Splittability of Permutation Classes 2. 7. 2013, Paris

Vít Jelínek and Pavel Valtr

Charles University in Prague

Permutation Classes

Definition

- A permutation class is a set of permutations C such that for every $\pi \in C$ and $\sigma \leq \pi$, we have $\sigma \in C$.
- $Av(\sigma)$ is the class of all permutations avoiding σ .
- A principal permutation class is the class of the form Av(σ) for some σ.

Permutation Classes

Definition

- A permutation class is a set of permutations C such that for every $\pi \in C$ and $\sigma \leq \pi$, we have $\sigma \in C$.
- $Av(\sigma)$ is the class of all permutations avoiding σ .
- A principal permutation class is the class of the form Av(σ) for some σ.

Permutation Classes

Definition

- A permutation class is a set of permutations C such that for every $\pi \in C$ and $\sigma \leq \pi$, we have $\sigma \in C$.
- $Av(\sigma)$ is the class of all permutations avoiding σ .
- A principal permutation class is the class of the form Av(σ) for some σ.

Merging Permutations

Definition

Permutation π is a merge of permutations σ and τ if the symbols of π can be colored red and blue, so that the red symbols are a copy of σ and the blue ones of τ .

Example

3175624 is a merge of 231 and 1342.

Definition

For two sets P and Q of permutations, let $P \odot Q$ be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Merging Permutations

Definition

Permutation π is a merge of permutations σ and τ if the symbols of π can be colored red and blue, so that the red symbols are a copy of σ and the blue ones of τ .

Example

3175624 is a merge of 231 and 1342.

Definition

For two sets P and Q of permutations, let $P \odot Q$ be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Example

Every permutation avoiding 123 is a union of two decreasing subsequences, i.e., $Av(123) \subseteq Av(12) \odot Av(12)$. Therefore, Av(123) is splittable.

Example (Claesson–J.–Steingrímsson; PP'12)

Av(1324) \subseteq Av(132) \odot Av(213). In particular, Av(1324) is splittable.

Goal

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Example

Every permutation avoiding 123 is a union of two decreasing subsequences, i.e., $Av(123) \subseteq Av(12) \odot Av(12)$. Therefore, Av(123) is splittable.

Example (Claesson–J.–Steingrímsson; PP'12)

 $Av(1324) \subseteq Av(132) \odot Av(213)$. In particular, Av(1324) is splittable.

Goal

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Example

Every permutation avoiding 123 is a union of two decreasing subsequences, i.e., $Av(123) \subseteq Av(12) \odot Av(12)$. Therefore, Av(123) is splittable.

Example (Claesson-J.-Steingrímsson; PP'12)

 $\mathsf{Av}(1324)\subseteq\mathsf{Av}(132)\odot\mathsf{Av}(213).$ In particular, $\mathsf{Av}(1324)$ is splittable.

Goal

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Example

Every permutation avoiding 123 is a union of two decreasing subsequences, i.e., $Av(123) \subseteq Av(12) \odot Av(12)$. Therefore, Av(123) is splittable.

Example (Claesson-J.-Steingrímsson; PP'12)

 $\mathsf{Av}(1324)\subseteq\mathsf{Av}(132)\odot\mathsf{Av}(213).$ In particular, $\mathsf{Av}(1324)$ is splittable.

Goal

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Simple Lemma

- C is splittable.
- There are classes A and B, neither of which is a superset of C, such that C ⊆ A ⊙ B.
- There are two permutations $\sigma, \pi \in C$ such that $C \subseteq Av(\sigma) \odot Av(\pi)$.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Simple Lemma

- C is splittable.
- There are classes A and B, neither of which is a superset of C, such that C ⊆ A ⊙ B.
- There are two permutations $\sigma, \pi \in C$ such that $C \subseteq Av(\sigma) \odot Av(\pi)$.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Simple Lemma

- C is splittable.
- There are classes A and B, neither of which is a superset of C, such that C ⊆ A ⊙ B.
- There are two permutations $\sigma, \pi \in C$ such that $C \subseteq Av(\sigma) \odot Av(\pi)$.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. (We then say that C is split into A and B.)

Simple Lemma

- C is splittable.
- There are classes A and B, neither of which is a superset of C, such that C ⊆ A ⊙ B.
- There are two permutations $\sigma, \pi \in C$ such that $C \subseteq Av(\sigma) \odot Av(\pi)$.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.

