Single-peaked preference profiles and permutation patterns: A unified perspective

Martin Lackner

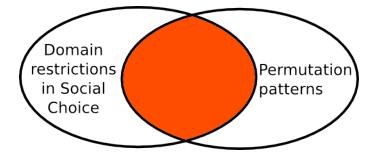
Vienna University of Technology

July 4, 2013 Permutation Patterns 2013

1

Martin Lackner

Outline



Social choice deals with combining the preferences of individuals to reach a collective decision, e.g., voting.

▶ Preferences of each individual (votes) ... total orders

- ▶ Preferences of each individual (votes) ... total orders
- ▶ Preference profile (election) ... multiset of total orders

- ▶ Preferences of each individual (votes) ... total orders
- ▶ Preference profile (election) ... multiset of total orders
- Social choice function ... mapping from profiles to sets of candidates (winners)

- ▶ Preferences of each individual (votes) ... total orders
- ▶ Preference profile (election) ... multiset of total orders
- Social choice function ... mapping from profiles to sets of candidates (winners)
- Social welfare function ... mapping from profiles to total orders (ranking)

- ▶ Preferences of each individual (votes) ... total orders
- ▶ Preference profile (election) ... multiset of total orders
- Social choice function ... mapping from profiles to sets of candidates (winners)
- Social welfare function ... mapping from profiles to total orders (ranking)
- Example: Plurality voting.

Arrow's impossibility theorem

Theorem (Arrow, 1951)

There is no social welfare function that satisfies the following criteria:

- More than two options
- (Pareto efficiency) If every individual prefers a over b, then a is prefered to b in the outcome.
- (Independence of irrelevant alternatives) The relative ranking of two options in the outcome is not influenced by a third candidate.
- (Non-dictatorship) There is no dictator.

Arrow's impossibility theorem

Theorem (Arrow, 1951)

There is no social welfare function that satisfies the following criteria:

- More than two options
- (Pareto efficiency) If every individual prefers a over b, then a is prefered to b in the outcome.
- (Independence of irrelevant alternatives) The relative ranking of two options in the outcome is not influenced by a third candidate.
- (Non-dictatorship) There is no dictator.

For social choice functions: Gibbard-Satterthwaite

Arrow's impossibility theorem

Theorem (Arrow, 1951)

There is no social welfare function that satisfies the following criteria:

- More than two options
- (Pareto efficiency) If every individual prefers a over b, then a is prefered to b in the outcome.
- (Independence of irrelevant alternatives) The relative ranking of two options in the outcome is not influenced by a third candidate.
- (Non-dictatorship) There is no dictator.

For social choice functions: Gibbard-Satterthwaite

One way to deal with these limitations: Domain restrictions

Single-peaked profiles

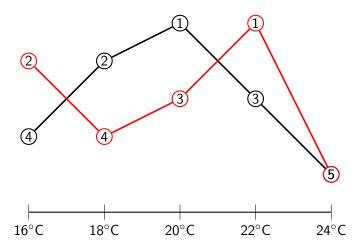
Temperature in the auditorium

Single-peaked profiles

Temperature in the auditorium 3 (5) $16^{\circ}C$ 18°C 20°C 22°C 24°C

Single-peaked profiles

Temperature in the auditorium



A characterization of single-peakedness

Theorem (Ballester, Haeringer 2011)

A preference profile is single-peaked if and only if

- 1. there do not exist candidates a, b, c, d and votes V_1, V_2 such that
 - $V_1: a > b > c, d > b$ holds and

AND

- 2. there do not exist candidates a, b, c and votes V_1, V_2, V_3 such that
 - V₁: b > a, c > a holds and
 - V₂: a > b, c > b holds and
 - $V_3: a > c, b > c$ holds.

A characterization of single-peakedness

Theorem (Ballester, Haeringer 2011)

A preference profile is single-peaked if and only if

- 1. there do not exist candidates a, b, c, d and votes V_1, V_2 such that
 - $V_1: a > b > c, d > b$ holds and

AND

- 2. there do not exist candidates a, b, c and votes V_1, V_2, V_3 such that
 - V₁: b > a, c > a holds and
 - V₂: a > b, c > b holds and
 - ► V₃ : a > c, b > c holds.

