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The pattern µ

Avgustinovich, Kitaev, and Valyuzhenich studied avoidance in
permutations.

Jones, Kitaev, and Remmel studied distribution in cycles of
permutations.

Goal: Study distribution in words over [k] = {1, 2, . . . , k}.

w = w1w2 . . .wn

Definition

The pair (wi ,wj) is an occurrence of the frame pattern µ in w if
i < j , wi < wj , and there is no i < l < j such that wi ≤ wl ≤ wj .
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Generating functions

1 3 2 2 1 1 3 4

Ak(x , y , t) =
∑

w∈[k]∗
x triv(w)ynontriv(w)t |w |

1 3 2 1 3 4

Nk(x , y , t) =
∑

w∈[k]∗,wi 6=wi+1

x triv(w)ynontriv(w)t |w |

Theorem

[xaybtn]Ak(x , y , t) =
n∑

s=1

(
n − 1

s − 1

)
[xaybts ]Nk(x , y , t)

example: k=4, a=3, b=2, n=8, s=6
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Recurrence for Nk(x , y , t)

classify words based on some finite initial segment

use this information to account for all matches involving w1

reduce to w2 . . .wn

When k ≥ 4, it is not possible to use this technique to find a
recurrence for Nk(x , y , t) because of words like this:

2 1 4 1 4...1 4 3
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State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 0 0 0
2 x x 0 0
3 x x x 0
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 1 1
2 x x 0 0
3 x x x 0
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 0 0
2 x x 0 0
3 x x x 1
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 0 0 0
2 x x 1 1
3 x x x 1
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 1 1
2 x x 1 1
3 x x x 1
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 0 0
2 x x 0 0
3 x x x 1
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 0 0
2 x x 0 0
3 x x x 0
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 0 0
2 x x 0 0
3 x x x 0
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 0 0
2 x x 0 0
3 x x x 0
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 0 0
2 x x 0 0
3 x x x 0
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



State matrices

Read the word one letter at a time, recording potential matches.

1 3 2 1 3 4

1 2 3 4


1 x 1 0 0
2 x x 0 0
3 x x x 0
4 x x x x

Observations:

1 Rows take the form 11 . . . 100 . . . 0.

2 After reading wi , row wi is filled with 1’s, row wi − 1 is filled
with 0’s, and in general, rows above wi have 0’s in column wi

and to the right. Rows below wi do not change.

3 In a nonzero row, the first zero entry indicates a match that is
present in the word. Changing from 1 to 0 indicates
completion of a match.

4 A nonzero state matrix completely determines the last letter
wn of the associated word.



Counting valid state matrices

Sk = #{state matrices for words over [k]}
Sk,j = #{state matrices for words over [k] ending in j}

Goal: Find Sk =
k∑

j=1

Sk,j .

k=6, j=4

1 2 3 4 5 6

4 x x x x 1 1

S6,4 = S3S2
Sk,j = Sj−1Sk−j

Theorem

Sk = Ck = 1
k+1

(2k
k

)
Sk satisfies the Catalan recurrence.
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Transition diagram

To go from one state to another, append one of k − 1 letters to
avoid consecutive repeats. Record completed µ-matches and the
change in length as the edge weight.
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Finding Nk(x , y , t)

The transition diagram gives rise to a system of equations where
each state is a variable. Solving the system involves inverting a
sparse symbolic matrix of size Ck × Ck , which is only possible for
small values of k .

Ai ,j = weight of the edge from state j to state i

For a given value of p, however, it is not difficult to find the terms
from Nk(x , y , t) with deg(t) = p:

tp[tp]Nk(x , y , t) =
[

1 1 . . . 1
]
Ap


1
0
...
0


Here, the 1 is in the position corresponding to the start state.
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N2(x , y , t)

2 1 2 1 2...1 2

N2(x , y , t) =
(1 + t)2

1− xt2



N3(x , y , t)

N3(x , y , t) =
(1 + t)2(−1− t + t3(−1 + x)2y)

−1 + 2t4(−1 + x)xy + t3x2(1 + y) + t2(2x + y)

Expanded as a power series in t,

N3(x , y , t) = 1+
3t+
(3+2x+y)t2+
(1+6x+x2+2y+2xy)t3+
(6x+7x2+y+6xy+3x2y+y2)t4+
(2x+15x2+4x3+6xy+14x2y+2x3y+2y2+2xy2+x2y2)t5+
...
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Sequences

Can uncover many known sequences with the following
substitutions, among others:

Nk(x , y , t) full distribution

Nk(x , 1, t) trivial matches only

Nk(1, y , t) nontrivial matches only

Nk(x , x , t) all matches

Nk(1,−1, t) even number of nontrivial matches minus odd
number of nontrivial matches

Also, we can algebraically manipulate Nk(x , y , t) to find generating
functions for sequences of coefficients.
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Powers of 2

s−1 is the lowest power of x that appears in [t2s+1]N3(x , x , t) and

[x s−1t2s+1]N3(x , x , t) = 2s−1

1t3, 2xt5, 4x2t7, 8x3t9, 16x4t11, . . .
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N3(x , y , t)

N3(x , y , t) =
(1 + t)2(−1− t + t3(−1 + x)2y)

−1 + 2t4(−1 + x)xy + t3x2(1 + y) + t2(2x + y)

Expanded as a power series in t,

N3(x , y , t) = 1+
3t+
(3+2x+y)t2+
(1+6x+x2+2y+2xy)t3+
(6x+7x2+y+6xy+3x2y+y2)t4+
(2x+15x2+4x3+6xy+14x2y+2x3y+2y2+2xy2+x2y2)t5+
...



N3(x , y , t)

N3(x , y , t) =
(1 + t)2(−1− t + t3(−1 + x)2y)

−1 + 2t4(−1 + x)xy + t3x2(1 + y) + t2(2x + y)

Expanded as a power series in t,

N3(1, y , t) = 1+
3t+
(5+y)t2+
(8+4y)t3+
(13+10y+y2)t4+
(21+22y+5y2)t5+
(34+45y+16y2+y3)t6+
...
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Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3

= A
(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3

= A
(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3 = A

(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3 = A

(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3 = A

(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3 = A

(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3 = A

(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Fibonacci numbers

A
(n)
a,b = #{words of length n over [3] starting with a, ending with b,

having no nontrivial matches}

1−−−−− 1 A
(n)
1,1 = A

(n−1)
1,2 + A

(n−1)
1,3 = A

(n−2)
1,1 + A

(n−2)
1,3 + A

(n−2)
1,2

1−−−−− 2 A
(n)
1,2 = A

(n−1)
1,1 + A

(n−1)
1,3

1−−−−− 3 A
(n)
1,3 = A

(n−1)
1,2

A
(n)
1 = A

(n−1)
1 + A

(n−2)
1

Similarly, A
(n)
2 = A

(n−1)
2 + A

(n−2)
2

and A
(n)
3 = A

(n−1)
3 + A

(n−2)
3 .

Therefore, A(n) = A(n−1) + A(n−2).

length 1: 1, 2, 3 → A(1) = 3

length 2: 12, 21, 23, 31, 32 → A(2) = 5



Further refinements

1 2 3 4


1 x y y
2 x y
3 x
4

trivial vs. nontrivial

1 2 3 4


1 x1 x2 x3
2 x1 x2
3 x1
4

classify by the difference

1 2 3 4


1 x1 x1 x1
2 x2 x2
3 x3
4

classify by first number



Thank you!


