Pattern Avoidance in Latin Squares

Sam Gutekunst

Harvey Mudd College, 2014

7/3/13

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction

Outline

Introduction

Results

- Latin Squares avoiding 123
- Latin Squares and larger patterns

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Monotone Subsequences

Outline

Introduction

Results

- Latin Squares avoiding 123
- Latin Squares and larger patterns

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monotone Subsequences

Open Questions

Latin Squares

A Latin Square is an $n \times n$ grid in which each number 1, ..., n is used exactly once in each row and in each column.

2	1	3	4
1	3	4	2
4	2	1	3
3	4	2	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pattern Containment and Avoidance

 A permutation p is said to avoid a pattern π if p does not contain π

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Pattern Containment and Avoidance

- A permutation p is said to avoid a pattern π if p does not contain π
- A Latin Square is said to avoid a pattern π if no row or column, read respectively from left to right and top to bottom, contains π

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question How many Latin Squares avoid 123?

Question How many Latin Squares avoid 123?

New Question How many Latin Squares avoid 123 in just the columns?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question How many Latin Squares avoid 123?

New Question How many Latin Squares avoid 123 in just the columns?

Theorem

The number of n by n Latin Squares avoiding the pattern 123 in the columns is n!.

Proof.

1. Fix the first row

1	3	2	4

Proof.

1. Fix the first row

2. There is then exactly one Latin Square with that first row avoiding 123 in the columns

1	3	2	4
4			
3			
2			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

1. Fix the first row

2. There is then exactly one Latin Square with that first row avoiding 123 in the columns

1	3	2	4
4		1	
3		4	
2		3	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

1. Fix the first row

2. There is then exactly one Latin Square with that first row avoiding 123 in the columns

1	3	2	4
4	2	1	3
3	1	4	2
2	4	3	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corollaries

▶ There are *n*! Latin Squares avoiding 123 in just the rows

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Corollaries

- ▶ There are *n*! Latin Squares avoiding 123 in just the rows
- You will avoid 123 in every column if and only if each column has the decreasing structure

$$i, i - 1, i - 2, ..., 2, 1, n, n - 1, ..., i + 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1	3	2	4
4	2	1	3
3	1	4	2
2	4	3	1

Question How many Latin Squares avoid 123?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question

How many Latin Squares avoid 123?

Theorem

The number of n by n Latin Squares avoiding the pattern 123 in both the rows and the columns is n.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof.

1. Fix a 1 in the first column

1		

Proof.

- 1. Fix a 1 in the first column
- 2. Complete that row to avoid 123

1	4	3	2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

- 1. Fix a 1 in the first column
- 2. Complete that row to avoid 123
- $3.\,$ By the previous corollary, there is exactly one Latin Square avoiding 123 in the columns with this row

3			
2			
1	4	3	2
4			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

- 1. Fix a 1 in the first column
- 2. Complete that row to avoid 123
- $3.\,$ By the previous corollary, there is exactly one Latin Square avoiding 123 in the columns with this row

3	2	1	4
2	1	4	3
1	4	3	2
4	3	2	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

123 Avoidance: Corollary

The Latin Squares avoiding 123 look like the following:

i	<i>i</i> – 1			1	n			<i>i</i> + 2	<i>i</i> + 1
i-1	·		1	n			<i>i</i> + 2	i+1	i
		1	n			<i>i</i> + 2	i+1	i	
	1	n	·		<i>i</i> + 2	i+1	i		
1	n			<i>i</i> + 2	i+1	i			
n			<i>i</i> + 2	i+1	i				1
		i + 2	i+1	i		•		1	п
	<i>i</i> + 2	i + 1	i				1	n	
<i>i</i> + 2	i+1	i				1	n	·	
i+1	i				1	n			<i>i</i> + 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Let π_n and π'_n be patterns of size n. Then $L_n(\pi_n) = L_n(\pi'_n)$, where $L_n(\pi)$ denotes the number of n by n Latin Squares avoiding π .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let π_n and π'_n be patterns of size n. Then $L_n(\pi_n) = L_n(\pi'_n)$, where $L_n(\pi)$ denotes the number of n by n Latin Squares avoiding π .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

•
$$L_3(\pi_3) = 3$$

Theorem

Let π_n and π'_n be patterns of size n. Then $L_n(\pi_n) = L_n(\pi'_n)$, where $L_n(\pi)$ denotes the number of n by n Latin Squares avoiding π .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

•
$$L_3(\pi_3) = 3$$

•
$$L_4(\pi_4) = 400$$

Theorem

Let π_n and π'_n be patterns of size n. Then $L_n(\pi_n) = L_n(\pi'_n)$, where $L_n(\pi)$ denotes the number of n by n Latin Squares avoiding π .

Example

• $L_3(\pi_3) = 3$

•
$$L_4(\pi_4) = 400$$

• $L_5(\pi_5) = 148120$

Theorem $L_n(\pi) = L_n(\pi^{rev}) = L_n(\pi^c).$

Theorem $L_n(\pi) = L_n(\pi^{rev}) = L_n(\pi^c).$

Question

Do other equivalence classes exist?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem $L_n(\pi) = L_n(\pi^{rev}) = L_n(\pi^c).$

Question

Do other equivalence classes exist?