Direct Sums

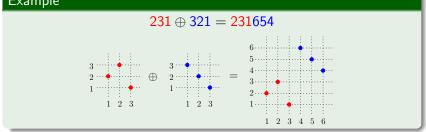
Definition

Given two permutations $\pi = \pi_1, \ldots, \pi_k$ and $\sigma = \sigma_1, \ldots, \sigma_m$, define the direct sum $\pi \oplus \sigma$ as

$$\pi \oplus \sigma = \pi_1, \ldots, \pi_k, \sigma_1 + k, \ldots, \sigma_m + k.$$

nonempty permutations.

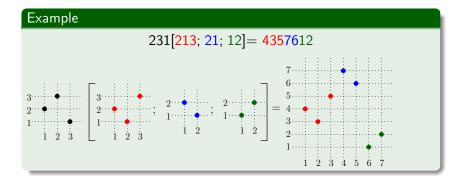
Example



Inflations

Definition

Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation and $\sigma_1, \ldots, \sigma_n$ a sequence of n permutations. The inflation of π by $\sigma_1, \ldots, \sigma_n$, denoted by $\pi[\sigma_1; \ldots; \sigma_n]$ is the permutation obtained by replacing each π_i by a copy $\overline{\sigma_i}$ of σ_i , so that if $\pi_i < \pi_j$, then all elements of $\overline{\sigma_i}$ are smaller than those of $\overline{\sigma_j}$.



Definition

The wreath product of two sets A and B (denoted $A \wr B$) is the set

$$\{\alpha[\beta_1;\ldots;\beta_n]; \ \alpha \in A, \beta_1,\ldots,\beta_n \in B\}$$

Definition

A class of permutations C is wreath-closed if $C \wr C \subseteq C$.

Definition

A permutation is simple if it cannot be obtained from smaller permutations by inflation.

Definition

The wreath product of two sets A and B (denoted $A \wr B$) is the set

$$\{\alpha[\beta_1;\ldots;\beta_n]; \ \alpha \in A, \beta_1,\ldots,\beta_n \in B\}$$

Definition

A class of permutations C is wreath-closed if $C \wr C \subseteq C$.

Definition

A permutation is simple if it cannot be obtained from smaller permutations by inflation.

Definition

The wreath product of two sets A and B (denoted $A \wr B$) is the set

$$\{\alpha[\beta_1;\ldots;\beta_n]; \ \alpha \in A, \beta_1,\ldots,\beta_n \in B\}$$

Definition

A class of permutations C is wreath-closed if $C \wr C \subseteq C$.

Definition

A permutation is simple if it cannot be obtained from smaller permutations by inflation.

Definition

The wreath product of two sets A and B (denoted $A \wr B$) is the set

$$\{\alpha[\beta_1;\ldots;\beta_n]; \ \alpha \in A, \beta_1,\ldots,\beta_n \in B\}$$

Definition

A class of permutations C is wreath-closed if $C \wr C \subseteq C$.

Definition

A permutation is simple if it cannot be obtained from smaller permutations by inflation.

The Main Results

These classes are unsplittable:

- $Av(\sigma)$ for a simple permutation σ
- $\bullet\,$ more generally, any wreath-closed class ${\cal C}\,$
- Av(213)
- the class Av(231, 312) of layered permutations

These classes are splittable:

• Av (σ) for a \oplus -decomposable σ of size at least 4

Open problem: if σ is neither simple nor \oplus -decomposable, is Av (σ) splittable?

The Main Results

These classes are unsplittable:

- $Av(\sigma)$ for a simple permutation σ
- $\bullet\,$ more generally, any wreath-closed class ${\cal C}\,$
- Av(213)
- the class Av(231, 312) of layered permutations

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

Open problem: if σ is neither simple nor \oplus -decomposable, is Av (σ) splittable?

The Main Results

These classes are unsplittable:

- $Av(\sigma)$ for a simple permutation σ
- $\bullet\,$ more generally, any wreath-closed class ${\cal C}\,$
- Av(213)
- the class Av(231, 312) of layered permutations

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

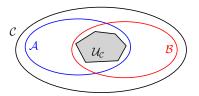
Open problem: if σ is neither simple nor \oplus -decomposable, is Av(σ) splittable?

Proving Unsplittability

Definition

Let C be a permutation class. A permutation $\pi \in C$ is unavoidable in C if whenever C is split into proper subclasses A and B, then $\pi \in A$ and $\pi \in B$.

 $\mathcal{U}_\mathcal{C}$ is the set of unavoidable permutations in \mathcal{C}_2



Observation

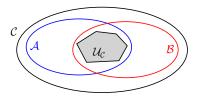
- U_C is a permutation class.
- $\mathcal{U}_{\mathcal{C}} = \mathcal{C}$ iff \mathcal{C} is unsplittable.

