Pattern Matching for Permutations

Stéphane Vialette

²CNRS & LIGM, Université Paris-Est Marne-la-Vallée, France

Permutation Pattern 2013, Paris

Vialette (LIGM – UPEMLV)

Pattern Matching

PP 2013 1 / 69

Outline

1 The general problem

- 2 A few restricted permutations
- 3 Small patterns
- 4 A focus on separable permutations
- 5 Consecutive occurrences
- 6 Some open problems

Pattern containment / involvement / avoidance

A permutation π is said to **contain** another permutation σ , in symbols $\sigma \leq \pi$, if there exists a subsequence of entries of π that has the same relative order as σ , and in this case σ is said to be a **pattern** of π .

Otherwise, π is said to **avoid** the permutation σ .

Example

A permutation contains the pattern 123 (resp. 321) if it has an increasing (resp. decreasing) subsequence of length 3.

Pattern matching

Given two permutations π and σ (we may have constraints on π and/or σ), how fast can we decide whether σ is involved in π ?

Common pattern

Given a collection $\Pi = (\pi_1, \pi_2, \ldots, \pi_n)$ of *n* permutations (we may have constraints on $\pi_1, \pi_2, \ldots, \pi_n$) and a "constraint" *C*, find the largest permutation σ that satisfies *C* and that is involved in every permutation in Π .

We may be interested in returning only the size of the largest common permutation.

Theorem ([Bose, Buss, Lubiw 98])

For two permutations π and σ , deciding whether $\sigma \preceq \pi$ is **NP**-complete.

Remarks

- The problem is ascribed to H. Wilf in [Bose, Buss, LUBIW 98].
- Reduction from 3-SATISFIABILITY.

Definition

A matching diagram is a graph G such that $\mathbf{V}(G)$ is equipped with a total order and $\mathbf{E}(G)$ is a perfect matching.

Restricted matching diagrams

- A matching diagram G is said to be precedence-free if there do not exist edges (i, j) and (k, ℓ) in G such that i < j < k < ℓ or k < ℓ < i < j.
- A matching diagram G is said to be crossing-free if there do not exist edges (i, j) and (k, ℓ) in G such that i < k < j < ℓ or k < i < ℓ < j.
- A matching diagram G is said to be inclusion-free if there do not exist edges (i, j) and (k, ℓ) in G such that i < k < ℓ < j or k < i < j < ℓ.

Pattern matching for separable patterns Matching diagram

Theorem ([Folklore])

 $\label{eq:precedence-free matching diagrams of size \ 2n \ are \ in \ one-to-one \\ correspondence \ with \ permutations \ of \ length \ n$

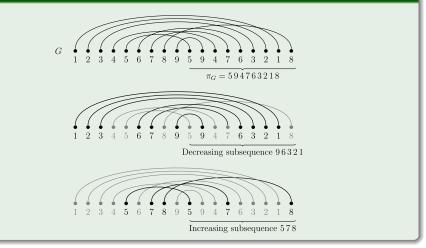
Remarks

- The vertices of G which are left endpoints of edges are labeled $\{1, 2, \ldots, n\}$.
- The vertices of G which are right endpoints of edges are labeled $\{n+1, n+2, \ldots, 2n\}.$
- The permutation π corresponding to G is defined by $\pi(j-n) = i$ if and only if $(i, j) \in \mathbf{E}(G)$.

(日) (四) (日) (日) (日)

Pattern matching for separable patterns Matching diagram

Examples



Vialette (LIGM – UPEMLV)

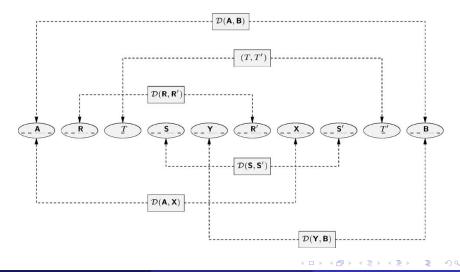
Pattern Matching

PP 2013

8 / 69

Pattern matching for permutations

Proving hardness of pattern involvement using matching diagrams [V. 04]



Vialette (LIGM – UPEMLV)

Pattern Matching

PP 2013 9 / 69

Pattern matching for permutations

But I really need to answer my "does σ occur in π ?" question !

