
Pattern Matching for Permutations

Stéphane Vialette

2CNRS & LIGM, Université Paris-Est Marne-la-Vallée, France

Permutation Pattern 2013, Paris

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 1 / 69

Outline

1 The general problem

2 A few restricted permutations

3 Small patterns

4 A focus on separable permutations

5 Consecutive occurrences

6 Some open problems

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 2 / 69

Pattern matching for permutations

Pattern containment / involvement / avoidance
A permutation π is said to contain another permutation σ, in symbols
σ � π, if there exists a subsequence of entries of π that has the same
relative order as σ, and in this case σ is said to be a pattern of π.

Otherwise, π is said to avoid the permutation σ.

Example
A permutation contains the pattern 123 (resp. 321) if it has an
increasing (resp. decreasing) subsequence of length 3.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 3 / 69

Pattern matching for permutations
Two (deliberately vague) problems we are interested in

Pattern matching
Given two permutations π and σ (we may have constraints on π
and/or σ), how fast can we decide whether σ is involved in π?

Common pattern
Given a collection Π = (π1, π2, . . . , πn) of n permutations (we may have
constraints on π1, π2, . . . , πn) and a “constraint” C , find the largest
permutation σ that satisfies C and that is involved in every
permutation in Π.

We may be interested in returning only the size of the largest common
permutation.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 4 / 69

Pattern matching for permutations

Theorem ([Bose, Buss, Lubiw 98])
For two permutations π and σ, deciding whether σ � π is NP-complete.

Remarks
The problem is ascribed to H. Wilf in [Bose, Buss, Lubiw 98].

Reduction from 3-Satisfiability.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 5 / 69

Matching diagrams

Definition
A matching diagram is a graph G such that V(G) is equipped with
a total order and E(G) is a perfect matching.

Restricted matching diagrams
A matching diagram G is said to be precedence-free if there do
not exist edges (i, j) and (k, `) in G such that i < j < k < ` or
k < ` < i < j.

A matching diagram G is said to be crossing-free if there do not
exist edges (i, j) and (k, `) in G such that i < k < j < ` or
k < i < ` < j.

A matching diagram G is said to be inclusion-free if there do not
exist edges (i, j) and (k, `) in G such that i < k < ` < j or
k < i < j < `.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 6 / 69

Pattern matching for separable patterns
Matching diagram

Theorem ([Folklore])
Precedence-free matching diagrams of size 2n are in one-to-one
correspondence with permutations of length n

Remarks
The vertices of G which are left endpoints of edges are labeled
{1, 2, . . . ,n}.

The vertices of G which are right endpoints of edges are labeled
{n + 1,n + 2, . . . , 2n}.

The permutation π corresponding to G is defined by π(j − n) = i
if and only if (i, j) ∈ E(G).

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 7 / 69

Pattern matching for separable patterns
Matching diagram

Examples
2482 G. Fertin et al. / Theoretical Computer Science 411 (2010) 2475–2486

Fig. 3. A {@, G}-structured pattern G and the corresponding permutation ⇡G = 5 9 4 7 6 3 2 1 8. Also illustrated is the bijective correspondence between
decreasing subsequences (resp. increasing subsequences) of ⇡G and {@}-structured (resp. {G}-structured) patterns of G.

Clearly, all {@, G}-comparable linear graphs have corresponding permutations, and vice versa. It follows from this bijective
correspondence that the number of different {@, G}-comparable linear graphs of size k is exactly k!. Moreover, notice that
increasing subsequences in ⇡G correspond to {G}-comparable subgraphs of G, while decreasing subsequences correspond to
{@}-comparable subgraphs (see Fig. 3). More generally, a permutation � 2 Sk is said to be a pattern (or to occur) within a
permutation ⇡ 2 Sn if ⇡ has a subsequence that is order-isomorphic to � [6], i.e., there exist indices 1  i1  i2  · · · 
ik  n such that, for 1  x  y  k, ⇡ix < ⇡iy if and only if �x < �y. If ⇡ does not contain � , we say that ⇡ avoids � , or that
it is � -avoiding. For example, ⇡ = 2 4 5 3 1 contains 1 3 2 because the subsequence ⇡1 ⇡3 ⇡4 = 2 5 3 has the same relative
order as 1 3 2. However, ⇡ = 4 2 3 5 1 is 1 3 2-avoiding. In the light of the above bijection it is now clear that a linear graph
H does not occur in another linear graph G if and only if ⇡G avoids ⇡H .

