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T=mT...Th €Spn, 0 E Sm.

Definition. 7 contains o as a consecutive pattern if it has a
subsequence of adjacent entries order-isomorphic to o.
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Consecutive patterns

T=mT...Th €Spn, 0 E Sm.

Definition. 7 contains o as a consecutive pattern if it has a
subsequence of adjacent entries order-isomorphic to o.

Examples: 25134 avoids 132
42531 contains 132
15243 contains two occurrences of 132

In this talk, containment and avoidance will always refer to
consecutive patterns.
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Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

» Occurrences of 21 are descents.
» Occurrences of 132 and 231 are peaks.

» Permutations avoiding 123 and 321 are alternating
permutations.
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Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

» Occurrences of 21 are descents.
» Occurrences of 132 and 231 are peaks.

» Permutations avoiding 123 and 321 are alternating
permutations.

The systematic study of consecutive
patterns in permutations started 13
years ago.
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Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

» Occurrences of 21 are descents.
» Occurrences of 132 and 231 are peaks.

» Permutations avoiding 123 and 321 are alternating

permutations. o
The systematic study of consecutive blmﬁe%%anﬁglgd Mendes = %
patterns in permutations started 13 Kh”@,]km E ==§ =
years ago. Work in the area by c—§° géggg stﬁ]gpimssun
= & =SS bl foiseno
Baxter E=3
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Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

» Occurrences of 21 are descents.
» Occurrences of 132 and 231 are peaks.

» Permutations avoiding 123 and 321 are alternating
permutations.

The systematic study of consecutive mﬁehgﬁﬁgléd Mendes = %
patterns in permutations started 13 Kh”@,]km E =§ =
years ago. Work in the area by c—§° g%ggg stﬁ]gpimssun
= & =SS bl foiseno
Baxter E=3

Consecutive patterns arise naturally in dynamical systems, and play
a role in distinguishing deterministic from random sequences.
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Notation

For a fixed pattern o, let

. Zn
Po(u, z) _ Z Z y#{occurrences of oinm}4

nl’
n20 7T63n
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Notation

For a fixed pattern o, let

. Zn
Po(u, z) _ Z Z y#{occurrences of oinm}4

nl’
n20 7T63n

P(0.2) = Y an(o) 2.

n>0
where a,(0) = #{m € S, : 7 avoids ¢ }.
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Notation

For a fixed pattern o, let

. Zn
Po(u, z) _ Z Z y#{occurrences of oinm}4

n!’
n20 7T63n
zn
P,(0,z) = Zan(a)ﬁ,
n>0
where a,(0) = #{m € S, : 7 avoids ¢ }.
Let 1
CL)O-(U,Z) = m
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Some questions being studied

» Exact enumeration: find P,(u, z) or P,(0, z).

In this talk: Formulas for P,(u,z) for o of certain shapes.
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Some questions being studied

» Exact enumeration: find P,(u, z) or P,(0, z).
In this talk: Formulas for P,(u,z) for o of certain shapes.
» Classification of patterns according to c-Wilf-equivalence.
We write o0 ~ 7 if Py(u,z) = Pr(u, z).
Example: 1342 ~ 1432.

In this talk: Classification of patterns of length up to 6.

Consecutive patterns in permutations



Introduction Definitions
Length 3 and 4
The cluster method
Linear extensions

Some questions being studied

» Exact enumeration: find P,(u, z) or P,(0, z).
In this talk: Formulas for P,(u,z) for o of certain shapes.
» Classification of patterns according to c-Wilf-equivalence.
We write o0 ~ 7 if Py(u,z) = Pr(u, z).
Example: 1342 ~ 1432.

In this talk: Classification of patterns of length up to 6.

» Comparison of a,(o) for different patterns.
Example: a,(132) < ap(123) for n > 4.