Sage (combinat/permutation.py)

```
def has_pattern(self, patt):
  r""
  Returns the boolean answering the question 'Is patt a pattern
  appearing in permutation p?'
  EXAMPLES: :
      sage: Permutation([3,5,1,4,6,2]). has pattern([1,3,2])
      True
  .....
  p = self
  n = len(p)
  l = len(patt)
  if 1 > n:
     return False
  for pos in subword.Subwords(range(n),1):
      if to_standard(map(lambda z: p[z] , pos)) == patt:
          return True
  return False
```

Vialette (LIGM – UPEMLV)

PP 2013

10 / 69

Theorem ([Ahal, Rabinovich 08])

Let $\pi \in S_n$ and $\sigma \in S_m$. One can decide whether σ is involved in π in $O(n^{0.47m+o(m)})$ time.

Remarks

- The authors introduce two naturally defined (related) permutation complexity measures $C(\pi)$ and a somewhat finer $C^{\mathbf{T}}(\pi)$.
- They show that the algorithms run in time $O(n^{1+C(\sigma)})$ and $O(n^{2C^{T}(\sigma)})$.
- In the general case, $C(\sigma) \leq 0.47k + o(m)$.

Pattern matching for permutations

Fixed-parameter approach

Theorem ([Bruner, Lackner 12])

Let $\pi \in S_n$ and $\sigma \in S_m$. One can decide whether σ is involved in π in $O(1.79^{\operatorname{run}(\pi)})$ or $O^*((n^2/2\operatorname{run}(\sigma))^{\operatorname{run}(\sigma)})$ time.

Remarks

- Ahal and Rabinovich's $O(n^{0.47m+o(m)})$ time algorithm is $O(n^{1+\mathrm{run}(\sigma)})$ time.
- Deciding whether σ is involved in π is **W**[1]-hard w.r.t. the parameter run(σ).

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition (Alternating permutations)

A permutation $\pi = \pi_1 \pi_2 \dots \pi_n \in S_n$ is **alternating** if

 $\pi_1 > \pi_2 < \pi_3 > \ldots$, and **reverse alternating** if $\pi_1 < \pi_2 > \pi_3 < \ldots$

Vialette (LIGM – UPEMLV)

Theorem ([Rizzi, V. 2013])

Deciding whether σ is involved in π is **NP**-complete even if both π and σ are alternating.

Proof (Key idea).

Let $\pi \in S_n$ and $\sigma \in S_m$.

Define

$$\pi' = (2n+1) \pi_1 (2n) \pi_2 \dots (n+2) \pi_k (n+1)$$

$$\sigma' = (2m+1) \sigma_1 (2km) \sigma_2 \dots (m+2) \sigma_m (m+1)$$

Claim: σ is involved in π if and only if σ' is involved in π' .

Theorem ([Bose, Buss, Lubiw 98])

Given a collection $\Pi = (\pi_1, \pi_2, \ldots, \pi_n)$ of *n* permutations and a positive integer *m*, deciding whether there exists a permutation $\sigma \in S_m$ that is involved in every permutation in Π is **NP**-complete.

Remarks

- The problem is at least as hard as deciding whether a given permutation σ is involved in another given permutation π .
- The problem is **NP**-complete for $n \ge 2$.
- This naturally reduces to an optimization problem.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Definition

Let ${\cal G}$ be a precedence-free matching diagram.

- A tower is a set of pairwise nested edges. The **height** of G is defined to be the size of the maximum cardinality tower in G.
- A staircase is a set of pairwise crossing edges. The **depth** of *G* is defined to be the size of the maximum cardinality staircase in *G*.

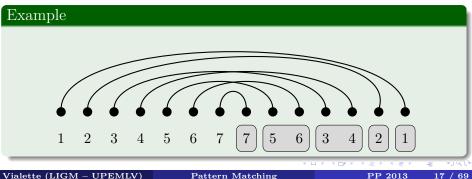
The matching diagram G is called

- a **tower of staircases** if any two maximal staircases do not share an edge (it is furthermore called **balanced** if all its maximal staircases are of equal cardinality),
- a **staircase of towers** if any two maximal towers do not share an edge (it is furthermore called **balanced** if all its maximal towers are of equal cardinality)

Finding a largest common permutations

Theorem ([Fertin, Hermelin, Rizzi, V. 10])

Let G_1, G_2, \ldots, G_n be a collection of towers of staircases of depth at most 2, and ℓ be a positive integers. Deciding whether there exists a matching diagram of size ℓ that occurs in every tower of staircases G_i , $1 \leq i \leq n$, is **NP**-complete.



Vialette (LIGM – UPEMLV)

$\operatorname{Theorem}([$ Fertin, Hermelin, Rizzi, V. 10])

Let $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ be a collection of permutations of size at most m. The problem of computing the largest permutation that is involved in every permutation in Π is approximable within ratio $\sqrt{\text{opt}}$ in $O(nm^{1.5})$ time, where **opt** is the size of an optimal solution.