The well-known ErdÆs–Szekeres Theorem [16] states that any permutation on 1, . . . , k contains either an increasing or
a decreasing subsequence of size at least

p
k. It is worth noticing that extremal ErdÆs–Szekeres (EES) permutations, i.e.,

permutations that do not contain monotone subsequences longer than
p
k, are known to exist (for example, there are 4

EES permutations of length 4: 2 1 4 3, 2 4 1 3, 3 1 4 2 and 3 4 1 2). Hence, using the algorithms in Lemma 2 for finding the
maximum common {@}-structured and {G}-structured patterns, we obtain the following theorem.

Theorem 15. TheMCSP problem for model M = {@, G} is approximable within ratio
p
k in O(nm1.5) time, where k is the size of

an optimal solution n = |G|, and m = maxG2G |E(G)|.
For k 2 N and R ✓ {<,@, G}, let Gk be a set of R-comparable linear graphs of size k. Notice that the approximation

algorithms we have offered and analyzed within this paper are all based on the key idea of identifying a family Gk, k 2 N,
of R-comparable linear graphs with |Gk|  poly(k) and such that every R-comparable linear graph of size at least f (k)
contains at least one member of Gk. Clearly, this leads to a poly-time k

f (k) -approximation algorithm whenever the function
poly(·) is polynomial. We now want to first address the inherent limitations of this approach.

For k 2 N, let ⇧k ✓ Sk be a set of |⇧k| permutations on k elements. From what said above, each permutation in ⇧k can
be equivalently regarded as a {@, G}-comparable linear graph. Alon [1] recently communicated us a proof of essentially the
following lemma.

Lemma 16 ([1]). For every family of permutations ⇧k ✓ Sk, k 2 N and |⇧k|  2k, there exists a permutation ⇡ 2 SK ,
K = ⌦(k2), which avoids all permutations in ⇧k.

Proof. The probability that a random (uniform) permutation in Sk is one of the permutations in⇧k is atmost 2k/k!. Consider
a random (uniform) permutation ⇡̃K 2 SK and notice that there are at most

�K
k

�
distinct permutations in Sk which are

subpermutations of ⇡̃K . Moreover, each of these subpermutations of ⇡̃K is a random (uniform) permutation in Sk, though
these subpermutations are not mutually independent.

Therefore, by the linearity of expectation (which does not require independence to hold), the expected number of
permutations in ⇧k which are subpermutations of ⇡̃K is bounded by

�K
k

�
2k/k!. Using Stirling’s formula to estimate this

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 8 / 69

Pattern matching for permutations
Proving hardness of pattern involvement using matching diagrams [V. 04]

232 S. Vialette / Theoretical Computer Science 312 (2004) 223–249

Fig. 4. Schematic representation of the 2-interval set D used in Proposition 1. Oval boxes represent interval
subsets of I. Square boxes along with dashed arrows represent 2-interval subsets of D.

where all ri and si are distinct letters. Now, let pi, 16i6n− J , and p′
i , 16i6k, be

the words de!ned by:

pi = ai !i a′
i ;

p′
i = bi "i b

′
i ;

where !i, 16i6n − J , are words of length k and "i, 16i6k, are words of length
n− J . Furthermore, !i[j] = "j[i] for 16i6n− J and 16j6k where !i[j] (resp. "j[i])
denotes the jth (resp. ith) letter of !i (resp. "j). Finally, let pA and pB be two words
de!ned as follows:

pA =p1 p2 · · ·pn−J ;

pB =p′
1 p

′
2 · · ·p′

k :

We are now in position to de!ne our structured pattern

p = pA pR t pS pY pR′ pX pS′ t pB;

where t is a new letter. It is easy to check that p is a well-formed {!; }-structured
pattern and that our construction can be carried on in polynomial time. This ends our
construction.
We claim that there exists a clique of size J in G if and only if there exists an

occurrence of the {!; }-structured pattern p in the 2-interval set D.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 9 / 69

Pattern matching for permutations
But I really need to answer my “does σ occur in π?” question !

Sage (combinat/permutation.py)
def has_pattern(self, patt):

r"""
Returns the boolean answering the question ’Is patt a pattern
appearing in permutation p?’