In this talk: For which pattern o € Sp, is aip(0) largest.
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Patterns of small length

Length 3: 2 c-Wilf classes (compare: 1 Wilf class in classical case)

123 ~ 321
132 ~ 231 ~ 312 ~ 213
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Patterns of small length

Length 3: 2 c-Wilf classes (compare: 1 Wilf class in classical case)

123 ~ 321
132 ~ 231 ~ 312 ~ 213

Length 4: 7 c-Wilf classes (compare: 3 Wilf classes in classical case)

1234 ~ 4321

2413 ~ 3142

2143 ~ 3412

1324 ~ 4231

1423 ~ 3241 ~ 4132 ~ 2314

1342 ~ 2431 ~ 4213 ~ 3124 ~ 1432 ~ 2341 ~ 4123 ~ 3214
1243 ~ 3421 ~ 4312 ~ 2134

. *
All ~ follow from reversal and complementation except for ~.
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Patterns of small length

Length 3: 2 c-Wilf classes (compare: 1 Wilf class in classical case)

123 ~ 321
132 ~ 231 ~ 312 ~ 213

Length 4: 7 c-Wilf classes (compare: 3 Wilf classes in classical case)

1234 ~ 4321 enumeration solved
2413 ~ 3142 enumeration unsolved
2143 ~ 3412

1324 ~ 4231

1423 ~ 3241 ~ 4132 ~ 2314

1342 ~ 2431 ~ 4213 ~ 3124 ~ 1432 ~ 2341 ~ 4123 ~ 3214
1243 ~ 3421 ~ 4312 ~ 2134

. *
All ~ follow from reversal and complementation except for ~.
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Clusters

We use an adaptation of the cluster method of Goulden and
Jackson, based on inclusion-exclusion.

A k-cluster w.r.t. o € Sy, is a permutation filled with & marked
occurrences of o that overlap with each other.
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Clusters

We use an adaptation of the cluster method of Goulden and
Jackson, based on inclusion-exclusion.

A k-cluster w.r.t. o € Sy, is a permutation filled with & marked
occurrences of o that overlap with each other.

Example: 142536879 is a 3-cluster w.r.t. 1324.
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The cluster method

Let the EGF for clusters be

K2z
CO—(U,Z) = ch’ku H,

n,k

where ¢7, := number of k-clusters of length n w.r.t. o.
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The cluster method

Let the EGF for clusters be

K2z
CO—(U,Z) = ch’ku H,

n,k
where 7, := number of k-clusters of length n w.r.t. o.
Theorem (Goulden-Jackson '79, adapted)

1 1
we(u,z2) 1—z—Co(u—1,2)

Py(u,z) =
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The cluster method

Let the EGF for clusters be

K2z
CO—(U,Z) = ch’ku H,

n,k
where 7, := number of k-clusters of length n w.r.t. o.
Theorem (Goulden-Jackson '79, adapted)

1 1
we(u,z2) 1—z—Co(u—1,2)

Py(u,z) =

This reduces the computation of P,(u, z) to the enumeration of
clusters.
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Clusters as linear extensions of posets

T T3 MaT5 ReR7MgMeM10711 IS a cluster w.r.t. o = 14253
T <3 <75 < 7o < T4
3 < 75 < Ty < Mg < T
T < g < 11 < Mg < 710
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Clusters as linear extensions of posets

TITQT3TATE T TT7TgTQT107T11 is a cluster w.r.t. o = 14253
T < m3 <75 < o < T4
T3 Ty < Ty < M4 < Tp
T < g < 11 < Mg < 710
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Clusters as linear extensions of posets

M Mo T3 T4T5 g7 TgToT10m11 1S a cluster w.r.t. o = 14253
T < m3 <75 < o < T4
3 < 75 < Ty < Mg < T
7 < Mg < 11 < g < 710
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Introduction

T ster method
Linear extensions

Clusters as linear extensions of posets

T Mo M3 T4T5 g7 NgMT10711 IS @ cluster w.r.t. o = 14253
T <m3 <7y < Ty < T4
w3 < T < M7 < T4 < T
7 < o < M1 < Mg < 710

i} 10

6 11

m is a linear extension of the
poset given by these relations
(called a cluster poset)

a4 o
T2 7

]

T3

1
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Clusters as linear extensions of posets

T1TQT3TATETTeTT7TTgTQT107T11 is a cluster w.r.t. o = 14253
T < m3 <75 < o < T4
3 < 75 < Ty < Mg < T
Ty < g < 1 < g < 710

)

7 is a linear extension of the
poset given by these relations
(called a cluster poset)

Ex: 1628311495107




Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
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The pattern 0 = 12... m and generalizations

Theorem (Goulden-Jackson '83, E.-Noy '01)

Foro =12...m, wy(u,z) is the solution of

WMD) 4 (1= ) (W™ . 40 +w)=0.
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Exact enumeration

The pattern 0 = 12... m and generalizations

Theorem (Goulden-Jackson '83, E.-Noy '01)

Foro =12...m, wy(u,z) is the solution of

WMD) 4 (1= ) (W™ . 40 +w)=0.