This is the limit of our approach ...

Lemma ([Fertin, Hermelin, Rizzi, V. 10])

For every collection $\Pi \subseteq S_n$, $n \in \mathbb{N}$ and $|\Pi| \leq 2^n$, there exists $\sigma \in S_K$, $K = \Omega(k^2)$, which avoids all permutations in Π .

Vialette (LIGM – UPEMLV)

< 口 > < 同 > < 三 > < 三 > 、

Theorem ([Fertin, Hermelin, Rizzi, V. 10])

Let $\mathcal{G} = (G_1, G_2, \ldots, G_n)$ be a collection of linear graphs of maximum size m. There exists an algorithm with approximation ratio $O(\sqrt{\operatorname{opt} \log \operatorname{opt}})$ that runs in $O(nm^{3.5} \log m)$ time and returns a linear graph that occurs in every linear graph in \mathcal{G} , where opt is the size of an optimal solution

Remarks

- Precedence-free matching diagrams remains the bottleneck.
- Any matching diagram of size n contains either a precedence-free matching diagram, an inclusion-free matching diagram, or a crossing-free matching diagram of size $\frac{\sqrt{17}-1}{8} n^{2/3}$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

1 The general problem

2 A few restricted permutations

3 Small patterns

- 4 A focus on separable permutations
- 5 Consecutive occurrences
- 6 Some open problems

Theorem ([Crochemore, Porat 10])

Let $\pi \in S_n$ and $\sigma = 1 \ 2 \ \dots \ m$. On can decide whether σ is involved in π in $O(n \log \log m)$ time.

Remarks

- This improves the previous 30-year bound of $O(n \log m)$. (The algorithm also improves on the previous $O(n \log \log n)$ bound.)
- Having π to be sequence of integers (*i.e.*, multiple occurrences are allowed) does not change the result.
- A direct O(n log n) time solution for computing a longest increasing subsequence was proposed in [Fredman 75] (n log n n log log n + O(n) comparisons in the worst case). The solution is optimal if the elements are drawn from an arbitrary set due to the Ω(n log n) lower bound for sorting n elements.

Increasing patterns

Core algorithm

```
procedure LIS(\pi = \pi_1 \ \pi_2 \ \dots \ \pi_n)
    Q \leftarrow \mathsf{EmptyPriorityQueue}()
    k \leftarrow 0
    for i = 1 to n do
         \mathsf{Insert}(Q, \pi_i)
        if Successor(Q, \pi_i) exists then
             delete(Q, Successor(Q, \pi_i))
         else
             k \leftarrow k+1
         end if
    end for
    return(k)
end procedure
```

Vialette (LIGM – UPEMLV)

< 4 **⊡** ► <

э

Increasing patterns

Example for $\pi = 128911167210453$

$\pi = 1$	$12\ 8\ 9\ 1\ 11\ 6\ 7\ 2\ 10\ 4\ 5\ 3$
$\pi =$	12 8 9 1 11 6 7 2 10 4 5 3
$\pi =$	12 8 9 1 11 6 7 2 10 4 5 3
$\pi =$	12 8 9 1 11 6 7 2 10 4 5 3
$\pi =$	12 8 9 1 11 6 7 2 10 4 5 3
$\pi =$	128911167210453
$\pi =$	12 8 9 1 11 6 7 2 10 4 5 3
$\pi =$	$12\ 8\ 9\ 1\ 11\ 6\ 7\ 2\ 10\ 4\ 5\ 3$
$\pi =$	128911167210453
$\pi =$	12 8 9 1 11 6 7 2 10 4 5 3
$\pi =$	$12\ 8\ 9\ 1\ 11\ 6\ 7\ 2\ 10\ 4\ 5\ 3$
$\pi =$	$12\ 8\ 9\ 1\ 11\ 6\ 7\ 2\ 10\ 4\ 5\ 3$
$\pi =$	$12\ 8\ 9\ 1\ 11\ 6\ 7\ 2\ 10\ 4\ 5\ 3$

Q =	Ø
Q =	(12)
Q =	(8)
Q =	(8, 9)
Q =	(1, 9)

 $O = \emptyset$

$$Q = (1, 9, 11)$$

$$Q = (1, 6, 11)$$

$$Q = (1, 6, 7)$$

$$Q = (1, 2, 7)$$

$$Q = (1, 2, 7, 10)$$

$$Q = (1, 2, 4, 10)$$

$$Q = (1, 2, 4, 5)$$

$$Q = (1, 2, 3, 5)$$

Vialette (LIGM - UPEMLV)

PP 2013 23 / 69

Theorem ([Guillemot, V. 09])

Let $\pi \in S_n$ and $\sigma \in S_m$ be two 123-avoiding permutations. One can decide whether σ is involved in π in $O(m^2 n^6)$ time.

