COMBS

Sophia Yakoubov (sonka89@mit.edu)

Motivation

Cool problem: enumerating pattern avoiding linear extensions of posets

Motivation

Cool problem: enumerating pattern avoiding linear extensions of posets

Hard for arbitrary posets!

Motivation

Cool problem: enumerating pattern avoiding linear extensions of posets

Hard for arbitrary posets!

Narrowing the scope to specific category of posets makes it more feasible

Comb Linear Extensions

Comb Linear Extensions

Enumerating Comb Linear Extensions

Theorem (Knuth): Let *P* be an *n*-element poset whose Hasse diagram forms a rooted tree such that the *i*th element has d_i descendants including itself. *P* then has E(P) extensions, where E(P) is defined as follows:

$$E(P) = \frac{n!}{\prod_{i \in [n]} d_i}$$

Enumerating Comb Linear Extensions

Theorem (Knuth): Let *P* be an *n*-element poset whose Hasse diagram forms a rooted tree such that the *i*th element has d_i descendants including itself. *P* then has E(P) extensions, where E(P) is defined as follows:

$$E(P) = \frac{n!}{\prod_{i \in [n]} d_i}$$

It follows that a comb has $\frac{(st)!}{s!(t!)^s}$ extensions.

Type- α and Type- β Combs

We assign integers to comb elements in two natural ways:

Type- α and Type- β Combs

We assign integers to comb elements in two natural ways:

Type- α and Type- β Combs

We assign integers to comb elements in two natural ways:

Enumeration of Pattern Avoiding Type- α and β Comb Extensions

Pattern	Number of Avoiding Type-α Comb Extensions	Number of Avoiding Type-β Comb Extensions
123	0	0
132	1	1
213	Catalan Numbers (C _s)	t ^{s-1}
231	Open	t ^{s-1}
312	C _{s+1} - C _s	$\frac{1}{ts+1}\binom{s(t+1)}{s}$
321	Open	Open for $t > 2$

Enumeration of Pattern Avoiding Type- α and β Comb Extensions

Pattern	Number of Avoiding Type- α Comb Extensions	Number of Avoiding Type-β Comb Extensions
123	0	0
132	1	1
213	Catalan Numbers (C _s)	t ^{s-1}
231	Open	t ^{s-1}
312	C _{s+1} - C _s	$rac{1}{ts+1} inom{s(t+1)}{s}$
321	Open	Open for $t > 2$

Number of Type-β Comb Extensions Avoiding 312							
s t 2 3 4							
1	1	1	1				
2	3	4	5				
3	12	22	35				
4	55	140	285				
5	273	969	2530				
6	1428	7084	23751				

Theorem: The number of Type- β comb extensions avoiding 312 is $\frac{1}{ts+1} {s(t+1) \choose s}$.

Number of Type-β Comb Extensions Avoiding 312						
s t	2	3	4			
1	1	1	1			
2	3	4	5			
3	12	22	35			
4	55	140	285			
5	273	969	2530			
6	1428	7084	23751			

Theorem: The number of Type- β comb extensions avoiding 312 is $\frac{1}{ts+1} {s(t+1) \choose s}$.

This number is also:

• The number of (*t*+1)-ary trees on *s* nodes

Theorem: The number of Type- β comb extensions avoiding 312 is $\frac{1}{ts+1} {s(t+1) \choose s}$.

This number is also:

- The number of (*t*+1)-ary trees on *s* nodes
- The number of lattice paths composed of \rightarrow and \uparrow from (0,0) to (*ts*, *s*) that do not cross the line y=x/t

Theorem: The number of Type- β comb extensions avoiding 312 is $\frac{1}{ts+1} {s(t+1) \choose s}$.

This number is also:

- The number of (*t*+1)-ary trees on *s* nodes
- The number of lattice paths composed of \rightarrow and \uparrow from (0,0) to (*ts*, *s*) that do not cross the line y=x/t
 - We will show that the number of 312avoiding type-β comb extensions is equal to the number of such lattice paths

Lattice Paths

Lattice Paths to Comb Extensions

A (somewhat ugly) bijection follows.