Similar characterizations exist for many other domain restrictions: single-crossing, single-caved, group-separable, etc.

Definition

Let k, m be positive integers. Furthermore, let C be a multiset of partial orders over [k] and let \mathcal{P} be a multiset of total orders over [m]. We refer to C as a *configuration* and to \mathcal{P} as a *profile*.

Definition

Let k, m be positive integers. Furthermore, let C be a multiset of partial orders over [k] and let \mathcal{P} be a multiset of total orders over [m]. We refer to C as a *configuration* and to \mathcal{P} as a *profile*.

The profile \mathcal{P} contains configuration \mathcal{C} if there exist an injective function f from \mathcal{C} into \mathcal{P} and an injective function g from [k] into [m] such that, for any $a, b \in [k]$ and $O \in \mathcal{C}$, it holds that if a O b then g(a) f(O) g(b).

Definition

Let k, m be positive integers. Furthermore, let C be a multiset of partial orders over [k] and let \mathcal{P} be a multiset of total orders over [m]. We refer to C as a *configuration* and to \mathcal{P} as a *profile*.

The profile \mathcal{P} contains configuration \mathcal{C} if there exist an injective function f from \mathcal{C} into \mathcal{P} and an injective function g from [k] into [m] such that, for any $a, b \in [k]$ and $O \in \mathcal{C}$, it holds that if a O b then g(a) f(O) g(b).

Remark: g is not a matching (not increasing)

Definition

Let k, m be positive integers. Furthermore, let C be a multiset of partial orders over [k] and let \mathcal{P} be a multiset of total orders over [m]. We refer to C as a *configuration* and to \mathcal{P} as a *profile*.

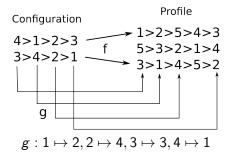
The profile \mathcal{P} contains configuration \mathcal{C} if there exist an injective function f from \mathcal{C} into \mathcal{P} and an injective function g from [k] into [m] such that, for any $a, b \in [k]$ and $O \in \mathcal{C}$, it holds that if a O b then g(a) f(O) g(b).

Configuration	Profile
4>1>2>3 3>4>2>1	1>2>5>4>3 5>3>2>1>4
	3>1>4>5>2

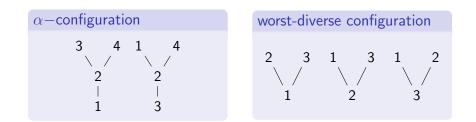
Definition

Let k, m be positive integers. Furthermore, let C be a multiset of partial orders over [k] and let \mathcal{P} be a multiset of total orders over [m]. We refer to C as a *configuration* and to \mathcal{P} as a *profile*.

The profile \mathcal{P} contains configuration \mathcal{C} if there exist an injective function f from \mathcal{C} into \mathcal{P} and an injective function g from [k] into [m] such that, for any $a, b \in [k]$ and $O \in \mathcal{C}$, it holds that if a O b then g(a) f(O) g(b).



A characterization of single-peakedness



Theorem (Ballester, Haeringer 2011)

A preference profile is single-peaked if and only if it does contain neither $\alpha-$ nor worst-diverse configurations.

Relation to permutation patterns

Every permutation pattern matching problem can be translated into a configuration containment problem:

Theorem

Let
$$\pi = (\pi_1 \dots \pi_k)$$
 and $\sigma = (\sigma_1 \dots \sigma_m)$ be permutations. The profile

$$\mathcal{P} = \{1 < 2 < \dots < m, \ 1 < 2 < \dots < m, \ \sigma_1 < \sigma_2 < \dots < \sigma_m\}$$

contains the configuration

$$\mathcal{C} = \{1 < 2 < \dots < k, \ 1 < 2 < \dots < k, \ \pi_1 < \pi_2 < \dots < \pi_k\}$$

if and only if σ contains π .

Relation to permutation patterns (ctd.)