EXAMPLES::

sage: Permutation([3,5,1,4,6,2]).has_pattern([1,3,2])
True

"""
p = self
n = len(p)
l = len(patt)
if l > n:

return False
for pos in subword.Subwords(range(n),l):

if to_standard(map(lambda z: p[z] , pos)) == patt:
return True

return False

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 10 / 69

Pattern matching for permutations
General upper bound

Theorem ([Ahal, Rabinovich 08])
Let π ∈ Sn and σ ∈ Sm. One can decide whether σ is involved in π in
O(n0.47m+o(m)) time.

Remarks
The authors introduce two naturally defined (related) permutation
complexity measures C (π) and a somewhat finer C T(π).

They show that the algorithms run in time O(n1+C(σ)) and
O(n2CT(σ)).

In the general case, C (σ) ≤ 0.47k + o(m).

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 11 / 69

Pattern matching for permutations
Fixed-parameter approach

Theorem ([Bruner, Lackner 12])
Let π ∈ Sn and σ ∈ Sm. One can decide whether σ is involved in π in
O(1.79run(π)) or O∗((n2/2 run(σ))run(σ)) time.

Remarks
Ahal and Rabinovich’s O(n0.47m+o(m)) time algorithm is
O(n1+run(σ)) time.

Deciding whether σ is involved in π is W[1]-hard w.r.t. the
parameter run(σ).

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 12 / 69

Alternating permutations

Definition (Alternating permutations)
A permutation π = π1 π2 . . . πn ∈ Sn is alternating if
π1 > π2 < π3 > . . ., and reverse alternating if π1 < π2 > π3 <

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 13 / 69

Alternating permutations

Theorem ([Rizzi, V. 2013])
Deciding whether σ is involved in π is NP-complete even if both π and
σ are alternating.

Proof (Key idea).
Let π ∈ Sn and σ ∈ Sm .

Define

π′ = (2n + 1) π1 (2n) π2 . . . (n + 2) πk (n + 1)
σ′ = (2m + 1) σ1 (2km) σ2 . . . (m + 2) σm (m + 1)

Claim: σ is involved in π if and only if σ′ is involved in π′.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 14 / 69

Finding a largest common permutations

Theorem ([Bose, Buss, Lubiw 98])
Given a collection Π = (π1, π2, . . . , πn) of n permutations and a
positive integer m, deciding whether there exists a permutation σ ∈ Sm
that is involved in every permutation in Π is NP-complete.

Remarks
The problem is at least as hard as deciding whether a given
permutation σ is involved in another given permutation π.

The problem is NP-complete for n ≥ 2.

This naturally reduces to an optimization problem.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 15 / 69

Finding a largest common permutations

Definition
Let G be a precedence-free matching diagram.

A tower is a set of pairwise nested edges. The height of G is
defined to be the size of the maximum cardinality tower in G.

A staircase is a set of pairwise crossing edges. The depth of G is
defined to be the size of the maximum cardinality staircase in G.

The matching diagram G is called
a tower of staircases if any two maximal staircases do not share
an edge (it is furthermore called balanced if all its maximal
staircases are of equal cardinality),

a staircase of towers if any two maximal towers do not share an
edge (it is furthermore called balanced if all its maximal towers
are of equal cardinality)

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 16 / 69

Finding a largest common permutations

Theorem ([Fertin, Hermelin, Rizzi, V. 10])
Let G1,G2, . . . ,Gn be a collection of towers of staircases of depth at
most 2, and ` be a positive integers. Deciding whether there exists a
matching diagram of size ` that occurs in every tower of staircases Gi ,
1 ≤ i ≤ n, is NP-complete.

Example

1 2 3 4 5 6 7 7 5 6 3 4 2 1

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 17 / 69

Finding a largest common permutations

Theorem ([Fertin, Hermelin, Rizzi, V. 10])
Let π = (π1, π2, . . . , πn) be a collection of permutations of size at most
m. The problem of computing the largest permutation that is involved
in every permutation in Π is approximable within ratio

√
opt in

O(nm1.5) time, where opt is the size of an optimal solution.

This is the limit of our approach . . .

Lemma ([Fertin, Hermelin, Rizzi, V. 10])
For every collection Π ⊆ Sn, n ∈ N and |Π| ≤ 2n, there exists σ ∈ SK ,
K = Ω(k2), which avoids all permutations in Π.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 18 / 69

A quick parenthesis

Theorem ([Fertin, Hermelin, Rizzi, V. 10])
Let G = (G1,G2, . . . ,Gn) be a collection of linear graphs of maximum
size m. There exists an algorithm with approximation ratio
O(
√

opt log opt) that runs in O(nm3.5 log m) time and returns a linear
graph that occurs in every linear graph in G, where opt is the size of
an optimal solution

Remarks
Precedence-free matching diagrams remains the bottleneck.

