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Social choice

Social choice deals with combining the preferences of individuals to reach
a collective decision, e.g., voting.

I Preferences of each individual (votes) . . . total orders

I Preference profile (election) . . . multiset of total orders

I Social choice function . . . mapping from profiles to sets of candidates
(winners)

I Social welfare function . . . mapping from profiles to total orders
(ranking)

I Example: Plurality voting.
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Arrow’s impossibility theorem

Theorem (Arrow, 1951)

There is no social welfare function that satisfies the following criteria:

I More than two options

I (Pareto efficiency) If every individual prefers a over b, then a is
prefered to b in the outcome.

I (Independence of irrelevant alternatives) The relative ranking of two
options in the outcome is not influenced by a third candidate.

I (Non-dictatorship) There is no dictator.

For social choice functions: Gibbard-Satterthwaite

One way to deal with these limitations: Domain restrictions

Martin Lackner 4



Arrow’s impossibility theorem

Theorem (Arrow, 1951)

There is no social welfare function that satisfies the following criteria:

I More than two options

I (Pareto efficiency) If every individual prefers a over b, then a is
prefered to b in the outcome.

I (Independence of irrelevant alternatives) The relative ranking of two
options in the outcome is not influenced by a third candidate.

I (Non-dictatorship) There is no dictator.

For social choice functions: Gibbard-Satterthwaite

One way to deal with these limitations: Domain restrictions

Martin Lackner 4



Arrow’s impossibility theorem

Theorem (Arrow, 1951)

There is no social welfare function that satisfies the following criteria:

I More than two options

I (Pareto efficiency) If every individual prefers a over b, then a is
prefered to b in the outcome.

I (Independence of irrelevant alternatives) The relative ranking of two
options in the outcome is not influenced by a third candidate.

I (Non-dictatorship) There is no dictator.

For social choice functions: Gibbard-Satterthwaite

One way to deal with these limitations: Domain restrictions

Martin Lackner 4



Single-peaked profiles
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A characterization of single-peakedness

Theorem (Ballester, Haeringer 2011)

A preference profile is single-peaked if and only if

1. there do not exist candidates a, b, c , d and votes V1,V2 such that
I V1 : a > b > c , d > b holds and
I V2 : c > b > a, d > b holds

AND

2. there do not exist candidates a, b, c and votes V1,V2,V3 such that
I V1 : b > a, c > a holds and
I V2 : a > b, c > b holds and
I V3 : a > c , b > c holds.

Similar characterizations exist for many other domain restrictions:
single-crossing, single-caved, group-separable, etc.
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Generalization: Configuration Containment

Definition

Let k ,m be positive integers. Furthermore, let C be a multiset of partial
orders over [k] and let P be a multiset of total orders over [m]. We refer
to C as a configuration and to P as a profile.

The profile P contains configuration C if there exist an injective function f
from C into P and an injective function g from [k] into [m] such that, for
any a, b ∈ [k] and O ∈ C, it holds that if a O b then g(a) f (O) g(b).
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any a, b ∈ [k] and O ∈ C, it holds that if a O b then g(a) f (O) g(b).

g : 1 7→ 2, 2 7→ 4, 3 7→ 3, 4 7→ 1
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A characterization of single-peakedness

α−configuration
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Theorem (Ballester, Haeringer 2011)

A preference profile is single-peaked if and only if it does contain neither
α− nor worst-diverse configurations.
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Relation to permutation patterns

Every permutation pattern matching problem can be translated into a
configuration containment problem:

Theorem

Let π = (π1 . . . πk) and σ = (σ1 . . . σm) be permutations. The profile

P = {1 < 2 < · · · < m, 1 < 2 < · · · < m, σ1 < σ2 < · · · < σm}

contains the configuration

C = {1 < 2 < · · · < k , 1 < 2 < · · · < k , π1 < π2 < · · · < πk}

if and only if σ contains π.
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Relation to permutation patterns (ctd.)

Theorem

Let π = (π1 . . . πk) and σ = (σ1 . . . σm) be permutations. The profile

P = {1 < 2 < · · · < m, σ1 < σ2 < · · · < σm}

contains the configuration

C = {1 < 2 < · · · < k , π1 < π2 < · · · < πk}

if and only if σ contains either π or π−1.
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Computational formulation

Configuration Containment
Instance: A profile P and a set of configurations Γ

Question: Is there a C ∈ Γ that is contained in P?
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Hardness results (1)

Theorem

The Configuration Containment is NP-complete, even if |P| = 2,
Γ = {C} and |C| = 2.

Proof idea: Reduction from Permutation Pattern Matching.
For each pattern T , text T find P ′,T ′ such that

I the inverse of P ′ is not contained in T ′ and

I P ′ is contained in T ′ iff P is contained in T .
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Hardness results (2)

Theorem

The Configuration Containment parameterized by the length of the
longest configuration is W[1]-complete, even if |P| = 3, Γ = {C} and
|C| = 3.

Proof idea: Parameterized reduction from Segregated Permutation
Pattern Matching [Bruner, L. 2013]
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Research directions

Counting/probability

I How many single-peaked profiles are there (for fixed m, n)?

I Single-crossing?

I Other configurations/domain restrictions.

I Nearly single-peaked: Voter deletion, candidate deletion, etc.

Algorithms

I Single-peaked ... O(m · n) (longest configuration k = 4)

I Single-crossing ... O(m2 · n) (longest configuration k = 6)

I Universal configuration containment algorithm faster than O(mk · n)?
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Summary

I Configuration containment:
captures the most important domain restrictions

I Permutation patterns occur as a special case

I This work connects the two main topics of my (unfinished) PhD
thesis: domain restrictions and permutation patterns. I am very
interested in feedback.
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