It follows that w12 m(0,z) = Z <(jm)| T Gm+ 1)|)'

j>0
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Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

The pattern 0 = 12... m and generalizations

Theorem (Goulden-Jackson '83, E.-Noy '01)
Foro =12...m, wy(u,z) is the solution of

WMD) 4 (1= ) (W™ . 40 +w)=0.

It foll h " -
t follows that w12 m(0, z) —JZ; <(jm)! N (jm—i—l)!)'

Example:

1 2
w1234(0,2)  cosz —sinz ez

P1234(0,2) =
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Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

The pattern 0 = 12... m and generalizations

More generally...

Theorem (E.-Noy '11)

Let 0 € S;, be such that all its cluster posets are chains. Then
wy(u, z) is the solution of

w(ml 1_U)Z (m—d-1) =0,

deO,

for a certain set O, easily defined from o.

An example of such a pattern is
o=12...(s—1)(s+1)s(s+2)(s+3)... m
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Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations

Other patterns

Non-overlapping patterns

o € Sy is non-overlapping if two occurrences of o can’t overlap in
more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.
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Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

o € Sy is non-overlapping if two occurrences of o can’t overlap in
more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (Béna '10)
The proportion of non-overlapping patterns of length m is > 0.364.
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Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

o € Sy is non-overlapping if two occurrences of o can’t overlap in
more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (Béna '10)
The proportion of non-overlapping patterns of length m is > 0.364.

Proposition (Dotsenko-Khoroshkin, Remmel "10)

For o € Sy non-overlapping, P, (u,z) depends only on o1 and op,.
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Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations

Other patterns

Non-overlapping patterns

Theorem (E.-Noy '01)
Let 0 € S;, be non-overlapping with o1 =1, 0y = b. Then
wy(u, z) is the solution of

m—b
V4
lw’ =0.

w® (1
+(1 )(m_b)

Consecutive patterns in permutations



Monotone and related patterns
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Non-overlapping patterns

Theorem (E.-Noy '01)

Let 0 € S;, be non-overlapping with o1 =1, 0y = b. Then
wy(u, z) is the solution of

(b) V4 b ’
W + (1 - U)W“ =0.
Exan ple:

1 1
wizaz(u,z) 11— fOZ e(u—1)t3/6 44

P13as(u,z) =

Consecutive patterns in permutations



Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

Theorem (E.-Noy '01)

Let 0 € S;, be non-overlapping with o1 =1, 0y = b. Then
wy(u, z) is the solution of

(b) V4 b ’
W + (1 - U)W“ =0.
Exan ple:

1 1
wizaz(u,z) 11— fOZ e(u—1)t3/6 44

P13as(u,z) =

E.-Noy '11: Similar differential equations for w,(u, z) for
o = 12534 and o = 13254 (which aren’t non-overlapping).
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Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations

Other patterns

The pattern 134 ... (s+1)2(s+2)(s+3)...m

Theorem (E.-Noy, Liese-Remmel, Dotsenko-Khoroshkin)

For o = 1324, w,(u, z) is the solution of

20 —((u=1)2=3)w® =3(u—1)(224+1)w® +(u—1)((4u—5)z—6)w"”
+(u—1)8(u—1)z —3)w +4(u—1)°zw =0
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Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations

Other patterns

The pattern 134 ... (s+1)2(s+2)(s+3)...m

Theorem (E.-Noy, Liese-Remmel, Dotsenko-Khoroshkin)

For o = 1324, w,(u, z) is the solution of

20 —((u=1)2=3)w® =3(u—1)(224+1)w® +(u—1)((4u—5)z—6)w"”
+(u—1)8(u—1)z —3)w +4(u—1)°zw =0

The construction generalizes to patterns of the form

o=134...(s+1)2(s+2)(s+3)...m
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Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for wy(u, z).
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Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for wy(u, z).