Any matching diagram of size n contains either a precedence-free
matching diagram, an inclusion-free matching diagram, or a
crossing-free matching diagram of size

√
17−1
8 n2/3.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 19 / 69

Outline

1 The general problem

2 A few restricted permutations

3 Small patterns

4 A focus on separable permutations

5 Consecutive occurrences

6 Some open problems

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 20 / 69

Increasing patterns

Theorem ([Crochemore, Porat 10])
Let π ∈ Sn and σ = 1 2 . . . m. On can decide whether σ is involved in
π in O(n log log m) time.

Remarks
This improves the previous 30-year bound of O(n log m). (The
algorithm also improves on the previous O(n log log n) bound.)

Having π to be sequence of integers (i.e., multiple occurrences are
allowed) does not change the result.

A direct O(n log n) time solution for computing a longest
increasing subsequence was proposed in [Fredman 75]
(n log n − n log log n + O(n) comparisons in the worst case). The
solution is optimal if the elements are drawn from an arbitrary set
due to the Ω(n log n) lower bound for sorting n elements.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 21 / 69

Increasing patterns

Core algorithm
procedure LIS(π = π1 π2 . . . πn)

Q ← EmptyPriorityQueue()
k ← 0
for i = 1 to n do

Insert(Q, πi)
if Successor(Q, πi) exists then

delete(Q, Successor(Q, πi))
else

k ← k + 1
end if

end for
return(k)

end procedure

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 22 / 69

Increasing patterns

Example for π = 12 8 9 1 11 6 7 2 10 4 5 3

π =
H

12 8 9 1 11 6 7 2 10 4 5 3 Q = ∅

π =
H
12 8 9 1 11 6 7 2 10 4 5 3 Q = (12)

π = 12
H
8 9 1 11 6 7 2 10 4 5 3 Q = (8)

π = 12 8
H
9 1 11 6 7 2 10 4 5 3 Q = (8, 9)

π = 12 8 9
H
1 11 6 7 2 10 4 5 3 Q = (1, 9)

π = 12 8 9 1
H
11 6 7 2 10 4 5 3 Q = (1, 9, 11)

π = 12 8 9 1 11
H
6 7 2 10 4 5 3 Q = (1, 6, 11)

π = 12 8 9 1 11 6
H
7 2 10 4 5 3 Q = (1, 6, 7)

π = 12 8 9 1 11 6 7
H
2 10 4 5 3 Q = (1, 2, 7)

π = 12 8 9 1 11 6 7 2
H
10 4 5 3 Q = (1, 2, 7, 10)

π = 12 8 9 1 11 6 7 2 10
H
4 5 3 Q = (1, 2, 4, 10)

π = 12 8 9 1 11 6 7 2 10 4
H
5 3 Q = (1, 2, 4, 5)

π = 12 8 9 1 11 6 7 2 10 4 5
H
3 Q = (1, 2, 3, 5)

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 23 / 69

Pattern matching for 123-avoiding permutations

Theorem ([Guillemot, V. 09])
Let π ∈ Sn and σ ∈ Sm be two 123-avoiding permutations. One can
decide whether σ is involved in π in O(m2 n6) time.

Theorem ([Guillemot, V. 09])
Let π ∈ Sn and σ ∈ Sm. If σ is 123-avoiding and π is not, one can
decide whether σ is involved in π in O(m n4

√
m+12) time.

Remark
Deciding whether σ is involved in π is polynomial-time solvable if σ
avoids 132, 312, 213 or 231 (since σ is clearly separable in this case).

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 24 / 69

Pattern matching for 123-avoiding permutations

Theorem ([Rizzi, V. 13])
Let π ∈ Sn and σ ∈ Sm. If σ is 123-avoiding and π is not, deciding
whether σ is involved in π is NP-complete.

Remarks
If σ is 123-avoiding then its associated matching diagram does not
contain three pairwise crossing edges.

Reduction from 3-Satisfiability.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 25 / 69

Pattern matching for 123-avoid permutations
The big picture

2

Wm Wm�1 . . . W2 W1 A1
L S A2

L A1
R A2

R P0,1 P1,2 P2,3 . . . Pm�1,m

T anchor

B anchor

Initial truth setting

Satisfy clause C1 with current truth setting

Right projection of the current truth setting

Satisfy clause C2 with current truth setting

Right projection of the current truth setting

Right projection of the current truth setting

Satisfy clause Cm with current truth setting

some aspects of the shu✏e product bear strong similarities with genetic
recombinations (a non-tree-like event that produces a child sequence by
crossing two parent sequences).