Theorem ([Guillemot, V. 09])

Let $\pi \in S_n$ and $\sigma \in S_m$. If σ is 123-avoiding and π is not, one can decide whether σ is involved in π in $O(m n^{4\sqrt{m+12}})$ time.

Remark

Deciding whether σ is involved in π is polynomial-time solvable if σ avoids 132, 312, 213 or 231 (since σ is clearly separable in this case).

Vialette (LIGM – UPEMLV)

イロト イヨト イヨト イヨト

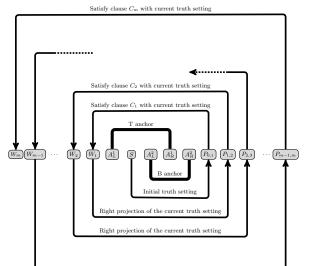
Theorem ([Rizzi, V. 13])

Let $\pi \in S_n$ and $\sigma \in S_m$. If σ is 123-avoiding and π is not, deciding whether σ is involved in π is **NP**-complete.

Remarks

- If σ is 123-avoiding then its associated matching diagram does not contain three pairwise crossing edges.
- Reduction from 3-SATISFIABILITY.

Pattern matching for 123-avoid permutations The big picture



Right projection of the current truth setting

Vialette (LIGM – UPEMLV)

Pattern Matching

PP 2013

26 / 69

Definition

A vincular pattern of length m is a pair (σ, X) where σ is a permutation in S_m and $X \subseteq \{0\} \cup [m]$ is a set of adjacencies.

Definition

A permutation $\pi \in S_n$ contains the vincular pattern (σ, X) if there is a *m*-tuple $1 \leq i_1 \leq i_2 \leq \ldots \leq i_m \leq n$ such that the following three criteria are satisfied:

•
$$\operatorname{red}(\pi_{i_1}\pi_{i_2}\ldots\pi_{i_k})=\sigma,$$

•
$$i_{j+1} = i_j + 1$$
 for each $j \in X \setminus \{0, k\}$, and

• $i_1 = 1$ if $0 \in X$, and $i_k = n$ if $k \in X$.

Examples

Example of occurrences of vincular patterns in $\pi = 241563$:

Pattern	Occurrences in $\pi = 241563$
$(\sigma = 231, X = \emptyset)$	241, 453, 463, 563
$(\sigma = 231, X = \{1\})$	241,563
$(\sigma = 231, X = \{2\})$	241,563
$(\sigma = 231, X = \{0, 1, 2\})$	241
$(\sigma = 231, X = \{1, 2, 3\})$	563
$(\sigma=231, X=\{3\})$	453, 463, 563

Vialette (LIGM – UPEMLV)

28 / 69

Theorem ([BRUNER, LACKNER 11])

Let π be a permutation and σ be a vincular pattern. Deciding whether σ is involved in π is $\mathbf{W}[\mathbf{1}]$ -hard.

Remarks

- Reduction from INDEPENDENT SET, standard parameterization.
- Probably the first parameterized result in this area.

1 The general problem

2 A few restricted permutations

3 Small patterns

- 4 A focus on separable permutations
- 5 Consecutive occurrences
- 6 Some open problems

Theorem

For $\sigma \in S_3$ and $\pi \in S_n$, deciding whether $\sigma \preceq \pi$ is solvable in O(n) time.

Remarks

- Stack algorithm.
- Size-3 increasing patterns.

Vialette (LIGM – UPEMLV)

Theorem ([Albert, Aldred, Atkinson, Holton. 01])

For $\sigma \in S_4$ and $\pi \in S_n$, deciding whether $\sigma \preceq \pi$ is solvable in $O(n \log n)$ time.

Remarks

• Symmetries reduce the bumber of cases that have to be considered to 7:

 $\sigma = 1234, 2134, 2341, 2314, 1324, 2143, 2413$

• Tree-based data structures.

Theorem ([Rizzi, V. 2013])

For $\sigma \in S_4$ and $\pi \in S_n$, deciding whether $\sigma \preceq \pi$ is solvable in $O(n \log \log n)$ time.

Remarks

- 7 algorithms (combination of point location like procedures) for 7 different cases.
- Van Emde Boas trees.
- Color based algorithms.