Proving Unsplittability

Definition

Let C be a permutation class. A permutation $\pi \in C$ is unavoidable in C if whenever C is split into proper subclasses A and B, then $\pi \in A$ and $\pi \in B$.

 $\mathcal{U}_{\mathcal{C}}$ is the set of unavoidable permutations in $\mathcal{C}.$



Observation

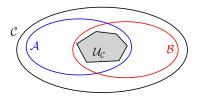
- *U_C* is a permutation class.
- $\mathcal{U}_{\mathcal{C}} = \mathcal{C}$ iff \mathcal{C} is unsplittable.

Proving Unsplittability

Definition

Let C be a permutation class. A permutation $\pi \in C$ is unavoidable in C if whenever C is split into proper subclasses A and B, then $\pi \in A$ and $\pi \in B$.

 $\mathcal{U}_{\mathcal{C}}$ is the set of unavoidable permutations in $\mathcal{C}.$



Observation

- $\mathcal{U}_{\mathcal{C}}$ is a permutation class.
- $\mathcal{U}_{\mathcal{C}} = \mathcal{C}$ iff \mathcal{C} is unsplittable.

Example

If C is a nonempty \oplus -closed class, then $12 \cdots k \in U_C$ for each k.

- For contradiction, suppose C is split into are proper subclasses
 A and B, and A does not contain 12 ···· k.
- Pick any $\pi \in \mathcal{C} \setminus \mathcal{B}$. Then the *k*-fold sum $\pi^{\oplus k} = \pi \oplus \pi \oplus \cdots \oplus \pi$ belongs to \mathcal{C} .
- But π^{⊕k} does not belong to Av(12····k) ⊙ Av(π), hence it does not belong to A ⊙ B.

Example

If C is a nonempty \oplus -closed class, then $12 \cdots k \in U_C$ for each k.

- For contradiction, suppose C is split into are proper subclasses A and B, and A does not contain $12 \cdots k$.
- Pick any $\pi \in \mathcal{C} \setminus \mathcal{B}$. Then the *k*-fold sum $\pi^{\oplus k} = \pi \oplus \pi \oplus \cdots \oplus \pi$ belongs to \mathcal{C} .
- But π^{⊕k} does not belong to Av(12···k) ⊙ Av(π), hence it does not belong to A ⊙ B.

Example

If C is a nonempty \oplus -closed class, then $12 \cdots k \in U_C$ for each k.

- For contradiction, suppose C is split into are proper subclasses A and B, and A does not contain $12 \cdots k$.
- Pick any $\pi \in \mathcal{C} \setminus \mathcal{B}$. Then the *k*-fold sum $\pi^{\oplus k} = \pi \oplus \pi \oplus \cdots \oplus \pi$ belongs to \mathcal{C} .
- But π^{⊕k} does not belong to Av(12 · · · k) ⊙ Av(π), hence it does not belong to A ⊙ B.

Example

If C is a nonempty \oplus -closed class, then $12 \cdots k \in U_C$ for each k.

- For contradiction, suppose C is split into are proper subclasses A and B, and A does not contain $12 \cdots k$.
- Pick any $\pi \in \mathcal{C} \setminus \mathcal{B}$. Then the *k*-fold sum $\pi^{\oplus k} = \pi \oplus \pi \oplus \cdots \oplus \pi$ belongs to \mathcal{C} .
- But π^{⊕k} does not belong to Av(12 · · · k) ⊙ Av(π), hence it does not belong to A ⊙ B.

Proposition

• If C is \oplus -closed, then U_C is also \oplus -closed.

- If $X \wr C \subseteq C$ for some X, then $X \wr U_C \subseteq U_C$.
- If $C \wr X \subseteq C$ for some X, then $U_C \wr X \subseteq U_C$.

Corollary

If C is wreath-closed then C is unsplittable. (Because $C \setminus C \subseteq C$ implies $U_C \setminus C \subseteq U_C$, hence $U_C = C$.)

Corollary

Proposition

- If C is \oplus -closed, then U_C is also \oplus -closed.
- If $X \wr C \subseteq C$ for some X, then $X \wr U_C \subseteq U_C$.
- If $C \wr X \subseteq C$ for some X, then $U_C \wr X \subseteq U_C$

Corollary

If C is wreath-closed then C is unsplittable. (Because $C \setminus C \subseteq C$ implies $U_C \setminus C \subseteq U_C$, hence $U_C = C$.)

