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Binary Decision Diagram (BDD)
BDD for a Boolean function is constructed by recursive application of Shannon
Expansion:

f (x1, . . . ,xn) = x1 & fx1(x2, . . . ,xn)∨ x1 & fx1(x2, . . . ,xn)

C. Lee, “Representation of switching circuits by binary decision diagrams,” Bell.
Syst. Tech. Journal, 38, 1959, pp. 985–999.
R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Transaction on Computers, Vol. C-35 No 8., 1986, pp. 677–691.
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BDD for a Boolean function (x&z)∨ y and the corresponding binary graph.
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Binary graph

Definition
A binary graph is an oriented acyclic connected graph with root and two
terminals (sinks), 0 and 1. Every internal node v has two successors: high(v)
and low(v).

An edge a→ b is 0-edge (1-edge) if low(a) = b (high(a) = b).

Binary graphs are skeletons of binary decision diagrams (BDD): a BDD is a
binary graph, in which internal nodes are labeled by propositional variables.
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Structurally Synthesized Binary Decision Diagram (SSBDD)

Suppose we have a Boolean function f (x1, . . . ,xn), given by CNF and an
assignment (α1, . . . ,αn) ∈ {0,1}n.
We have to calculate the value of f (α1, . . . ,αn).
We can do it by the definition, but if the performance is important, then better
idea would be to do it from left to right.

(x ∨ y ∨ z) & (y ∨ z∨ y) & (x ∨ z∨ y)

Tombak, Loorits, Peder, Võhandu (UT/TUT) PM for SPG and Separable Permutations July 4, 2013 4 / 35



0

1

1 0 1 0 1

1

0

1 1

0

0

0

x y y zz y

(x & y V z ) & ( y V z ) & y
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The idea can be easily generalized to formula with arbitrary depth.
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Superposition

Definition
A superposition of a binary graph E into a binary graph G instead of an
internal node v , denoted by Gv←E , is a graph, which we get by

deleting v from G,

redirecting all edges, pointing to v , to the root of E ,

redirecting all edges of E pointing to terminal 1, to the node high(v),

redirecting all edges, pointing to the terminal 0, to the node low(v).
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SuperPositional Graph (SPG)
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Elementary graphs A, C ja D.

Definition
1◦ A ∈ SPG;
2◦ if G ∈ SPG and v ∈ V (G), then Gv←C ∈ SPG and Gv←D ∈ SPG.
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Constructors C,D

Elementary graphs C and D can be considered as constructors of
superpositional graphs (we use bold C,D to emphasize their role as
constructors): if E and F are SPG with different sets of nodes, then

C(E ,F) = (C[u← E ])[v ← F ]

D(E ,F) = (D[u← E ])[v ← F ]

are SPGs. It is easy to see that constructors of superpositional graphs C and
D are associative, so it is legal to use “long” constructors C(E1, . . . ,En) and
D(E1, . . . ,En).
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Can SPG be described without superposition?

We reproduce here the necessary and sufficient conditions for a binary graph
to be a superpositional graph from the paper:

Ahti Peder and Mati Tombak, Superpositional graphs. Acta et
Commentationes Universitatis Tartuensis de Mathematica, 13, (2009), 51-64.
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Property 1: Traceability

Definition
A binary graph is traceable, if there exists a directed path through all
intermediate nodes (Hamiltonian path).

It is easy to see, that if a Hamiltonian path exists in a binary graph, then it is
unique. Therefore, it determines a canonical enumeration of nodes.

Theorem
Every SPG is traceable.
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Property 2. Homogeneity

Definition
A binary graph is homogenous if only one type of edges (i.e. either 1-edges
only or 0-edges only) enters into every node.
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Theorem
Every SPG is homogenous.
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Property 3. Strong planarity

Definition
We say that a binary traceable graph is strongly planar if it has no crossing
0-edges and no crossing 1-edges in stretched drawing.
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Binary graphs, which are not strongly planar.

Theorem
Every SPG is strongly planar.
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Property 4. Cofinality

Definition
We say that a binary traceable graph is 1-cofinal (0-cofinal) if all 1-edges
(0-edges), starting between the endpoints of some 0-edge (1-edge) and
crossing it, are entering into the same node. We say that a binary traceable
graph is cofinal if it is 1-cofinal and 0-cofinal.
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A binary graph which is not 1-cofinal.

Theorem
Every SPG is cofinal.
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Necessary and sufficient conditions

Theorem
A binary graph is a superpositional graph if and only if it is a homogenous
strongly planar cofinal traceable graph.