For the iterated shu✏e, there are basically two kinds of questions
that can be addressed depending on whether or not the shu✏ed element
is given as a part of the input. This distinction basically reduces to the
two following simpler problems:

– “Given u, v 2 A⇤, is u in the iterated shu✏e of v?”, and
– “Given u 2 A⇤, is u in the iterated shu✏e of some v 2 A⇤?”.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 26 / 69

Vincular patterns

Definition
A vincular pattern of length m is a pair (σ,X) where σ is a
permutation in Sm and X ⊆ {0} ∪ [m] is a set of adjacencies.

Definition
A permutation π ∈ Sn contains the vincular pattern (σ,X) if there is a
m-tuple 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n such that the following three
criteria are satisfied:

red(πi1πi2 . . . πik) = σ,

ij+1 = ij + 1 for each j ∈ X \ {0, k}, and

i1 = 1 if 0 ∈ X , and ik = n if k ∈ X .

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 27 / 69

Vincular patterns

Examples
Example of occurrences of vincular patterns in π = 241563:

Pattern Occurrences in π = 241563
(σ = 231,X = ∅) 241, 453, 463, 563
(σ = 231,X = {1}) 241, 563
(σ = 231,X = {2}) 241, 563
(σ = 231,X = {0, 1, 2}) 241
(σ = 231,X = {1, 2, 3}) 563
(σ = 231,X = {3}) 453, 463, 563

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 28 / 69

Vincular patterns

Theorem ([Bruner, Lackner 11])
Let π be a permutation and σ be a vincular pattern. Deciding whether
σ is involved in π is W[1]-hard.

Remarks
Reduction from Independent Set, standard parameterization.

Probably the first parameterized result in this area.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 29 / 69

Outline

1 The general problem

2 A few restricted permutations

3 Small patterns

4 A focus on separable permutations

5 Consecutive occurrences

6 Some open problems

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 30 / 69

Size-3 patterns

Theorem
For σ ∈ S3 and π ∈ Sn, deciding whether σ � π is solvable in O(n)
time.

Remarks
Stack algorithm.

Size-3 increasing patterns.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 31 / 69

Size-4 patterns

Theorem ([Albert, Aldred, Atkinson, Holton. 01])
For σ ∈ S4 and π ∈ Sn, deciding whether σ � π is solvable in
O(n log n) time.

Remarks
Symmetries reduce the bumber of cases that have to be considered
to 7:

σ = 1234, 2134, 2341, 2314, 1324, 2143, 2413

Tree-based data structures.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 32 / 69

Size-4 patterns

Theorem ([Rizzi, V. 2013])
For σ ∈ S4 and π ∈ Sn, deciding whether σ � π is solvable in
O(n log log n) time.

Remarks
7 algorithms (combination of point location like procedures) for 7
different cases.

Van Emde Boas trees.

Color based algorithms.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 33 / 69

Outline

1 The general problem

2 A few restricted permutations

3 Small patterns

4 A focus on separable permutations

5 Consecutive occurrences

6 Some open problems

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 34 / 69

Separable permutations

Definition
A permutation is separable if it contains neither 2413 nor 3142.

Remarks
Enumerated by the Schröder numbers (sequence A006318 in
OEIS).
Permutations whose permutation graphs are cographs (i.e. P4-free
graphs).
permutations that can be obtained from the trivial permutation 1
by direct sums and skew sums.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 35 / 69

Separating trees

Example. π = 3 4 2 5 6 1
Tπ

−

+

−

+

3 4

2

+

5 6

1

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 36 / 69

Pattern matching for separable patterns

Theorem ([Ibarra 97])
Let π ∈ Sn and σ ∈ Sm, σ begin separable. One can decide whether σ is
involved in π in O(mn4) time and O(mn3) space.

Remarks
Bottom up dynamic programming on the separating tree.

O(mn6) time and O(mn4) space [Bose, Buss, Lubiw 98].

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 37 / 69

Pattern matching for separable patterns

Definition
The bottom point ↓ (s) of a match s of σ(v) into S is the minimum
value occurring in the sequence s.

The upmost point ↑ (s) of a match s of σ(v) into S is the maximum
value occurring in s.

