$\mathcal{P} = (\mathbb{N}, \leq)$$
 and fix $n \in \mathbb{N}$. If $\vec{U} \sim_{\mathcal{P}} \vec{V}$ with
 $\vec{U} = \{\mathcal{I}_{m_1,n}^{\mathcal{P}}, \mathcal{I}_{m_2,n}^{\mathcal{P}}, \dots, \mathcal{I}_{m_k,n}^{\mathcal{P}}\}$ and $\vec{V} = \{\mathcal{I}_{r_1,n}^{\mathcal{P}}, \mathcal{I}_{r_2,n}^{\mathcal{P}}, \dots, \mathcal{I}_{r_\ell,n}^{\mathcal{P}}\}$,
then \vec{U} and \vec{V} are rearrangements of one another.

・ロト ・回ト ・モト ・モト

Theorem Rearrangment

Theorem

Let
$$\mathcal{P} = (\mathbb{N}, \leq)$$
 and fix $n \in \mathbb{N}$. If $\vec{U} \sim_{\mathcal{P}} \vec{V}$ with
 $\vec{U} = \{\mathcal{I}_{m_1,n}^{\mathcal{P}}, \mathcal{I}_{m_2,n}^{\mathcal{P}}, \dots, \mathcal{I}_{m_k,n}^{\mathcal{P}}\}$ and $\vec{V} = \{\mathcal{I}_{r_1,n}^{\mathcal{P}}, \mathcal{I}_{r_2,n}^{\mathcal{P}}, \dots, \mathcal{I}_{r_\ell,n}^{\mathcal{P}}\}$,
then \vec{U} and \vec{V} are rearrangements of one another.

This was another conjecture in the K.L.R.S. paper, and a proof was given at PP2012.

・ロト ・回ト ・ヨト

Theorem Superset

The following theorems are interval embedding generalizations of some other g.f.o. results in both K.L.R.S. and L.L.R.

(4日) (日)

æ

- ∢ ≣ ▶

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Theorem Superset

The following theorems are interval embedding generalizations of some other g.f.o. results in both K.L.R.S. and L.L.R.

Theorem

Let $\vec{U} = (U_1, U_2, \dots, U_n)$, $\vec{V} = (V_1, V_2, \dots, V_n)$, and A be a set such that $U_i, V_i \subseteq A$ for all i. Then $A\vec{U} \sim A\vec{V}$, where $A\vec{U} = (A, U_1, U_2, \dots, U_n)$.

Theorem Superset

The following theorems are interval embedding generalizations of some other g.f.o. results in both K.L.R.S. and L.L.R.

Theorem

Let
$$\vec{U} = (U_1, U_2, \dots, U_n)$$
, $\vec{V} = (V_1, V_2, \dots, V_n)$, and A be a set such that $U_i, V_i \subseteq A$ for all i . Then $A\vec{U} \sim A\vec{V}$, where $A\vec{U} = (A, U_1, U_2, \dots, U_n)$.

Theorem

Let $B \subseteq A$ and suppose $s, t, n \ge 0$ with s + t = n. Then $\vec{U} = \{B^n, A\} \sim \vec{V} = \{B^s, A, B^t\}.$

イロト イヨト イヨト イヨト

Theorem

Let
$$\vec{U} = (U_1, U_2, \dots, U_n)$$
, $\vec{V} = (V_1, V_2, \dots, V_n)$ with $\vec{U} \sim \vec{V}$.
Then $\vec{U}^+ \sim \vec{V}^+$, where \vec{U}^+ is obtained by sending
 $U_i = [a_i, b_i] \mapsto U_i^+ = [a_i + 1, b_i + 1]$.

・ロ・ ・ 日・ ・ 田・ ・ 田・

Defintions

Given the sequence of intervals $\vec{U} = (U_1, U_2, \dots, U_n)$, define $d(U_i)$ to be the number of elements in U_i if U_i is finite, and let $d(U_i) = \infty$ otherwise.

▲ 同 ▶ ▲ 臣 ▶

Defintions

Given the sequence of intervals $\vec{U} = (U_1, U_2, \dots, U_n)$, define $d(U_i)$ to be the number of elements in U_i if U_i is finite, and let $d(U_i) = \infty$ otherwise. (All ∞ 's are =.)

▲同 ▶ ▲ 臣 ▶ .

Defintions

Given the sequence of intervals $\vec{U} = (U_1, U_2, \dots, U_n)$, define $d(U_i)$ to be the number of elements in U_i if U_i is finite, and let $d(U_i) = \infty$ otherwise. (All ∞ 's are =.)