Conjecture
For o = 1423, w1423(0, z) is not D-finite.
(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)
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Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for wy(u, z).

Conjecture
For o = 1423, w1423(0, z) is not D-finite.
(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)

This would be the first known instance of a pattern with this

property.
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Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for wy(u, z).

Conjecture

For o = 1423, w1423(0, z) is not D-finite.

(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)

This would be the first known instance of a pattern with this
property. Equivalent to showing that S(x) =1+ 35S (ﬁ) is
not D-finite.
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Monotone and related patterns

Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for wy(u, z).

Conjecture

For o = 1423, w1423(0, z) is not D-finite.

(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)

This would be the first known instance of a pattern with this
property. Equivalent to showing that S(x) =1+ 35S (ﬁ) is
not D-finite. In contrast:

“Conjecture” (Noonan-Zeilberger '96)

For every classical pattern o (i.e., where occurrences are not
constrained to consecutive positions), the generating function for
o-avoiding permutations is D-finite.
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Exact enumeration Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Consecutive Wilf-equivalence

n | # of classes
One can classify patterns of length up to 6 into 3 2
consecutive-Wilf-equivalence classes, proving 4 7
four conjectures of Nakamura: 5 o5
6 92

Theorem (E.-Noy '11)

> 123546 ~ 124536 — solution of w®) + (1 — u)(w' + w) = 0.
> 123645 ~ 124635 — solution of w®) + (1 — v)z(w” +w') = 0.
> 132465 ~ 142365 — solution of w®) + (1 — u)(w" + zw') = 0.
> 154263 ~ 165243.
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Asymptotic behavior

Theorem (E. '05)

For every o, the limit
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Asymptotic behavior

Theorem (E. '05)

For every o, the limit

1/n
Po = lim <an(a)> exists.

n—00 n!

This limit is known only for some patterns.
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Asymptotic behavior

Theorem (E. '05)

For every o, the limit

1/n
Po = lim <an(a)> exists.

n—00 n!

This limit is known only for some patterns.

Theorem (Ehrenborg-Kitaev-Perry '11)

For every o,

apl\o n n
n(! )= o0l + 07,

for some constants 7, and 6 < p,-.

The proof uses methods from spectral theory.
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The most avoided pattern

For what pattern o € S, is (o) largest?
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The most avoided pattern

For what pattern o € S, is (o) largest?

Theorem (E. '12)
For every o € S, there exists ng such that

an(o) < ap(12...m)

for all n > nq.

Interestingly, the analogous result for classical patterns (i.e.,
without the adjacency requirement) is false.
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The most avoided pattern

For what pattern o € S, is (o) largest?

Theorem (E. '12)
For every o € S, there exists ng such that

an(o) < ap(12...m)

for all n > nq.

Interestingly, the analogous result for classical patterns (i.e.,
without the adjacency requirement) is false.

The theorem is equivalent to p, being largest for c =12...m.
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Proof idea — 1. Singularity analysis

Let 0 € S\ {12...m,m...21}. Want to show: p, < p12..m-
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Asymptotic behavior
Asymptotic behavior The most and the least avoided patterns

Proof idea — 1. Singularity analysis

Let 0 € S\ {12...m,m...21}. Want to show: p, < p12..m-

Recall: p, is the growth rate of the coefficients of

P;(0,z) = w(,(:(lJ,z) = Zan(a)i—r;,

n>0

so p, ! is the smallest singularity of P,(0, z).
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Proof idea — 1. Singularity analysis

Let 0 € S\ {12...m,m...21}. Want to show: p, < p12..m-

Recall: p, is the growth rate of the coefficients of

P,(0,2) = %((132) = Zan(g)i",

so p, ! is the smallest singularity of P,(0, z).

One can show that w,(z) := w,(0, z) is analytic near the origin, so

» p.1is the smallest zero of w,(2),

1 .
> pls o is the smallest zero of win  m(2).
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Asymptotic behavior The most and the least avoided patterns

Proof idea — 1. Singularity analysis

» p1is the smallest zero of w,(2),

> P1_21,.,m is the smallest zero of wiz. m(z).
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Proof idea — 1. Singularity analysis

» p1is the smallest zero of w,(2),

> P1_21,.,m is the smallest zero of wiz. m(z).