The proof of only if part of the theorem is a direct consequence of previous
theorems. The proof of if part is more tricky and uses Decomposition Lemma.
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Decomposition Lemma

Lemma (Decomposition Lemma )

If G is an traceable homogenous strongly planar cofinal binary graph with
nodes 1, . . . ,n (n > 1) in canonical order, m is a least node such that

m
1
−→ T1 and l is a least node such that l

0
−→ T0, then:

1 If l < m then G can be uniquely represented as C(G1, . . . ,Gk) (k > 1) for
some superpositional graphs G1, . . . ,Gk . (we say that G is of type C).

2 If m < l then G can be uniquely represented as D(G1, . . . ,Gk) (k > 1) for
some superpositional graphs G1, . . . ,Gk . (we say that G is of type D).
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Decomposition of G into C(R,S,T,U)
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Le f tmos t  sp l i t t i ng  l i ne R i g h t m o s t  s p l i t t i n g  l i n e
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Pattern Matching for SPG

Definition
The pattern matching problem for superpositional graphs is the following: Let
T (text) and P (pattern) be superpositional graphs with internal nodes 1, . . . ,n
and 1, . . . ,k (k ≤ n). We say, that P matches into T if there exists a sequence
of integers i1, . . . , ik such that:

1. For every arrow l
1
−→ T1 in P there exists a 1-path il ; T1 in T , which

consists of nodes from the set {il , il +1, . . . , il+1−1}.

2. For every arrow l
0
−→ T0 in P there exists a 0-path il ; T0 in T , which

consists of nodes from the set {il , il +1 . . . , il+1−1}.

3. For every arrow l
1
−→m (m ≤ k) in P there exists a 1-path il ; im or there

are indexes r ,s : r < im < s such that there exists a 1-path il ; r and

r −1
0
−→ s in T .

4. For every arrow l
0
−→m (m ≤ k) in P there exists a 0-path il ; im or there

are indexes r ,s : r < im < s such that there exists a 0-path il ; r and

r −1
1
−→ s in T .
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Notations

We denote by G[k : l] a subgraph of G, induced by nodes k ,k +1, . . . , l,T1,T0

in which every edge i
1
−→m (i

0
−→m) for m > l is redirected to T1 (T0).

Let T be an SPG with nodes T1, . . . ,Tn (the text) and
P be an SPG with nodes P1, . . . ,Pk (the pattern).
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Notations

If A and B are sets of sequences of integers, then A∪B denotes a union and
A×B a Cartesian product of A and B. Note, that A× /0 = /0×A = /0.
{r r +1 . . . s} is a set which consists of a single sequence r r +1 . . . s
{r , r +1, . . . ,s} consists of s− r +1 sequences, each of length 1.
Variables X ,Y ,Z ,V ,W in Algorithm are local variables of type set of integer
sequences.
Function equivalent checks if his arguments are equivalent up to the labels of
internal nodes.
Function split(G) returns a leftmost splitting point of G.
Our algorithm for pattern matching makes use of Decomposition Lemma and
calculates matches recursively for a pair of SPG, induced by segments of
T1, . . . ,Tn and P1, . . . ,Pk .
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An algorithm

match (T [r : s],P[u : v ])
//returns a set of integer sequences, which are matches of SPG P[u : v ] into
SPG T [r : s].
Basis of recursion :
if u = v then return {r , r +1, . . . ,s fi
//the pattern has length 1 – every position of the text is a match.
if (v−u)> (s− r) then return /0 fi
//the pattern is bigger than text.
if (v−u) = (s− r) then

if equivalent(T [r : s],P[u : v ])
then return {r r +1 . . .s}
else return /0
fi

fi
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The recursive part I

// (v−u)< (s− r)
dt = split(T [r : s]);
X := match(T [r : dt],P[u : v ]); //all matches of P[u : v ] in the left part.
Y := match(T [dt +1 : s],P[u : v ]); //all matches of P[u : v ] in the right part.
Z := X ∪Y
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The recursive part II

if type(T [r : s]) = type(P[u : v ])
for every splitting point dp in P[u : v ].
do

V := match(T [r : dt],P[u : dp]);
W := match(T [dt +1 : s],P[dp+1 : v ]);
Z := Z ∪ (V ×W );

fi :
od
return Z

end

Tombak, Loorits, Peder, Võhandu (UT/TUT) PM for SPG and Separable Permutations July 4, 2013 22 / 35



Performance

An obvious modification of the Algorithm will calculate the number of matches.

By the Decomposition Lemma, every cut between the nodes of T and P
performs the role of a splitting point exactly once in the full decomposition of
the SPG.
It means, that the number of recursive calls of match (T [r : s],P[u : v ]) would
be at most nk if there were not multiple calls with the same pair of arguments.
We have an example with multiple calls.
To avoid multiple calls we have to store the number of matches for every
combination of text and pattern. There are n−1 splitting points in the text and
p−1 splitting points in the pattern, so we need a two-dimensional array
COUNT [1 : n−1,1 : k−1]. We assume, that we have prepared global array
COUNT [1 : n−1,1 : k−1], filled in with constants −1.
So we achieve the time complexity O(nk).
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Mapping separable permutations into SPG

Definition
A separable n-permutation is a permutation, avoiding patterns 2413 and 3142,
i.e. the class of permutations Sn(2413,3142).