Example

Let $S_n(\pi)$ denote the number of permutations avoiding the pattern π . Then:

•
$$S_n(\pi) = S_n(\pi^{-1}).$$

•
$$S_n(1342) = S_n(2413)$$

Do Other Equivalence Classes Exist?

Example

- $S_n(\pi) = S_n(\pi^{-1}).$
- $S_n(1342) = S_n(2413)$

Answer (No)

► $L_5(1423) = 26492$, but $L_5((1423)^{-1}) = L_5(1342) = 26616$.

• $L_5(1342) = 26616$, but $L_5(2413) = 27797$

Monotone Subsequences

Theorem

Every permutation of length pq + 1 contains either an increasing subsequence of length p + 1 or a decreasing subsequence of length q + 1.

Monotone Subsequences

Theorem

- Every permutation of length pq + 1 contains either an increasing subsequence of length p + 1 or a decreasing subsequence of length q + 1.
- In particular, a permutation of length at least (m − 1)² + 1 contains a monotone subsequence of length m.

Monotone Subsequences

Theorem

- Every permutation of length pq + 1 contains either an increasing subsequence of length p + 1 or a decreasing subsequence of length q + 1.
- In particular, a permutation of length at least (m − 1)² + 1 contains a monotone subsequence of length m.

Question

Can we say something stronger for Latin Squares?

Question

Can we say something stronger for Latin Squares?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Question

Can we say something stronger for Latin Squares?

Idea

One row must begin with a 1.

Question

Can we say something stronger for Latin Squares?

Idea

One row must begin with a 1.

Theorem

Every Latin Square of at least dimension (m-1)(m-2)+2 has a monotone subsequence of length m.

Theorem

Every Latin Square of at least dimension (m-1)(m-2)+2 has a monotone subsequence of length m.

Proof.

Look at the row beginning with a 1

Theorem

Every Latin Square of at least dimension (m-1)(m-2)+2 has a monotone subsequence of length m.

Proof.

- Look at the row beginning with a 1
- ► Need an increasing subsequence of length m − 1 or a decreasing subsequence of length m in remaining n − 1 entries

Theorem

Every Latin Square of at least dimension (m-1)(m-2)+2 has a monotone subsequence of length m.

Proof.

- Look at the row beginning with a 1
- ► Need an increasing subsequence of length m − 1 or a decreasing subsequence of length m in remaining n − 1 entries

▶ Previous theorem guarantees this with (m − 1)(m − 2) + 1 additional entries

Monotone Subsequences: An Optimal Bound

Consider the $n^2 \times n^2$ Latin Square obtained by permuting the following row, which has longest monotone sequence *n*:

$$n \ 2n \dots n^2$$
 $n-1 \ 2n-1 \dots n^2 - 1 \dots 1 \ n+1 \dots n^2 - n+1.$
Example

2	4	1	3
4	1	3	2
1	3	2	4
3	2	4	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monotone Subsequences: An Optimal Bound

Consider the $n^2 \times n^2$ Latin Square obtained by permuting the following row, which has longest monotone sequence *n*:

$$n \ 2n \dots n^2$$
 $n-1 \ 2n-1 \dots n^2 - 1 \dots 1 \ n+1 \dots n^2 - n+1.$

Example

2	4	1	3
4	1	3	2
1	3	2	4
3	2	4	1

This Latin Square has longest monotone subsequence n + 1

• What is $L_n(\pi)$ for patterns of length 4?

- What is $L_n(\pi)$ for patterns of length 4?
- ▶ What is $L_n(\pi_n)$? We saw that $L_3(\pi_3) = 3$, $L_4(\pi_4) = 400$, and $L_5(\pi_5) = 148120$.

- What is $L_n(\pi)$ for patterns of length 4?
- What is $L_n(\pi_n)$? We saw that $L_3(\pi_3) = 3$, $L_4(\pi_4) = 400$, and $L_5(\pi_5) = 148120$.

For a fixed pattern, say π = 123...m, can anything be said about the growth rate of L_n(π)?

- What is $L_n(\pi)$ for patterns of length 4?
- What is $L_n(\pi_n)$? We saw that $L_3(\pi_3) = 3$, $L_4(\pi_4) = 400$, and $L_5(\pi_5) = 148120$.
- For a fixed pattern, say π = 123...m, can anything be said about the growth rate of L_n(π)?
- Which patterns are the easiest to avoid in Latin Squares? The hardest? Do non-trivial equivalences exist?

- What is $L_n(\pi)$ for patterns of length 4?
- What is $L_n(\pi_n)$? We saw that $L_3(\pi_3) = 3$, $L_4(\pi_4) = 400$, and $L_5(\pi_5) = 148120$.
- For a fixed pattern, say π = 123...m, can anything be said about the growth rate of L_n(π)?
- Which patterns are the easiest to avoid in Latin Squares? The hardest? Do non-trivial equivalences exist?

How many Latin Squares contain 123