To show that p, < p12..m, it is
enough to show that

wi2..m(z) < wo(2)

for 0 < z < 1.276.
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Proof idea — 2. Comparing cluster numbers

We show that w12, m(z) < wy(z) for 0 < z < 1.276:

m+1 z2m

Zim Zim+1 zm z
wi2..m(2) = ; ((jm)! T Gm+ 1)!> S 0 emr
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Proof idea — 2. Comparing cluster numbers

We show that w12, m(z) < wy(z) for 0 < z < 1.276:

Z zjm ij+1 Zm zm+1 z2m
w12...m( )— < . |> < 1—Z+7I— +
= Gm)t — (jm +1)! m! !

wo(z) =1-z-> (-1) Z

k>1
_,_/
s¢ (2)
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Proof idea — 2. Comparing cluster numbers

We show that w12, m(z) < wy(z) for 0 < z < 1.276:

Z zjm ij+1 Zm zm+1 z2m
w12...m( )— < . |> < 1—Z+7I— +
= Gm)t — (jm +1)! m! !

wold) =1-2 =330 e 1oz T s,
k>1
sp (2)

Key fact #1: The sequence {s7(z)}«>1 is decreasing.
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Proof idea — 2. Comparing cluster numbers

We show that w12, m(z) < wy(z) for 0 < z < 1.276:

zjm ij+1 Zm zm+1 z2m
w12...m( ) = Z < . < 1—Z+m— +

= Gm)t — (jm +1)! (m+1)! (2m)V
VAN
o) =12 =V T 21z o)
k>1 ~—

Key fact #1: The sequence {s7(z)}«>1 is decreasing.

m+1 Z2m

Key fact #2: s§(z) < (DT — Omyl-
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The least avoided pattern

For what pattern o € Sy, is ap(0) smallest?
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The least avoided pattern

For what pattern o € Sy, is ap(0) smallest?

Theorem (E. '12, conjectured by Nakamura)
For every o € S, there exists ny such that

anp(123...(m—2)m(m—1)) < ap(o)

for all n > ny.
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The least avoided pattern

For what pattern o € Sy, is ap(0) smallest?

Theorem (E. '12, conjectured by Nakamura)

For every o € S, there exists ny such that
anp(123...(m—2)m(m—1)) < ap(o)
for all n > ny.

Proposition (E. 12)
For every non-overlapping o € S, there exists ng s.t.

an(123...(m—2)m(m—1)) < ap(o) < ap(134... m2)

for all n > ng.
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Allowed and forbidden patterns of maps
Example: shifts
A more general example: signed shifts
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Deterministic or random?

Two sequences of numbers in [0, 1]:

6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
3612, .9230, .2844, .8141, .6054, ...

9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
1195, .5742, .1507, .5534, .0828,...

Which one is random? Which one is deterministic?
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
3612, .9230, .2844, .8141, .6054,...

9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
1195, 5742, .1507, .5534, .0828, ...

Which one is random? Which one is deterministic?

The first one is deterministic: taking f(x) = 4x(1 — x), we have

f(.6146) = 9198,
£(.9198) = 2951,
f(.2951) = 8320,
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Allowed and forbidden patterns of maps
Examp! hifts

. A A neral example: signed shifts
Consecutive patterns in dynamical systems L =

Allowed patterns of a map

Let X be a linearly ordered set, f : X — X. For each x € X and
n > 1, consider the sequence

x, f(x), fz(x), el f"fl(x).
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Allowed and forbidden patterns of maps
Examp! hifts

. A A neral example: signed shifts
Consecutive patterns in dynamical systems L =

Allowed patterns of a map

Let X be a linearly ordered set, f : X — X. For each x € X and
n > 1, consider the sequence

x, f(x), fz(x), el f"fl(x).

If there are no repetitions, the relative order of the entries
determines a permutation, called an allowed pattern of f.
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Allowed and forbidden patterns of maps
Example: shift

. . . A mo eneral example:
Consecutive patterns in dynamical systems L

Example

f: [0,1] — [0,1]
x = 4x(1—x).

/ \

\
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Allowed and forbidden patterns of maps
Example: shifts

. . . A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Example

f: [0,1] — [0,1]
x = 4x(1—x).