Define $d(\vec{U}) = (d(U_1), d(U_2), \dots, d(U_n)).$

伺 とく ヨ とく

・回 と く ヨ と く ヨ と

Defintions

Given the sequence of intervals $\vec{U} = (U_1, U_2, \dots, U_n)$, define $d(U_i)$ to be the number of elements in U_i if U_i is finite, and let $d(U_i) = \infty$ otherwise. (All ∞ 's are =.)

Define
$$d(\vec{U}) = (d(U_1), d(U_2), \dots, d(U_n)).$$

Given two interval sequences \vec{U} and \vec{V} for which $d(\vec{U}) = d(\vec{V})$, let $\Delta(\vec{U}, \vec{V}) = (\delta_1, \delta_2, \dots, \delta_n)$, where given $U_i = [a_i, b_i]$ and $V_i = [c_i, d_i]$, $\delta_i = c_i - a_i$.

・ロン ・回 と ・ ヨン ・ ヨン

Defintions

For example, in the case that $\vec{U} = ([1,2], [3,4], [7,9], [8,\infty))$ and $\vec{V} = ([2,3], [2,3], [6,8], [9,\infty])$, then

< □ > < 三 >

Defintions

For example, in the case that
$$\vec{U} = ([1,2],[3,4],[7,9],[8,\infty))$$
 and
 $\vec{V} = ([2,3],[2,3],[6,8],[9,\infty])$, then
• $d(\vec{U}) = (2,2,3,\infty) = d(\vec{V})$, and

・ロト ・回ト ・ヨト ・ヨト

Defintions

For example, in the case that $\vec{U} = ([1,2], [3,4], [7,9], [8,\infty))$ and $\vec{V} = ([2,3], [2,3], [6,8], [9,\infty])$, then

•
$$d(\vec{U}) = (2, 2, 3, \infty) = d(\vec{V})$$
, and

•
$$\Delta(\vec{U},\vec{V}) = (1,-1,-1,1).$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

Theorem Rearrangment

We can now give an alternate version of a rearrangement-type theorem.

イロン イヨン イヨン イヨン

Theorem Rearrangment

We can now give an alternate version of a rearrangement-type theorem. (Albeit in a special case...)

▲ 御 ▶ → ミ ▶

Theorem Rearrangment

We can now give an alternate version of a rearrangement-type theorem. (Albeit in a special case...)

Theorem

Let $\vec{U} = (U_1, U_2, ..., U_n)$ and $\vec{V} = (V_1, V_2, ..., V_n)$ be non-overlapping sequences and suppose there exists $\sigma \in S_n$ such that

•
$$d(\vec{U}) = \sigma(d(\vec{V}))$$
 and
• $\Delta(\vec{U}, \sigma(\vec{V})) = 0.$
Then $\vec{U} \sim \vec{V}.$

A (1) < A (1) </p>

We need a bijection ϕ which takes words avoiding \vec{U} to words avoiding $\vec{V}.$

- - 4 回 ト - 4 回 ト

We need a bijection ϕ which takes words avoiding \vec{U} to words avoiding $\vec{V}.$

Proof:

- 4 回 2 - 4 □ 2 - 4 □

We need a bijection ϕ which takes words avoiding \vec{U} to words avoiding $\vec{V}.$

Proof: We may assume that $d(\vec{U}) = d(\vec{V})$.

A (1) > (1) > (1)

We need a bijection ϕ which takes words avoiding \vec{U} to words avoiding $\vec{V}.$

Proof: We may assume that $d(\vec{U}) = d(\vec{V})$.

If a word w avoids \vec{U} and \vec{V} , then $\phi(w) = w$.

- We need a bijection ϕ which takes words avoiding \vec{U} to words avoiding $\vec{V}.$
- *Proof*: We may assume that $d(\vec{U}) = d(\vec{V})$.
- If a word w avoids \vec{U} and \vec{V} , then $\phi(w) = w$.
- If w avoids \vec{U} but not \vec{V} , we can apply $\Delta(\vec{V}, \vec{U})$ to each occurrence of \vec{V} in w until it avoids \vec{V} but not \vec{U} .

We need a bijection ϕ which takes words avoiding \vec{U} to words avoiding $\vec{V}.$

Proof: We may assume that $d(\vec{U}) = d(\vec{V})$.

If a word w avoids \vec{U} and \vec{V} , then $\phi(w) = w$.