Corollary

Proposition

- If C is \oplus -closed, then U_C is also \oplus -closed.
- If $X \wr C \subseteq C$ for some X, then $X \wr U_C \subseteq U_C$.
- If $C \wr X \subseteq C$ for some X, then $U_C \wr X \subseteq U_C$.

Corollary

If C is wreath-closed then C is unsplittable. (Because $C \setminus C \subseteq C$ implies $U_C \setminus C \subseteq U_C$, hence $U_C = C$.)

Corollary

Proposition

- If C is \oplus -closed, then U_C is also \oplus -closed.
- If $X \wr C \subseteq C$ for some X, then $X \wr U_C \subseteq U_C$.
- If $C \wr X \subseteq C$ for some X, then $U_C \wr X \subseteq U_C$.

Corollary

If C is wreath-closed then C is unsplittable. (Because $C \setminus C \subseteq C$ implies $U_C \setminus C \subseteq U_C$, hence $U_C = C$.)

Corollary

Proposition

- If C is \oplus -closed, then U_C is also \oplus -closed.
- If $X \wr C \subseteq C$ for some X, then $X \wr U_C \subseteq U_C$.
- If $C \wr X \subseteq C$ for some X, then $U_C \wr X \subseteq U_C$.

Corollary

If C is wreath-closed then C is unsplittable. (Because $C \wr C \subseteq C$ implies $U_C \wr C \subseteq U_C$, hence $U_C = C$.)

Corollary

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Av(132) and Av(12) are unsplittable, even though 132 and 12 are \oplus -decomposable.
- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier (see next slide).

Splittable Classes

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Av(132) and Av(12) are unsplittable, even though 132 and 12 are ⊕-decomposable.
- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier (see next slide).

Splittable Classes

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Av(132) and Av(12) are unsplittable, even though 132 and 12 are ⊕-decomposable.
- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier (see next slide).

Special Cases of Splittable Classes

Theorem (Essentially Claesson–J.–Steingrímsson)

For nonempty α, β, γ , the class $Av(\alpha \oplus \beta \oplus \gamma)$ is splittable, and $Av(\alpha \oplus \beta \oplus \gamma) \subseteq Av(\alpha \oplus \beta) \odot Av(\beta \oplus \gamma)$.

Corollary

For α and γ of size at least two, the class $Av(\alpha \oplus \gamma)$ is splittable, and $Av(\alpha \oplus \gamma) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \gamma)$. (Because $Av(\alpha \oplus \gamma) \subseteq Av(\alpha \oplus 1 \oplus \gamma)$.)

The hard part is to show that $Av(1 \oplus \gamma)$ is splittable for every \oplus -indecomposable γ of size at least 3.

Special Cases of Splittable Classes

Theorem (Essentially Claesson–J.–Steingrímsson)

For nonempty α, β, γ , the class $Av(\alpha \oplus \beta \oplus \gamma)$ is splittable, and $Av(\alpha \oplus \beta \oplus \gamma) \subseteq Av(\alpha \oplus \beta) \odot Av(\beta \oplus \gamma)$.

Corollary

For α and γ of size at least two, the class $Av(\alpha \oplus \gamma)$ is splittable, and $Av(\alpha \oplus \gamma) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \gamma)$. (Because $Av(\alpha \oplus \gamma) \subseteq Av(\alpha \oplus 1 \oplus \gamma)$.)

The hard part is to show that $Av(1 \oplus \gamma)$ is splittable for every \oplus -indecomposable γ of size at least 3.

Special Cases of Splittable Classes

Theorem (Essentially Claesson–J.–Steingrímsson)

For nonempty α, β, γ , the class $Av(\alpha \oplus \beta \oplus \gamma)$ is splittable, and $Av(\alpha \oplus \beta \oplus \gamma) \subseteq Av(\alpha \oplus \beta) \odot Av(\beta \oplus \gamma)$.

Corollary

For α and γ of size at least two, the class $Av(\alpha \oplus \gamma)$ is splittable, and $Av(\alpha \oplus \gamma) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \gamma)$. (Because $Av(\alpha \oplus \gamma) \subseteq Av(\alpha \oplus 1 \oplus \gamma)$.)

The hard part is to show that $Av(1 \oplus \gamma)$ is splittable for every \oplus -indecomposable γ of size at least 3.

Some 'Harder' Splittable Cases

Notation:
$$C^{*k} = \underbrace{C \odot C \odot \cdots \odot C}_{k \text{ times}}$$

Theorem

If $Av(\sigma)$ is splittable, then $Av(1\oplus \sigma)$ is also splittable.