For x = 0.8 and n = 4, the sequence
0.8,
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Exampl ifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Example

f: [0,1] — [0,1]
x = 4x(1—x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64,
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Example: shifts
A more general example: signed shifts

Consecutive patterns in dynamical systems

Example

f: [0,1] — [0,1]
x = 4x(1—x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64, 0.9216,
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Allowed and forbidden patterns of maps
Exampl ifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Example

f: [0,1] — [0,1]
x = 4x(1—x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64, 0.9216, 0.2890
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Allowed and forbidden patterns of maps
Example ifts

. A A A mor neral example: signed shifts
Consecutive patterns in dynamical systems =

Example

f: [0,1] — [0,1]
x = 4x(1—x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64, 0.9216, 0.2890
determines the permutation 3241, so it is an allowed pattern.
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Allowed and forbidden patterns of maps
Example ifts

. A A A mor neral example: signed shifts
Consecutive patterns in dynamical systems =

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.

Allow(f) is closed under consecutive pattern containment.

E.g., if 4156273 € Allow(f), then 2314 € Allow(f).

Consecutive patterns in permutations



Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.

Allow(f) is closed under consecutive pattern containment.

E.g., if 4156273 € Allow(f), then 2314 € Allow(f).

Thus, Allow(f) can be characterized by avoidance of a (possibly
infinite) set of consecutive patterns.

The permutations not in Allow(f) are called forbidden patterns of f.
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Allowed and forbidden patterns of maps
Examp! hifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems =

Example: L(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of L.

0s L(x) L(L(x))

123 132 231 213 3R
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Example: L(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of L.

0s L(x) L(L(x))

123 132 231 213 3R

Also forbidden: 1432,2431,3214, . ..

anything containing 321
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Example: L(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of L.

0s L(x) L(L(x))

123 132 231 213 3R

Also forbidden: 1432,2431,3214,...,1423,2134,2143,3142, 4231, . ..

anything containing 321 basic: not containing smaller forbidden patterns
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Example: L(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of L.

0s L(x) L(L(x))

123 132 231 213 3R

Also forbidden: 1432,2431,3214,...,1423,2134,2143,3142, 4231, . ..

anything containing 321 basic: not containing smaller forbidden patterns
Theorem (E.-Liu): L has infinitely many basic forbidden patterns.



Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Forbidden patterns

Let / C R be a closed interval.

Theorem (Bandt-Keller-Pompe '02)
Let f : | — | be a piecewise monotone map. Then
» { has forbidden patterns,
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Forbidden patterns

Let / C R be a closed interval.

Theorem (Bandt-Keller-Pompe '02)
Let f : | — | be a piecewise monotone map. Then
» { has forbidden patterns,

> limy o0 | Allow,(F)|1/" exists, and its logarithm equals the
topological entropy of f.
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Forbidden patterns

Let / C R be a closed interval.

Theorem (Bandt-Keller-Pompe '02)
Let f : | — | be a piecewise monotone map. Then
» { has forbidden patterns,

> limy o0 | Allow,(F)|1/" exists, and its logarithm equals the
topological entropy of f.

Provides a combinatorial way to compute the topological entropy,
which is a measure of the complexity of the dynamical system.
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
9230, .2844, .8141, .6054,...

We see that the pattern 321 is missing from it.
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Allowed and forbidden patterns of maps
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
9230, .2844, .8141, .6054,...

We see that the pattern 321 is missing from it.

This suggests that the sequence is of the form xj1 = f(x;) for
some f.
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
19230, .2844, .8141, .6054, . ..
We see that the pattern 321 is missing from it.

This suggests that the sequence is of the form xj1 = f(x;) for
some f.

If it was a random sequence, any pattern would eventually appear.
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Allowed and forbidden patterns of maps
Examp! hifts

. A A A mor neral example: signed shifts
Consecutive patterns in dynamical systems £ L =

Some (mostly open) questions

» How are properties of Allow(f) related to properties of 7
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems =

Some (mostly open) questions

» How are properties of Allow(f) related to properties of 7
In particular,

» when is the set of basic forbidden patterns of f finite?
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Allowed and forbidden patterns of maps
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Some (mostly open) questions

» How are properties of Allow(f) related to properties of 7
In particular,

» when is the set of basic forbidden patterns of f finite?