Children are obtained by inserting the next element in such a way as to:

- not violate the comb minimal relations
- not introduce any 312 patterns

Lattice Path Recurrence Relation

n = size (endpoint x-coordinate)
of grandparent path
c = number of children of
grandparent path (number of
parents)

Lattice Path Recurrence Relation

n = size (endpoint x-coordinate)
of grandparent path
c = number of children of
grandparent path (number of
parents)

• If n+1 is not divisible by *t*: the parent lattice paths will have 1, ..., *c* children

Lattice Path Recurrence Relation

n = size (endpoint x-coordinate)
of grandparent path
c = number of children of
grandparent path (number of
parents)

- If n+1 is not divisible by *t*: the parent lattice paths will have 1, ..., *c* children
- If n+1 is divisible by *t*:
 the parent lattice paths will
 have 2, ..., *c*+1 children

312-Avoiding Comb Extension

n = size of grandparent extension c = number of children of grandparent extension

The next element can always be inserted anywhere *after* a certain point:

- *After* elements that precede it by a minimal relation, and
- *After* the first element of the last 12 pattern

312-Avoiding Comb Extension

n = size of grandparent extension
c = number of children of grandparent
extension

- If n+1 is not divisible by *t*:
 - constraint for adding n+2: after the greatest element
 - the n+1 element child comb extensions will have 1, ..., *c* children

312-Avoiding Comb Extension

- n = size of grandparent extension
 c = number of children of grandparent
 extension
- If n+1 is divisible by *t*:
 - constraint for adding n+2: immediately before or anywhere after the greatest element
 - the n+1 element child comb extensions will have 2, ..., c+1 children

... The Two Side-by-Side

If an n-element comb extension has *c* children, then:

- If n+1 is not divisible by t: the parent comb extensions will have
 1, ..., c children
- If n+1 is divisible by *t*: the parent comb extensions will have 2, ..., *c*+1 children

If a lattice path ending at (n, y) has *c* children, then:

- If n+1 is not divisible by *t*: the parent lattice paths will have 1, ..., *c* children
- If n+1 is divisible by *t*: the parent lattice paths will have 2, ..., *c*+1 children

Proof Complete

Since both 312-avoiding comb extensions and lattice paths start with:

- a single instance of size 1
- with a single size-2 child

the proof is complete.

Enumeration of Pattern Avoiding Type- α and β Comb Extensions

Pattern	Number of Avoiding Type-α Comb Extensions	Number of Avoiding Type-β Comb Extensions
123	0	0
132	1	1
213	Catalan Numbers (C _s)	t ^{s-1}
231	Open	t ^{s-1}
312	C _{s+1} - C _s	$\frac{1}{ts+1}\binom{s(t+1)}{s}$
321	Open	Open for $t > 2$

sonka89@mit.edu

Enumeration of Multi-Pattern Avoiding Type- α and β Comb Extensions

Patterns	Number of Avoiding Type-α Comb Extensions	Number of Avoiding Type-β Comb Extensions
213, 231	2 ^{s-1}	1
213, 312	2 ^{s-1}	2 ^{s-1}
213, 321	$\binom{s}{2} + 1$	(s-1)(t-1) + 1
231, 312	Recursive relationship known	2 ^{s-1}
231, 321	Open for $t > 2$	t ^{s-1}
312, 321	Recursive relationship known	(t+1) ^{s-1}
	ante 90 mit adre	

sonka89@mit.edu

Other loose ends...

- Combs with teeth of varying sizes?
- Other value assignments to the comb elements?
- Longer patterns?

• Other (non-comb-like) posets?

Aknowledgements

Many thanks to:

- The organizers of this conference, for letting me speak today
- Professor Richard Stanley, for introducing me both to combinatorics and to this problem, and for helping me at every step of the way

• You, for listening!

Questions? Suggestions?

sonka89@mit.edu

Backup Slides

Just in case...

Type-α Comb Extension Pattern Avoidance Example

Extension	123	132	213	231	312	321
123456		~	~	~	~	~
123465			~	~	~	~
123546				~	~	~
123564			~		~	~
123645			~	~		~
123654			~	~	~	
124365				~	~	~
124365				~	~	~
124536					~	~
125346			~			~
125364				~		~

Extension	123	132	213	231	312	321
125436						~
142356				~		~
142365				~		~
142536						~

Type-α Comb Extension Pattern Avoidance Example

Extension	123	132	213	231	312	321
123456		~	~	~	~	~
123546				~	~	~
123564			~		~	~
132456				~	~	~
132546				~	~	~
132564					~	~
134256					~	~
134526					~	~
134562			~		~	~
135246						~
135264						~

Extension	123	132	213	231	312	321
135426						~
135462						~
135624						~
135642			~			~

(*t*+1)-ary Tree On *s* Nodes

(*t*+1)-ary Tree On *s* Nodes

Number of ternary trees on n nodes: 1, 3, 12, 55, 273, 1428, ...