Theorem
There is a bijection between a set of separable n-permutations and a set of
superpositional graphs with n internal nodes.

A proof of the theorem can be found in:

L.Vohandu, A. Peder, M. Tombak. Permutations and bijections. Frontiers in AI
and Applications, v. 237, 419-437. IOS Press (2012)

We need here the algorithm, implementing the mapping from separable
permutations to SPG. Let Gp denote a superpositional graph, corresponding to
a permutation p and pG be a permutation, corresponding to a superpositional
graph G.
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sepperm2SPG

(separable permutation p = p1 . . .pn)
//returns a superpositional graph Gp.
begin

Augment the permutation to indices T0 and T1

taking p(T0) = 0, p(T1) = n+1.
Start with n+2 isolated nodes 1, . . . ,n,T1,T0;
for i := 1 step 1 until n

do set i
0
−→ j , where j ∈ {i +1, . . . ,n,T0}
is a least index for which p(j) < p(i).

elseset i
1
−→ j , where j ∈ {i +2, . . . ,n,T1}

is a least index for which p(j) > p(i).
od

end
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An example

p = 132
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Pattern matching. Example.

Let t = 1432, p = 132. Corresponding SPG-s are:
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s p l i t t i n g  l i n e

s p l i t t i n g  l i n eT P

Let us apply algorithm match to these text and pattern!
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Pattern matching. Example.
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match(T [1 : 4],P[1 : 3]) =
= match(T [1 : 1],P[1 : 3])∪match(T [2 : 4],P[1 : 3])∪
∪(match(T [1 : 1],P[1 : 1])×match(T [2 : 4],P[2 : 3])) =
= /0∪ /0∪ ({1}×match(T [2 : 4],P[2 : 3])) =
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T [ 2 : 4 ] P [ 2 : 3 ]

{1}×match(T [2 : 4],P[2 : 3]) =
{1}× (match(T [2 : 2],P[2 : 3])∪match(T [3 : 4],P[2 : 3])∪
∪(match(T [2 : 2],P[2 : 2])×match(T [3 : 4],P[3 : 3]))) =
{1}× ( /0∪{34}∪ ({2}×{3,4})) =
{1}× ({34}∪ ({2}×{3,4})) =
{134,123,124}

Let me remind you, that t = 1432, p = 132.
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Some theorems

Theorem

Algorithm maich(T [1 : n],P[1 : k ]) computes correctly all matches of pattern P
in text T .

Theorem
Let t = t1 . . . tn; p = p1 . . .pk be two separable permutations and Gt , Gp their
superpositional graphs. A sequence of indexes i1, . . . , ik is a match of p in t iff
it is a match of Gp in Gt .
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Computer experimens for n ≤ 9

Class of graphs Sequence Class of permutations OEIS No.
1. Traceable 1, 2, 8, 48, 384,... Double downgraded p. A000165
2. Homogenous 1, 2, 6, 24, 120,... Permutation A000142
3. Strongly planar 1, 2, 6, 22, 92,... Baxter permutation A001181
4. Cofinal 1, 2, 6, 22, 90,... Separable permutation A006318
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Computer experimens for n ≤ 9

Class of graphs Sequence Class of permutations OEIS No.
1. Traceable 1, 2, 8, 48, 384,... Double downgraded p. A000165
2. Homogenous 1, 2, 6, 24, 120,... Permutation A000142
3. Strongly planar 1, 2, 6, 22, 92,... Baxter permutation A001181
4. Cofinal 1, 2, 6, 22, 90,... Separable permutation A006318

1. Easy to see t(n) = 2(n−1) · (n−1)!.
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Computer experimens for n ≤ 9

Class of graphs Sequence Class of permutations OEIS No.
1. Traceable 1, 2, 8, 48, 384,... Double downgraded p. A000165
2. Homogenous 1, 2, 6, 24, 120,... Permutation A000142
3. Strongly planar 1, 2, 6, 22, 92,... Baxter permutation A001181
4. Cofinal 1, 2, 6, 22, 90,... Separable permutation A006318

1. Easy to see t(n) = 2(n−1) · (n−1)!.
2. Bijection in [Vohandu, Peder, Tombak].
3. Computer experiments until n = 9.
4. Bijection in [Vohandu, Peder, Tombak].

Problem
Find a bijection between permutations and homogenous binary graphs, which
agrees with bijection [Vohandu, Peder, Tombak] and gives a bijection between
Baxter permutations and strongly planar binary graphs, if limited to these
classes.
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