э

1 The general problem

- 2 A few restricted permutations
- 3 Small patterns
- 4 A focus on separable permutations
 - 5 Consecutive occurrences
- 6 Some open problems

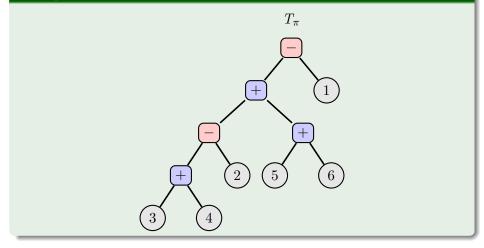
Definition

A permutation is separable if it contains neither 2413 nor 3142.

Remarks

- Enumerated by the Schröder numbers (sequence A006318 in OEIS).
- Permutations whose permutation graphs are cographs (*i.e.* P_4 -free graphs).
- permutations that can be obtained from the trivial permutation 1 by *direct sums* and *skew sums*.

Example. $\pi = 342561$



Vialette (LIGM - UPEMLV)

∃ ⊳ PP 2013 36 / 69

æ

A ID > A ID > A

Theorem ([IBARRA 97])

Let $\pi \in S_n$ and $\sigma \in S_m$, σ begin separable. One can decide whether σ is involved in π in $O(mn^4)$ time and $O(mn^3)$ space.

Remarks

- Bottom up dynamic programming on the separating tree.
- $O(mn^6)$ time and $O(mn^4)$ space [Bose, Buss, Lubiw 98].

Definition

The **bottom point** \downarrow (*s*) of a match *s* of $\sigma(v)$ into *S* is the minimum value occurring in the sequence *s*.

The **upmost point** \uparrow (*s*) of a match *s* of $\sigma(v)$ into *S* is the maximum value occurring in *s*.

Subproblems

For every node v of T_{σ} , every two $i, j \in [n]$ with $i \leq j$, and every upper bound ub $\in [n]$, we have the subproblem $\hat{\downarrow}_{v,i,j}[\text{ub}]$, where the semantic is the following.

 $\hat{\downarrow}_{v,i,j}[\mathrm{ub}] \stackrel{\Delta}{=} \max\{\downarrow(s) : s \text{ is a match of } \sigma(v) \text{ into } \pi[i,j] \text{ with } \uparrow(s) \leq \mathrm{ub}\}.$

Dynamic programming

Base

If v is a leaf of T_{σ} then

 $\hat{\downarrow}_{v,i,j}[\mathrm{ub}] := \max\{\pi[\iota] : \pi[\iota] \le \mathrm{ub}, i \le \iota \le j\}.$

Vialette (LIGM – UPEMLV)

Pattern Matching

PP 2013

Dynamic programming

Step

Let v_L and v_R be the left and right children of v.

• If v is a positive node of T_{σ} (*i.e.*, all elements in the interval associated to v_R are larger than all elements in the interval associated to v_L), then

 $\widehat{\downarrow}_{v,i,j}[\mathrm{ub}] := \max\{\widehat{\downarrow}_{v_L,i,\iota-1}[\widehat{\downarrow}_{v_R,\iota,j}[\mathrm{ub}]]: i < \iota \leq j\}.$

• If v is a negative node of T_{σ} (*i.e.*, all elements in the interval associated to v_R are smaller than all elements in the interval associated to v_L), then

$$\hat{\downarrow}_{v,i,j}[\mathrm{ub}] := \max\{\hat{\downarrow}_{v_R,\iota,j}[\hat{\downarrow}_{v_L,i,\iota-1}[ub]]: i < \iota \leq j\}.$$

Key observation

For computing all the entries $\hat{\downarrow}_{v,\cdot,\cdot}[\cdot]$ for a node v with left and right children v_L and v_R , we only need the entries $\hat{\downarrow}_{v_L,\cdot,\cdot}[\cdot]$ and $\hat{\downarrow}_{v_R,\cdot,\cdot}[\cdot]$.

Policy

- All problems for a same node v are solved together.
- Their solution is maintained in memory until the problems for the parent of v have also been solved.
- At that point the memory used for node v is released.

Pattern matching for separable patterns Reducing the memory consumption to $O(n^4 \log k)$

DFS Largest first

```
procedure DFS-LF(T)
for every node u of T do
color(u) \leftarrow WHITE
end for
DFS-LF-Visit(T.root)
end procedure
```

```
procedure DFS-LF-VISIT(u)

color[u] = GRAY

for every child v of u in order of decreasing size do

DFS-LF-Visit(v)

end for

color(u) \leftarrow BLACK

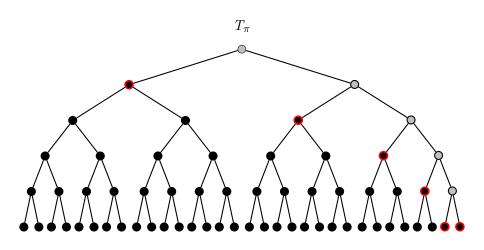
end procedure
```

3

42 / 69

A D F A B F A B F

DFS–Largest First for complete binary trees



Vialette (LIGM – UPEMLV)

Pattern Matching

PP 2013

Observation

If both π and σ are separable permutations, deciding whether σ is involved in π reduces to ordered and labelled tree inclusion (on the separating trees).

