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Generating and counting

σ permutation of {1, 2, . . . n}.
Descent set : D(σ) = {i ∈ [1, n − 1], σ(i) > σ(i + 1)}.
Goal : generating at random, with uniform probability, and
counting permutations with a given descent set A.

Counting
Inclusion-exclusion formula : number of permutations with descent
set A is ∑

B={i1<i2...<ik}⊂Ac

(−1)|A
c |−|B|

(
n

n − ik , ik − ik−1, . . . , i2 − i1, i1

)

Practical problem : number of computations to perform. If
n = 100, |A| = 50 → 250 terms in the summation.
More theoretical point of view : comparing the number of
permutations with given descent sets A and A′ (De Bruijn,
Ehrenborg et al).
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Generating and counting

Alternating permutations (André). Exponential generating function∑
n

an
n!

tn = sec t + tan t

Other formulae for periodic patterns when there is exactly one
descent in each period (Carlitz, Remmel).

Other periodic patterns ? Asymptotics computed by
Leeming-MacLeod, Bender et al.
Sampling
Number of alternating permutations of length n

∼ 4

π

(
2

π

)n+1

n!

The rejection algorithm has exponential complexity ∼ π
4

(
π
2

)n+1
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Continous space

Idea : construct a random sequence of reals Yi , 1 ≤ i ≤ n, with the
given descent profile. Recover the permutation from the (Yi ) by a
sorting algorithm.

The sequence is defined by induction. We use the notion of density
of a random variable.
f : R→ R+ is the density of X ∈ R if, for all reals a ≤ b,

P(X ∈ [a, b]) =

∫ b

a
f (x)dx

More generally, f : Rd → R+ is the density of X ∈ Rd if, for all
Borel sets B,

P(X ∈ B) =

∫
B
f (x)dx
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A sequence of polynomials

fn(x) = 1

If i ∈ A, fi (x) =
∫ x
0 fi+1(y)dy

If i /∈ A, fi (x) =
∫ 1
x fi+1(y)dy

Number of computations : O(n2)

Theorem

(i) The number of permutations with descent set A is

n!

∫ 1

0
f1(x)dx

(ii) Let B be the set of local extrema of the permutation. Let
F (B) be the number of permutations with set of local extrema B.
Then F : P({2, 3, . . . n − 1} → N is an increasing function.
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Random sampling

Let Ui , 0 ≤ i ≤ n be iid, uniform on [0, 1].

Y1 has density proportional to f1 :

U1

∫ 1

0
f1(y)dy =

∫ Y1

0
f1(y)dy

If U1 = 0, then Y1 = 0. If U1 = 1, then Y1 = 1.
In the general case, Y1 ∈ [0, 1].

Yi+1 has conditional density proportional to fi+1 :

If i ∈ A, recall that fi (x) =
∫ x
0 fi+1(y)dy . Then

Ui+1fi (Yi ) =

∫ Yi+1

0
fi+1(y)dy

If Ui+1 = 0, then Yi+1 = 0. If Ui+1 = 1, then Yi+1 = Yi .
In the general case, Yi+1 ∈ [0,Yi ].

If i /∈ A, Ui+1fi (Yi ) =
∫ 1
Yi+1

fi+1(y)dy .
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The algorithm

Sektch of the proof
The density of Y1 is c1f1, where

c1 =
1∫ 1

0 f1(x)dx

Suppose for instance that 1 is a descent.
The density of Y2, conditional on Y1, is c2f21{Y2≤Y1}.
Since f1(x) =

∫ x
0 f2(y)dy ,

c2 =
1

f1(Y1)

By independence, the density of the sequence (Y1, . . .Yn) is the
product

c1f1(Y1)
f2(Y2)

f1(Y1)
. . .

fn(Yn)

fn−1(Yn−1)
× 1{D(Y )=A} = c11{D(Y )=A}
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Periodic descent set

Define fn by increasing induction. Let F (x , y) =
∑

n y
nfn(x). Then

∑
n≥0

An

n!
yn = 1 +

∫ 1

0
yF (x , y)dx

An : number of permutations of length n with the desired pattern.

If n is a descent (resp. an ascent), f ′n+1 = fn (resp f ′n+1 = −fn).

∂pF (x , y)

∂xp
= (−1)kypF (x , y)

where p is the period and k the number of ascents in a period.

F (x , y) =

p∑
k=1

ak(y)eωkyx

where the ωk are the p-th roots of ±1 and the ak are power
series : ak(y) =

∑
n≥0 ak,ny

n.
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Periodic descent set

An = (a1,n, . . . , ap,n). If n − 1 is a descent, An = 0.

V : Vandermonde matrix with i-th row (ωi−1
1 , . . . , ωi−1

p ).

Un matrix with first column (u
(n)
1 , . . . , u

(n)
p ) where u

(n)
1 = 1

and u
(n)
j+1 = u

(n)
j (resp. u

(n)
j+1 = −u(n)j ) if n + j − 1 is a descent

(resp. an ascent). The other columns of Un are zero.

Rn = (ρn, 0, . . . , 0) with ρ0 = 1 and if n − 1 is an ascent,

ρn = −
n∑

j=1

p∑
k=1

ωj
kak,n−j
j!

An = V−1UnRn
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