In fact (under some technical assumptions), if $Av(\sigma) \subseteq Av(\pi_1) \odot Av(\pi_2) \odot \cdots \odot Av(\pi_m)$ then for a suitable K,

 $Av(1\oplus\sigma)\subseteq Av(1\oplus\pi_1)^{*K}\odot Av(1\oplus\pi_2)^{*K}\odot\cdots\odot Av(1\oplus\pi_m)^{*K}.$

Example

Since $Av(321) \subseteq Av(21) \odot Av(21)$, we have $Av(1 \oplus 321) \subseteq Av(1 \oplus 21)^{*K}$, i.e. $Av(1432) \subseteq Av(132)^{*K}$. (In this example, K = 5 is optimal.)

Some 'Harder' Splittable Cases

Notation:
$$C^{*k} = \underbrace{C \odot C \odot \cdots \odot C}_{k \text{ times}}$$

Theorem

If $Av(\sigma)$ is splittable, then $Av(1\oplus \sigma)$ is also splittable.

In fact (under some technical assumptions), if $Av(\sigma) \subseteq Av(\pi_1) \odot Av(\pi_2) \odot \cdots \odot Av(\pi_m)$ then for a suitable K,

$$Av(1\oplus\sigma)\subseteq Av(1\oplus\pi_1)^{*K}\odot Av(1\oplus\pi_2)^{*K}\odot\cdots\odot Av(1\oplus\pi_m)^{*K}.$$

Example

Since $Av(321) \subseteq Av(21) \odot Av(21)$, we have $Av(1 \oplus 321) \subseteq Av(1 \oplus 21)^{*K}$, i.e. $Av(1432) \subseteq Av(132)^{*K}$ (In this example, K = 5 is optimal.)

Some 'Harder' Splittable Cases

Notation:
$$C^{*k} = \underbrace{C \odot C \odot \cdots \odot C}_{k \text{ times}}$$

Theorem

If $Av(\sigma)$ is splittable, then $Av(1 \oplus \sigma)$ is also splittable.

In fact (under some technical assumptions), if $Av(\sigma) \subseteq Av(\pi_1) \odot Av(\pi_2) \odot \cdots \odot Av(\pi_m)$ then for a suitable K,

$$Av(1\oplus\sigma)\subseteq Av(1\oplus\pi_1)^{*K}\odot Av(1\oplus\pi_2)^{*K}\odot\cdots\odot Av(1\oplus\pi_m)^{*K}.$$

Example

Since $\operatorname{Av}(321) \subseteq \operatorname{Av}(21) \odot \operatorname{Av}(21)$, we have $\operatorname{Av}(1 \oplus 321) \subseteq \operatorname{Av}(1 \oplus 21)^{*K}$, i.e. $\operatorname{Av}(1432) \subseteq \operatorname{Av}(132)^{*K}$. (In this example, K = 5 is optimal.)

- For which σ is the class Av(σ) splittable? What should we expect for 'typical' σ?
- Is there a 'nice' way to split Av(1342)? Can you split it into Av(1423), Av(3142) and Av(2413), possibly with repetitions? Which permutations are unavoidable in Av(1342)?
- Is there an example of a class C for which U_C is splittable?
- Is there a 'most refined' way to split a permutation class C?

- For which σ is the class Av(σ) splittable? What should we expect for 'typical' σ?
- Is there a 'nice' way to split Av(1342)? Can you split it into Av(1423), Av(3142) and Av(2413), possibly with repetitions? Which permutations are unavoidable in Av(1342)?
- Is there an example of a class C for which U_C is splittable?
- Is there a 'most refined' way to split a permutation class C?

- For which σ is the class Av(σ) splittable? What should we expect for 'typical' σ?
- Is there a 'nice' way to split Av(1342)? Can you split it into Av(1423), Av(3142) and Av(2413), possibly with repetitions? Which permutations are unavoidable in Av(1342)?
- Is there an example of a class ${\mathcal C}$ for which ${\mathcal U}_{\mathcal C}$ is splittable?
- Is there a 'most refined' way to split a permutation class C?

- For which σ is the class Av(σ) splittable? What should we expect for 'typical' σ?
- Is there a 'nice' way to split Av(1342)? Can you split it into Av(1423), Av(3142) and Av(2413), possibly with repetitions? Which permutations are unavoidable in Av(1342)?
- Is there an example of a class $\mathcal C$ for which $\mathcal U_{\mathcal C}$ is splittable?
- Is there a 'most refined' way to split a permutation class C?

Thank you for your attention!

See "Splittings and Ramsey Properties of Permutation Classes" (arXiv:1307.0027) for more results and full proofs