Remarks

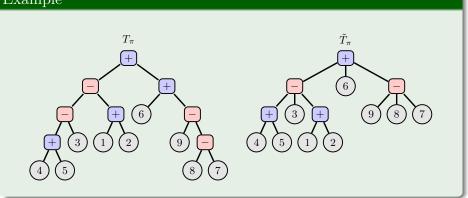
- We cannot focus any longer on binary separating trees.
- Ordered and labelled tree inclusion is an important query primitive in XML databases.

Vialette (LIGM – UPEMLV)

PP 2013

Pattern matching for separable patterns Both π and σ and separable permutations

Example



Vialette (LIGM - UPEMLV)

Pattern Matching

PP 2013

45 / 69

A D M A A A M M

Theorem ([Bille, Gørtz. 11])

Let T and T' be two labelled ordered trees. Deciding whether T can be obtain from T' bu deleting nodes is solvable in $O(n_T)$ space and

$$O\left(\min\left\{\begin{array}{l}l_{T'} n_T\\l_{T'} l_T \log\log n_T + n_T\\\frac{n_T n_{T'}}{\log n_T} + n_T \log n_T\end{array}\right\}\right)$$

time, where n_T (resp. $n_{T'}$) denotes the number of node of T (resp. T') and l_T (resp. $l_{T'}$) denotes the number of leaves of T (resp. T').

 σ is a vincular separable pattern

Theorem

Let $\pi \in S_n$ and $\sigma \in S_m$, σ being a bivincular separable pattern. One can decide whether σ is involved in π in $O(mn^6)$ time and $O(mn^4)$ space.

Remarks

- We need to take care to both positional constraints and value constraints.
- HUGE dynamic programming.

 σ is a vincular separable pattern

Dynamic programming

For every node v of T_{σ} , for every two $i, j \in [n]$ with $i \leq j$, for every lower and upper bound lb, ub $\in [n]$ with lb \leq ub, and for every $Z \subseteq \{N, S, W, E\}$, where the semantic is the following

	true	if is there exists a match of the bivincular pattern								
		$(\sigma(v), X \sigma(v), Y \sigma(v))$ in $\pi[i, j]$ with every element								
		in the interval [lb, ub], and								
$D^Z \qquad \Delta$	J	– if $N \in \mathbb{Z}$ then value ub occurs in the match,								
$P^Z_{v,i,j,\mathrm{lb,ub}} \triangleq$	Ì	$-$ if $S \in \mathbb{Z}$ then value lb occurs in the match,								
		– if $W \in \mathbb{Z}$ then $\pi[i]$ is included in the match, and								
		- if $E \in Z$ then $\pi[j]$ is included in the match.								
	false	otherwise.								

Vialette (LIGM – UPEMLV)

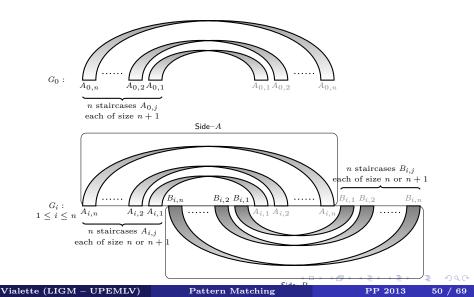
PP 2013

Known results

- $O(n^8)$ time algorithm for computing the largest common separable pattern that is involved in two permutations of size (at most) n, one of these two permutation being separable [ROSSIN, BOUVEL 06].
- $O(n^{6k+1})$ time and $O(n^{4k+1})$ space algorithm for computing the largest separable pattern that is involved in k permutations of size (at most) n [BOUVEL, ROSSIN, V. 07].
- Computing the largest separable pattern that is involved in a collection of given separable permutations is **NP**-complete [BOUVEL, ROSSIN, V. 07].

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Hardness of finding a largest common separable pattern



Finding a largest separable pattern in a permutation: a simpler approach

Theorem ([Rizzi, V. 13])

Let $\pi \in S_n$. One can find the largest separable permutation that is involved in π in $O(n^6)$ time and $O(n^4)$ space.