If w avoids \vec{U} but not \vec{V} , we can apply $\Delta(\vec{V}, \vec{U})$ to each occurrence of \vec{V} in w until it avoids \vec{V} but not \vec{U} . This is guaranteed to occur because of the non-overlapping, and it's only tricky to show this in the case where some U_i is infinite.

・ 回 ・ ・ ヨ ・ ・

We need a bijection ϕ which takes words avoiding \vec{U} to words avoiding $\vec{V}.$

Proof: We may assume that $d(\vec{U}) = d(\vec{V})$.

If a word w avoids \vec{U} and \vec{V} , then $\phi(w) = w$.

If w avoids \vec{U} but not \vec{V} , we can apply $\Delta(\vec{V}, \vec{U})$ to each occurrence of \vec{V} in w until it avoids \vec{V} but not \vec{U} . This is guaranteed to occur because of the non-overlapping, and it's only tricky to show this in the case where some U_i is infinite. \Box

Let $\vec{U} = ([1, 1], [4, 9], [5, 10])$ and $\vec{V} = ([1, 1], [2, 7], [7, 12])$, where $\Delta(\vec{V}, \vec{U}) = (0, 2, -2)$.

→ 御 → → 注 → → 注 →

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

イロン イヨン イヨン イヨン

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129}9\underline{12}\overline{11} \rightarrow$

Image: A = A = A

æ

- ∢ ≣ ▶

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129}9\underline{12}\overline{11} \rightarrow \underline{147}$

<->→ □→ < ≥→</>

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129}9\underline{12}\overline{\overline{11}} \rightarrow \underline{147}9$

▲ □ ► < □ ►</p>

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129}9\underline{12}\overline{11} \rightarrow \underline{147}9\underline{149} \rightarrow$

▲ □ ► < □ ►</p>

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129}9\underline{12\overline{11}} \rightarrow \underline{147}9\underline{149} \rightarrow 165$

▲ □ ► < □ ►</p>

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129912\overline{11}} \rightarrow \underline{147}9\underline{149} \rightarrow 1659$

▲ □ ► < □ ►</p>

글 > 글

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129912\overline{11}} \rightarrow \underline{147}9\underline{149} \rightarrow 1659\underline{167} \rightarrow$

・ 同・ ・ ヨ・

글 > 글

Let
$$\vec{U} = ([1, 1], [4, 9], [5, 10])$$
 and $\vec{V} = ([1, 1], [2, 7], [7, 12])$, where $\Delta(\vec{V}, \vec{U}) = (0, 2, -2)$.

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129}9\underline{12\overline{11}} \rightarrow \underline{147}9\underline{149} \rightarrow 1659\underline{167} \rightarrow 1659$

・ 同・ ・ ヨ・

글 > 글

Let
$$\vec{U} = ([1, 1], [4, 9], [5, 10])$$
 and $\vec{V} = ([1, 1], [2, 7], [7, 12])$, where $\Delta(\vec{V}, \vec{U}) = (0, 2, -2)$.

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{129}9\underline{12\overline{11}} \rightarrow \underline{147}9\underline{149} \rightarrow 1659\underline{167} \rightarrow 1659185$

< **₩** ► < **⇒** ►

-≣->

Let
$$\vec{U} = ([1,1],[4,9],[5,10])$$
 and $\vec{V} = ([1,1],[2,7],[7,12])$, where $\Delta(\vec{V},\vec{U}) = (0,2,-2).$

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

$$w = \underline{12991211} \rightarrow \underline{1479149} \rightarrow 1659\underline{167} \rightarrow 1659185 = \phi(w).$$

イロン イヨン イヨン イヨン

Let
$$\vec{U} = ([1, 1], [4, 9], [5, 10])$$
 and $\vec{V} = ([1, 1], [2, 7], [7, 12])$, where $\Delta(\vec{V}, \vec{U}) = (0, 2, -2)$.

Consider $w = 129912\overline{11}$, which avoids \vec{U} but contains two occurrences of \vec{V} .

 $w = \underline{12991211} \rightarrow \underline{1479149} \rightarrow 1659\underline{167} \rightarrow 1659185 = \phi(w).$

We see that $\phi(w)$ avoids \vec{V} but not \vec{U} .

Look at Wilf equivalence classes

イロン イヨン イヨン イヨン

æ

</i>
< □ > < □ >

- Look at Wilf equivalence classes
- Ø Keep working on the rearrangement conjecture

Thank you.

Miceli Interval Embeddings

・ロト ・回ト ・ヨト ・ヨト