» what is the length of the shortest forbidden pattern of f?
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Allowed and forbidden patterns of maps
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Some (mostly open) questions

» How are properties of Allow(f) related to properties of 7
In particular,

» when is the set of basic forbidden patterns of f finite?

» what is the length of the shortest forbidden pattern of f?

» Enumerate or characterize Allow(f) for some families of maps.
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Some (mostly open) questions

» How are properties of Allow(f) related to properties of 7
In particular,

» when is the set of basic forbidden patterns of f finite?

» what is the length of the shortest forbidden pattern of f?

» Enumerate or characterize Allow(f) for some families of maps.

» What sets of permutations can be Allow(f) for some 7
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Some (mostly open) questions

>

How are properties of Allow(f) related to properties of 7
In particular,

» when is the set of basic forbidden patterns of f finite?

» what is the length of the shortest forbidden pattern of f?

» Enumerate or characterize Allow(f) for some families of maps.

v

What sets of permutations can be Allow(f) for some 77

v

Use this to design better tests to distinguish random sequences
from deterministic ones.
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Some (mostly open) questions

>

How are properties of Allow(f) related to properties of 7
In particular,

» when is the set of basic forbidden patterns of f finite?

» what is the length of the shortest forbidden pattern of f?

» Enumerate or characterize Allow(f) for some families of maps.

v

What sets of permutations can be Allow(f) for some 77

v

Use this to design better tests to distinguish random sequences
from deterministic ones.
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Allowed and forbidden patterns of maps

Exampl hifts
general example: signed shifts

Consecutive patterns in dynamical systems

Shift maps

My: [0,1) — [0,1) /
x = {kx} E / / / / // /

(fractional part)
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Example: shifts
A more general example: signed shifts

Consecutive patterns in dynamical systems

Shift maps
M [0,1) — [0,1) 1
x = {kx} :
(fractional part)

Considering the expansions in base k of x € [0,1), this map is
“equivalent” to the shift map on the set Wy = {0,1,..., k—1}N of

infinite words on a k-letter alphabet, ordered lexicographically:
Wi

2 Wi —
Wwiwows . .. — WoW3 Wy . ..



Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Example

The permutation 4217536 is realized (i.e., allowed) by >3, because
taking w = 2102212210... € W3, we have

\

w = 2102212210. ..
¥ 3(w) = 102212210. ..
¥ 32(w) = 02212210. ..
7 33(w) = 2212210. ..
>34 (w) = 212210. ..
735 (w) =12210...

7 3%(w) =2210...

lexicographic order
of the shifted words

S WO N~ DN P
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Forbidden patterns of shifts

Theorem (Amigé-E.-Kennel)

Yy has no forbidden patterns of length n < k + 1, but it has basic
forbidden patterns of each length n > k + 2.
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Forbidden patterns of shifts

Theorem (Amigé-E.-Kennel)

Yy has no forbidden patterns of length n < k + 1, but it has basic
forbidden patterns of each length n > k + 2.

Proposition (E.)
Yy has exactly 6 forbidden patterns of length k + 2.
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

Forbidden patterns of shifts

Theorem (Amigé-E.-Kennel)

Yy has no forbidden patterns of length n < k + 1, but it has basic
forbidden patterns of each length n > k + 2.

Proposition (E.)
Yy has exactly 6 forbidden patterns of length k + 2.

Example
The shortest forbidden patterns of >, are

615243,324156, 342516, 162534,453621,435261.
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

The smallest # of letters needed to realize 7 by a shift

For m € Sp, let  N(7) = min{k : 7 € Allow(>,)}.
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Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

The smallest # of letters needed to realize 7 by a shift

For m € Sp, let  N(7) = min{k : 7 € Allow(>,)}.

Theorem (E.):  N(mw) =1+ des(7) + (7).
~~

Oorl
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

The smallest # of letters needed to realize 7 by a shift

For m € Sp, let  N(7) = min{k : 7 € Allow(>,)}.

Theorem (E.):  N(mw) =1+ des(7) + (7).
~—~
Oorl
An example of the construction 7 — 7:

™ = 892364157 ~~ (8,9,2,3,6,4,1,5,7) ~» 536174892 ~» 53617492 = #
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

The smallest # of letters needed to realize 7 by a shift

For m € Sp, let  N(7) = min{k : 7 € Allow(>,)}.