Theorem ([Rizzi, V. 13])

Let $\pi_1, \pi_2 \in S_n$. One can find the largest separable permutation that is involved in π_1 and in π_2 in $O(n^{12})$ time and $O(n^8)$ space.

Theorem ([Rizzi, V. 13])

Let $\pi_1 \in S_n$ and $\pi_2 \in S_m$, π_2 being separable. One can find the largest separable permutation that is involved both in π_1 and in π_2 in $O(mn^6)$ time and $O(n^4 \log m)$ space.

Vialette (LIGM – UPEMLV)

PP 2013 51 / 69

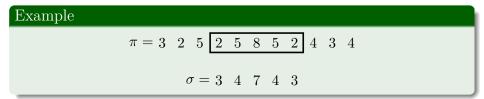
イロト イヨト イヨト イヨト

1 The general problem

- 2 A few restricted permutations
- 3 Small patterns
- 4 A focus on separable permutations
- **5** Consecutive occurrences
- 6 Some open problems

Definition

A permutation π is said to consecutively contain another permutation σ if there exists a substring of entries of π that has the same relative order as σ , and in this case σ is said to be a consecutive pattern of π .



Both π and σ are sequences

Lemma ([Kubica, Kulczyńskia, Radoszewskia, Ryttera, Waleń. 13])

Let σ be a sequence of length m whose symbols can be sorted in O(m)time. After O(m) preprocessing time, for any sequence σ' one can answer queries of the form "Assuming that $\sigma[1 \dots x] \approx \sigma'[1 \dots x]$, is $\sigma[1 \dots x + 1] \approx \sigma'[1 \dots x + 1]$ " in constant time.

Theorem ([Kubica, Kulczyńskia, Radoszewskia, Ryttera, Waleń. 13])

Let π be a sequence of length n and σ be a sequence of length m. One can check in $O(n + m \log m)$ time whether π contains a substring which is order-isomorphic to σ .

The time complexity reduces to O(n+m) if the symbols of σ can be sorted in O(m) time.

・ロト ・ 同ト ・ ヨト ・ ヨト

 π is a permutation

Theorem ([Belazzougui, Pierrot, Raffinot, V. 13])

Let $\pi \in S_n$ and σ be a sequence of m distinct integers. Deciding whether σ is order-isomorphic to a substring of π can be done in $O(n + m \log \log m)$ time.

Remarks

- O(m) space automaton.
- Forward automaton.
- Morris-Pratt automaton

Vialette (LIGM – UPEMLV)

Theorem ([Belazzougui, Pierrot, Raffinot, V. 13])

Let $\pi \in S_n$ and σ be a sequence of m distinct integers. Deciding whether σ is order-isomorphic to a substring of π can be done in $O(m \frac{\log m}{\log \log m} + \frac{n}{m} \frac{\log m}{\log \log m})$ average time.

Remarks

- Tree of all substrings of σ of length $3.5 \frac{\log m}{\log \log m}$.
- Algorithm is optimal on average.

Theorem ([Belazzougui, Pierrot, Raffinot, V. 13])

Let $\pi \in S_n$ and $\sigma_1, \sigma_2, \ldots, \sigma_d$ be sequences of distinct integers of maximal length r. After $O(m \log \log r)$ preprocessing time, one can search for substrings of π that are order-isomorphic to $\sigma_1, \sigma_2, \ldots, \sigma_d$ in randomized O(nt) time, where $t = \min(\log \log n, \sqrt{\frac{\log r}{\log \log r}}, d)$.

Consecutive patterns

Order-preserving suffix trees

Definition

Let $\pi = \pi_1 \pi_2 \dots \pi_n$ be a sequence of length *n* over an integer alphabet (polynomially bounded in terms of *n*). Define:

$$prev_{<}(\pi, i) = |\{j : j < i \text{ and } \pi_{j} < \pi_{i}\}|$$
$$prev_{=}(\pi, i) = |\{j : j < i \text{ and } \pi_{j} = \pi_{i}\}|$$

Codes of positions and strings are defined by:

$$\begin{split} \phi(\pi,i) &= (\mathsf{prev}_<(\pi,i), \mathsf{prev}_=(\pi,i))\\ \mathsf{code}(\pi) &= (\phi(\pi,1), \phi(\pi,i), \dots, \phi(\pi,n)) \end{split}$$

Finally, define the family of sequences:

 $\mathsf{SuffCodes}(\pi) = \{\mathsf{code}(\mathsf{suff}_1(\pi)) \ \#, \mathsf{code}(\mathsf{suff}_2(\pi)) \ \#, \dots, \mathsf{code}(\mathsf{suff}_n(\pi)) \}$

