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Latin Squares

A Latin Square is an n x n grid in which each number 1, ..., n is
used exactly once in each row and in each column.

2 1 3 4

1 3 4 2

4 2 1 3

3 4 2 1



Pattern Containment and Avoidance

I A permutation p is said to avoid a pattern π if p does not
contain π

I A Latin Square is said to avoid a pattern π if no row or
column, read respectively from left to right and top to
bottom, contains π
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Theorem
The number of n by n Latin Squares avoiding the pattern 123 in
the columns is n!.
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123 Avoidance in Columns

Proof.
1. Fix the first row
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123 Avoidance in Columns

Proof.
1. Fix the first row
2. There is then exactly one Latin Square with that first row
avoiding 123 in the columns
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123 Avoidance in Columns

Proof.
1. Fix the first row
2. There is then exactly one Latin Square with that first row
avoiding 123 in the columns

1 3 2 4

4 2 1 3

3 1 4 2

2 4 3 1



Corollaries

I There are n! Latin Squares avoiding 123 in just the rows

I You will avoid 123 in every column if and only if each column
has the decreasing structure

i , i − 1, i − 2, ..., 2, 1, n, n − 1, ..., i + 1.
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123 Avoidance in Latin Squares

Question
How many Latin Squares avoid 123?

Theorem
The number of n by n Latin Squares avoiding the pattern 123 in
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123 Avoidance in Latin Squares

Question
How many Latin Squares avoid 123?

Theorem
The number of n by n Latin Squares avoiding the pattern 123 in
both the rows and the columns is n.



123 Avoidance

Proof.
1. Fix a 1 in the first column
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123 Avoidance

Proof.
1. Fix a 1 in the first column
2. Complete that row to avoid 123
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123 Avoidance

Proof.
1. Fix a 1 in the first column
2. Complete that row to avoid 123
3. By the previous corollary, there is exactly one Latin Square
avoiding 123 in the columns with this row
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123 Avoidance

Proof.
1. Fix a 1 in the first column
2. Complete that row to avoid 123
3. By the previous corollary, there is exactly one Latin Square
avoiding 123 in the columns with this row

3 2 1 4
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123 Avoidance: Corollary

The Latin Squares avoiding 123 look like the following:

i i − 1 1 n i + 2 i + 1

i − 1
. . . 1 n i + 2 i + 1 i

1 n i + 2 i + 1 i

1 n
. . . i + 2 i + 1 i

1 n i + 2 i + 1 i

n i + 2 i + 1 i 1

i + 2 i + 1 i
. . . 1 n

i + 2 i + 1 i 1 n

i + 2 i + 1 i 1 n
. . .

i + 1 i 1 n i + 2



Avoiding Longer Patterns

Theorem
Let πn and π′n be patterns of size n. Then Ln(πn) = Ln(π′n), where
Ln(π) denotes the number of n by n Latin Squares avoiding π.

Example

I L3(π3) = 3

I L4(π4) = 400

I L5(π5) = 148120
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Avoiding Longer Patterns

Theorem
Ln(π) = Ln(πrev) = Ln(πc).

Question
Do other equivalence classes exist?

Example

Let Sn(π) denote the number of permutations avoiding the pattern
π. Then:

I Sn(π) = Sn(π−1).

I Sn(1342) = Sn(2413)
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Theorem
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Do Other Equivalence Classes Exist?

Example

I Sn(π) = Sn(π−1).

I Sn(1342) = Sn(2413)

Answer (No)

I L5(1423) = 26492, but L5((1423)−1) = L5(1342) = 26616.

I L5(1342) = 26616, but L5(2413) = 27797



Monotone Subsequences

Theorem

I Every permutation of length pq + 1 contains either an
increasing subsequence of length p + 1 or a decreasing
subsequence of length q + 1.

I In particular, a permutation of length at least (m − 1)2 + 1
contains a monotone subsequence of length m.

Question
Can we say something stronger for Latin Squares?
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Monotone Subsequences: A (Slightly) Improved Bound

Question
Can we say something stronger for Latin Squares?

Idea
One row must begin with a 1.

Theorem
Every Latin Square of at least dimension (m− 1)(m− 2) + 2 has a
monotone subsequence of length m.
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Monotone Subsequences: A (Slightly) Improved Bound

Theorem
Every Latin Square of at least dimension (m− 1)(m− 2) + 2 has a
monotone subsequence of length m.

Proof.

I Look at the row beginning with a 1

I Need an increasing subsequence of length m − 1 or a
decreasing subsequence of length m in remaining n− 1 entries

I Previous theorem guarantees this with (m − 1)(m − 2) + 1
additional entries
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Monotone Subsequences: An Optimal Bound

Consider the n2 × n2 Latin Square obtained by permuting the
following row, which has longest monotone sequence n:

n 2n . . . n2 n − 1 2n − 1 . . . n2 − 1 . . . 1 n + 1 . . . n2 − n + 1.

Example
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This Latin Square has longest monotone subsequence n + 1
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Open Questions

I What is Ln(π) for patterns of length 4?

I What is Ln(πn)? We saw that L3(π3) = 3, L4(π4) = 400, and
L5(π5) = 148120.

I For a fixed pattern, say π = 123...m, can anything be said
about the growth rate of Ln(π)?

I Which patterns are the easiest to avoid in Latin Squares? The
hardest? Do non-trivial equivalences exist?

I How many Latin Squares contain 123
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