Theorem (E.):  N(mw) =1+ des(7) + (7).
~—~
Oorl
An example of the construction 7 — 7:

™ = 892364157 ~~ (8,9,2,3,6,4,1,5,7) ~» 536174892 ~» 53617492 = #

des(7) = des(53617492) = 4
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. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

The smallest # of letters needed to realize 7 by a shift

For m € Sp, let  N(7) = min{k : 7 € Allow(>,)}.

Theorem (E.):  N(mw) =1+ des(7) + (7).
~—~
Oorl
An example of the construction 7 — 7:

™ = 892364157 ~~ (8,9,2,3,6,4,1,5,7) ~» 536174892 ~» 53617492 = #

des(7) = des(53617492) = 4
N(892364157) =1 +4+0=5
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Allowed and forbidden patterns of maps
Example: shifts

. A A A more general example: signed shifts
Consecutive patterns in dynamical systems = L =

The smallest # of letters needed to realize 7 by a shift

For m € Sp, let  N(7) = min{k : 7 € Allow(>,)}.

Theorem (E.):  N(mw) =1+ des(7) + (7).
~—~
Oorl
An example of the construction 7 — 7:

7 = 892364157 ~ (8,9,2,3,6,4,1,5,7) ~» 536174892 ~ 536174 92 = #
des(7) = des(53617492) = 4
N(892364157) =1 +4+0=5

This characterizes permutations realized by >, and can be used to
deduce a (complicated) formula for | Allow,(> )|, for given n and k.
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Consecutive patterns in dynamical systems £ i ggEncred) Grerpltn figned difiie

Signed shifts

For fixed 0 = ogoy ... 0k_1 € {+, —}¥, the signed shift with
signature o is

PIP Wi — Wi

= wowswy ... if oy, =+,
Winows ... )
WoWwsWy ... if oy, = —,

where w; = k—1—w;.
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Consecutive patterns in dynamical systems £ i ggEncred) Grerpltn figned difiie

Signed shifts

For fixed 0 = ogoy ... 0k_1 € {+, —}¥, the signed shift with
signature o is
PIP Wi — Wi

wowswy ... if oy, =+,
Wwiwows. .. —

Wiy ... iF oy = —,
where w; = k—1—w;. .
Thinking of words as expansions
in base k of numbers in [0,1),
Y, is “equivalent” to a piecewise
linear map.
)RR
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Consecutive patterns in dynamical systems £ i ggEncred) Grerpltn figned difiie

Signed shifts

Archer '13:

» Characterization of permutations realized by >, for any o
(fixing and simplifying a result of Amigo).
» Upper and lower bounds on | Allow(>,)|.
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Periodic orbits

Let Pn(2,) be the set of permutations realized by the periodic
orbits of >, of size n.

Theorem (Archer-E. '12)

Assuming o # —% or n # 2 mod 4,
m € Pp(X,) <&  the cycle @ can be drawn on the graph of .
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Periodic orbits

Let Pn(2,) be the set of permutations realized by the periodic
orbits of >, of size n.

Theorem (Archer-E. '12)

Assuming o # —% or n # 2 mod 4,
m € Pp(X,) <&  the cycle @ can be drawn on the graph of .

Examples: m€Pp(Xi ) < 7 isunimodal.
7€ Pp(X «) < 7 hasat most k — 1 descents.
Forn#2mod 4, me€ Pp(X «) < 7 hasat most k — 1 ascents.
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Periodic orbits

Let Pn(2,) be the set of permutations realized by the periodic
orbits of >, of size n.

Theorem (Archer-E. '12)

Assuming o # —% or n # 2 mod 4,
m € Pp(X,) <&  the cycle @ can be drawn on the graph of .

is unimodal.
has at most kK — 1 descents.
has at most kK — 1 ascents.

Examples: TeEP(ri) &
Forn#2mod4, mePp(X +) <

N P

>

Corollary (Archer-E. "12)

Enumeration formulas for cyclic permutations avoiding some sets of
patterns (in the classical sense).
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Example: shifts

A more general example: signed shifts

Consecutive patterns in dynamical systems

Thank you
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