Subproblems
For every node v of Tσ, every two i, j ∈ [n] with i ≤ j, and every upper
bound ub ∈ [n], we have the subproblem ↓̂v,i,j [ub], where the semantic
is the following.

↓̂v,i,j [ub] ∆= max{↓ (s) : s is a match of σ(v) into π[i, j] with ↑ (s) ≤ ub}.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 38 / 69

Pattern matching for separable patterns
Dynamic programming

Base
If v is a leaf of Tσ then

↓̂v,i,j [ub] := max{π[ι] : π[ι] ≤ ub, i ≤ ι ≤ j}.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 39 / 69

Pattern matching for separable patterns
Dynamic programming

Step
Let vL and vR be the left and right children of v.

If v is a positive node of Tσ (i.e., all elements in the interval
associated to vR are larger than all elements in the interval
associated to vL), then

↓̂v,i,j [ub] := max{↓̂vL,i,ι−1[↓̂vR,ι,j [ub]] : i < ι ≤ j}.

If v is a negative node of Tσ (i.e., all elements in the interval
associated to vR are smaller than all elements in the interval
associated to vL), then

↓̂v,i,j [ub] := max{↓̂vR,ι,j [↓̂vL,i,ι−1[ub]] : i < ι ≤ j}.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 40 / 69

Pattern matching for separable patterns
Reducing the memory consumption to O(n3 log k)

Key observation
For computing all the entries ↓̂v,·,·[·] for a node v with left and right
children vL and vR, we only need the entries ↓̂vL,·,·[·] and ↓̂vR,·,·[·].

Policy
All problems for a same node v are solved together.

Their solution is maintained in memory until the problems for the
parent of v have also been solved.

At that point the memory used for node v is released.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 41 / 69

Pattern matching for separable patterns
Reducing the memory consumption to O(n4 log k)

DFS Largest first
procedure DFS-LF(T)

for every node u of T do
color(u)←WHITE

end for
DFS-LF-Visit(T .root)

end procedure

procedure DFS-LF-Visit(u)
color[u] = GRAY
for every child v of u in order of decreasing size do

DFS-LF-Visit(v)
end for
color(u)← BLACK

end procedure

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 42 / 69

Pattern matching for separable patterns
DFS–Largest First for complete binary trees

Tπ

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 43 / 69

Pattern matching for separable patterns
Both π and σ and separable permutations

Observation
If both π and σ are separable permutations, deciding whether σ is
involved in π reduces to ordered and labelled tree inclusion (on the
separating trees).

Remarks
We cannot focus any longer on binary separating trees.

Ordered and labelled tree inclusion is an important query
primitive in XML databases.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 44 / 69

Pattern matching for separable patterns
Both π and σ and separable permutations

Example

8

4 Both ⇡ and � are separable permutations

When both ⇡ and � are separable permutations we can strive for more e�cient
solutions since we have (in linear time!) two separating trees T⇡ and T� at our
disposal. It turns out, however, that the standard separating trees are not well-
suited to handle this task. We introduce here the notion of compact separating
tree. Informally, in compact separating trees, we strive for every node to have
as many children as possible (so that the compact separating tree the identity
permutation has only the root as its - positive - internal node). A simple linear
time post-processing can be used to produce the compact separating tree out
of the (standard) separating tree: As long as the separating tree contains a
positive node whose father is also positive or a negative node whose father is
also negative, we simply supress that node and we let all of its children to be
adopted from their grandfather in proper order. We will adopte the convention
that a compact separating tree of a separating tree T⇡ is denoted T̃⇡. See Figure 2
for an example.

T⇡

+

�

�

+

4 5

3

+

1 2

+

6 �

9 �

8 7

T̃⇡

+

�

+

4 5

3 +

1 2

6 �

9 8 7

Fig. 2: A separating tree T⇡ for the permutation ⇡ = 453126987 and the corre-
sponding separating tree T̃⇡.

Now, recall that the tree inclusion problem for ordered and labeled trees is
defined as follows: Given two ordered and labeled trees T and T 0, can T be obtain
from T 0 by deleting nodes? (Deleting a node v entails removing all edges incident
to v and, if v has a parent u, replacing the edge from u to v by edges from u
to the children of v; See Fig. 3.) This problem has recently been recognized as
an important query primitive in XML databases. The rationale for considering
compact separating trees stems from the the following property:

Property 2. Let ⇡ and � be two separable permutations. We have � � ⇡ if and
only if the (compact separating) tree T̃� is included into the (compact separating)
tree T̃⇡.