Order-preserving suffix trees

Example. $\pi = 6\ 8\ 2\ 0\ 7\ 9\ 3\ 1\ 4\ 5$																						
Suffixes of π										$SuffCodes(\pi)$												
6	8	2	0	7	9	3	1	4	5		0	1	0	0	3	5	2	1	4	5	#	
	8	2	0	7	9	3	1	4	5			0	0	0	2	4	2	1	4	5	#	
		2	0	7	9	3	1	4	5				0	0	2	3	2	1	4	5	#	
			0	7	9	3	1	4	5					0	1	2	1	1	3	4	#	
				7	9	3	1	4	5						0	1	0	0	2	3	#	
					9	3	1	4	5							0	0	0	2	3	#	
						3	1	4	5								0	0	2	3	#	
							1	4	5									0	1	2	#	
								4	5										0	1	#	
									5											0	#	

PP 2013 59

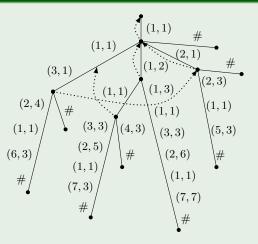
< A[™]

э

Consecutive patterns

Order-preserving suffix trees

The uncompacted trie of $\pi = 6\ 8\ 2\ 0\ 7\ 9\ 3\ 1\ 4\ 5$



Vialette (LIGM – UPEMLV)

PP 2013

Order-preserving suffix trees

Theorem ([Crochemore, et al. 2013])

The order-preserving suffix tree of a sequence of length n can be constructed in $O(\frac{n \log n}{\log \log n})$ randomized time.

Theorem ([Crochemore, et al. 2013])

Assume we are given an order-preserving suffix tree for a sequence π of length n.

Given a pattern σ of length m, one can check if σ is a substring of π in $O(\frac{m \log n}{\log \log n})$ time and report in all occurrences in $O(\frac{m \log n}{\log \log n} + occ)$, where occ is the number of occurrences.

Consecutive patterns

Order-preserving suffix trees

Definition

A sequence uv is called an **order-preserving square** (op-square) if $u \approx v$.

Lemma ([Crochemore, et al. 2013])

The sequence $\pi[i \dots i + 2k - 1]$ is an op-square if and only if the LCA of the leaves corresponding to suff_i and suff_{i+k} in the order-preserving suffix tree of π has depth at least k.

Theorem ([Crochemore, et al. 2013])

All op-squares in a sequence π of length n can be computed in $O(n \log n + occ)$ time, where occ is the total number of occurrences of op-squares.

Vialette (LIGM – UPEMLV)

1 The general problem

- 2 A few restricted permutations
- 3 Small patterns
- 4 A focus on separable permutations
- 5 Consecutive occurrences
- 6 Some open problems

Confining the combinatorial explosion to σ

For $\pi \in S_n$ and $\sigma \in S_k$, can we decide whether σ is involved in π in $f(k) n^{O(1)}$ time, where f is an arbitrary function depending only on k?

If yes, how large has to be the associated kernel?

Remarks

• Deciding whether σ is involved in π is W[1]-complete for vincular patterns [Bruner, Lackner 11],

• Deciding whether σ is involved in π is W[1]-complete for 2-coloured σ and π [Guillemot, V. 09].

Some open problems (my point of view)

Approximate occurrences

Approximate order-preserving matching

What about "approximate" order-preserving matching?

Remarks

- Probably more suited for consecutive patterns!?
- Probably more suited for sequences!?
- But what is (should be) an approximate order-preserving matching?

Pattern involvement for O(1) size pattern

What about the complexity of deciding whether σ is involved in π for $|\sigma| = 5, 6, \dots$?

Remarks

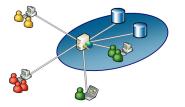
• Is there a generic approach for this task?

• What jump in complexity should we expect going from $|\sigma| = i$ to $|\sigma| = i + 1$?

Further lines of research

- Pattern matching for compressed permutations.
- Suffix arrays viewed as permutations, Burrows-Wheeler permutations, ...
- Combinatorics on words.
- Comparative genomics.

A database structured by subjects for storing combinatorial structures seen in everyday practices.



- Collaborative database.
- Automatic data acquisition.
- Open Database License (ODbL).
- Data indexing.

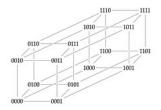
Funded by Université Paris-Est Marne-la-Vallée.

Open Combinatorial Structures (OCS)

100125.00m

Patched JVM

Storing and organizing data



Data visualization

Vialette (LIGM – UPEMLV)

Pattern Matching

PP 2013