Theorem

Let $\pi = (\pi_1 \dots \pi_k)$ and $\sigma = (\sigma_1 \dots \sigma_m)$ be permutations. The profile

$$\mathcal{P} = \{1 < 2 < \cdots < m, \sigma_1 < \sigma_2 < \cdots < \sigma_m\}$$

contains the configuration

$$\mathcal{C} = \{1 < 2 < \dots < k, \pi_1 < \pi_2 < \dots < \pi_k\}$$

if and only if σ contains either π or π^{-1} .

Computational formulation

Hardness results (1)

Theorem

The CONFIGURATION CONTAINMENT is NP-complete, even if $|\mathcal{P}|=2,$ $\Gamma=\{\mathcal{C}\}$ and $|\mathcal{C}|=2.$

Hardness results (1)

Theorem

The CONFIGURATION CONTAINMENT is NP-complete, even if $|\mathcal{P}| = 2$, $\Gamma = \{\mathcal{C}\}$ and $|\mathcal{C}| = 2$.

Proof idea: Reduction from PERMUTATION PATTERN MATCHING. For each pattern T, text T find P', T' such that

- the inverse of P' is not contained in T' and
- P' is contained in T' iff P is contained in T.

Hardness results (2)

Theorem

The CONFIGURATION CONTAINMENT parameterized by the length of the longest configuration is W[1]-complete, even if $|\mathcal{P}| = 3$, $\Gamma = \{\mathcal{C}\}$ and $|\mathcal{C}| = 3$.

Hardness results (2)

Theorem

The CONFIGURATION CONTAINMENT parameterized by the length of the longest configuration is W[1]-complete, even if $|\mathcal{P}| = 3$, $\Gamma = \{\mathcal{C}\}$ and $|\mathcal{C}| = 3$.

Proof idea: Parameterized reduction from Segregated Permutation Pattern Matching [Bruner, L. 2013]

Counting/probability

▶ How many single-peaked profiles are there (for fixed *m*, *n*)?

Counting/probability

- ▶ How many single-peaked profiles are there (for fixed *m*, *n*)?
- Single-crossing?

Counting/probability

- ▶ How many single-peaked profiles are there (for fixed *m*, *n*)?
- Single-crossing?
- Other configurations/domain restrictions.

Counting/probability

- ▶ How many single-peaked profiles are there (for fixed *m*, *n*)?
- Single-crossing?
- Other configurations/domain restrictions.
- ► Nearly single-peaked: Voter deletion, candidate deletion, etc.

Counting/probability

- ▶ How many single-peaked profiles are there (for fixed *m*, *n*)?
- Single-crossing?
- Other configurations/domain restrictions.
- ▶ Nearly single-peaked: Voter deletion, candidate deletion, etc.

Algorithms

▶ Single-peaked ... $O(m \cdot n)$ (longest configuration k = 4)

Counting/probability

- ▶ How many single-peaked profiles are there (for fixed *m*, *n*)?
- Single-crossing?
- Other configurations/domain restrictions.
- ▶ Nearly single-peaked: Voter deletion, candidate deletion, etc.

Algorithms

- ▶ Single-peaked ... $\mathcal{O}(m \cdot n)$ (longest configuration k = 4)
- ▶ Single-crossing ... $\mathcal{O}(m^2 \cdot n)$ (longest configuration k = 6)

Counting/probability

- ▶ How many single-peaked profiles are there (for fixed *m*, *n*)?
- Single-crossing?
- Other configurations/domain restrictions.
- ▶ Nearly single-peaked: Voter deletion, candidate deletion, etc.

Algorithms

- ▶ Single-peaked ... $\mathcal{O}(m \cdot n)$ (longest configuration k = 4)
- ▶ Single-crossing ... $\mathcal{O}(m^2 \cdot n)$ (longest configuration k = 6)
- Universal configuration containment algorithm faster than $\mathcal{O}(m^k \cdot n)$?

Summary

- Configuration containment: captures the most important domain restrictions
- Permutation patterns occur as a special case
- This work connects the two main topics of my (unfinished) PhD thesis: domain restrictions and permutation patterns. I am very interested in feedback.