Kilpeläinen and Manilla [13] presented the first polynomial time algorithm
using quadratic time and space for the tree inclusion problem. Since then several

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 45 / 69

Pattern matching for separable patterns
Both π and σ and separable permutations

Theorem ([Bille, Gørtz. 11])
Let T and T ′ be two labelled ordered trees. Deciding whether T can be
obtain from T ′ bu deleting nodes is solvable in O(nT) space and

O

min


lT ′ nT
lT ′ lT log log nT + nT
nT nT′
log nT

+ nT log nT




time, where nT (resp. nT ′) denotes the number of node of T (resp.
T ′) and lT (resp. lT ′) denotes the number of leaves of T (resp. T ′).

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 46 / 69

Pattern matching for separable patterns
σ is a vincular separable pattern

Theorem
Let π ∈ Sn and σ ∈ Sm, σ being a bivincular separable pattern. One can
decide whether σ is involved in π in O(mn6) time and O(mn4) space.

Remarks
We need to take care to both positional constraints and value
constraints.

HUGE dynamic programming.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 47 / 69

Pattern matching for separable patterns
σ is a vincular separable pattern

Dynamic programming
For every node v of Tσ, for every two i, j ∈ [n] with i ≤ j, for every
lower and upper bound lb,ub ∈ [n] with lb ≤ ub, and for every
Z ⊆ {N ,S ,W ,E}, where the semantic is the following

PZ
v,i,j,lb,ub

∆=



true if is there exists a match of the bivincular pattern
(σ(v),X |σ(v),Y |σ(v)) in π[i, j] with every element
in the interval [lb, ub], and
− if N ∈ Z then value ub occurs in the match,
− if S ∈ Z then value lb occurs in the match,
− if W ∈ Z then π[i] is included in the match, and
− if E ∈ Z then π[j] is included in the match.

false otherwise.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 48 / 69

Pattern matching for separable patterns
Finding a largest separable pattern in a permutation

Known results
O(n8) time algorithm for computing the largest common separable
pattern that is involved in two permutations of size (at most) n,
one of these two permutation being separable [Rossin, Bouvel. 06].

O(n6k+1) time and O(n4k+1) space algorithm for computing the
largest separable pattern that is involved in k permutations of size
(at most) n [Bouvel, Rossin, V. 07].

Computing the largest separable pattern that is involved in a
collection of given separable permutations is NP-complete [Bouvel,
Rossin, V. 07].

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 49 / 69

Pattern matching for separable patterns
Hardness of finding a largest common separable pattern

G0 :
A0,n A0,nA0,2 A0,2A0,1 A0,1

n staircases A0,j
each of size n + 1

Gi :
1 ≤ i ≤ n

Side–A

Side–B

Ai,n Ai,nAi,2 Ai,2Ai,1 Ai,1

n staircases Ai,j
each of size n or n + 1

Bi,n Bi,nBi,2 Bi,2Bi,1 Bi,1

n staircases Bi,j
each of size n or n + 1

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 50 / 69

Pattern matching for separable patterns
Finding a largest separable pattern in a permutation: a simpler approach

Theorem ([Rizzi, V. 13])
Let π ∈ Sn. One can find the largest separable permutation that is
involved in π in O(n6) time and O(n4) space.

Theorem ([Rizzi, V. 13])
Let π1, π2 ∈ Sn. One can find the largest separable permutation that is
involved in π1 and in π2 in O(n12) time and O(n8) space.

Theorem ([Rizzi, V. 13])
Let π1 ∈ Sn and π2 ∈ Sm, π2 being separable. One can find the largest
separable permutation that is involved both in π1 and in π2 in O(mn6)
time and O(n4 log m) space.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 51 / 69

Outline

1 The general problem

2 A few restricted permutations

3 Small patterns

4 A focus on separable permutations

5 Consecutive occurrences

6 Some open problems

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 52 / 69

Consecutive occurrences

Definition
A permutation π is said to consecutively contain another permutation
σ if there exists a substring of entries of π that has the same relative
order as σ, and in this case σ is said to be a consecutive pattern of π.

Example
π = 3 2 5 2 5 8 5 2 4 3 4

3 4 7 4 3σ =

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 53 / 69

Consecutive patterns
Both π and σ are sequences

Lemma ([Kubica, Kulczyńskia, Radoszewskia, Ryttera, Waleń. 13])
Let σ be a sequence of length m whose symbols can be sorted in O(m)
time. After O(m) preprocessing time, for any sequence σ′ one can
answer queries of the form “Assuming that σ[1 . . . x] ≈ σ′[1 . . . x], is
σ[1 . . . x + 1] ≈ σ′[1 . . . x + 1]” in constant time.

Theorem ([Kubica, Kulczyńskia, Radoszewskia, Ryttera, Waleń. 13])
Let π be a sequence of length n and σ be a sequence of length m. One
can check in O(n + m log m) time whether π contains a substring which
is order-isomorphic to σ.

The time complexity reduces to O(n + m) if the symbols of σ can be
sorted in O(m) time.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 54 / 69

Consecutive patterns
π is a permutation

Theorem ([Belazzougui, Pierrot, Raffinot, V. 13])
Let π ∈ Sn and σ be a sequence of m distinct integers. Deciding
whether σ is order-isomorphic to a substring of π can be done in
O(n + m log log m) time.

Remarks
O(m) space automaton.

Forward automaton.

Morris-Pratt automaton

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 55 / 69

Consecutive patterns
Pattern matching

Theorem ([Belazzougui, Pierrot, Raffinot, V. 13])
Let π ∈ Sn and σ be a sequence of m distinct integers. Deciding
whether σ is order-isomorphic to a substring of π can be done in
O(m log m

log log m + n
m

log m
log log m) average time.

Remarks
Tree of all substrings of σ of length 3.5 log m

log log m .

Algorithm is optimal on average.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 56 / 69

Consecutive patterns
Multiple pattern matching

Theorem ([Belazzougui, Pierrot, Raffinot, V. 13])
Let π ∈ Sn and σ1, σ2, . . . , σd be sequences of distinct integers of
maximal length r. After O(m log log r) preprocessing time, one can
search for substrings of π that are order-isomorphic to σ1, σ2, . . . , σd in
randomized O(nt) time, where t = min(log log n,

√
log r

log log r , d).

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 57 / 69

Consecutive patterns
Order-preserving suffix trees

Definition
Let π = π1 π2 . . . πn be a sequence of length n over an integer
alphabet (polynomially bounded in terms of n). Define:

prev<(π, i) = |{j : j < i and πj < πi}|
prev=(π, i) = |{j : j < i and πj = πi}|

Codes of positions and strings are defined by:

φ(π, i) = (prev<(π, i), prev=(π, i))
code(π) = (φ(π, 1), φ(π, i), . . . , φ(π,n))

Finally, define the family of sequences:

SuffCodes(π) = {code(suff1(π)) #, code(suff2(π)) #, . . . , code(suffn(π)) }

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 58 / 69

Consecutive patterns
Order-preserving suffix trees

Example. π = 6 8 2 0 7 9 3 1 4 5
Suffixes of π SuffCodes(π)

6 8 2 0 7 9 3 1 4 5 0 1 0 0 3 5 2 1 4 5 #
8 2 0 7 9 3 1 4 5 0 0 0 2 4 2 1 4 5 #

2 0 7 9 3 1 4 5 0 0 2 3 2 1 4 5 #
0 7 9 3 1 4 5 0 1 2 1 1 3 4 #

7 9 3 1 4 5 0 1 0 0 2 3 #
9 3 1 4 5 0 0 0 2 3 #

3 1 4 5 0 0 2 3 #
1 4 5 0 1 2 #

4 5 0 1 #
5 0 #

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 59 / 69

Consecutive patterns
Order-preserving suffix trees

The uncompacted trie of π = 6 8 2 0 7 9 3 1 4 5

root

p q r

leaves

v

v0

SufLink

Fig. 4. Let � = PathLabel(root , v), |�| = k, and �0 = PathLabel(root , v0), where v0 =
SufLink(v). Not necessarily �0 is a su�x of �, but �0 = Code(DelFirst(x)), where
x = w[p . . p + k � 1] or x = w[q . . q + k � 1] or x = w[r . . r + k � 1].

(1, 1)

(1, 1)

(3, 1)

(2, 4)

(1, 1)

(6, 3)

#

#

(1, 2)

(1, 1)

(3, 3)

(2, 5)

(1, 1)

(7, 3)

#

(4, 3)

#

(1, 3)

(1, 1)

(3, 3)

(2, 6)

(1, 1)

(7, 7)

#

(2, 1)

(2, 3)

(1, 1)

(5, 3)

#

#

#
(1, 1)

(1,1)

(2, 4)

3

#

6

(1, 2)

(1,1)

(3, 3)

2

(4,3)

5

(1, 3)

1

(2,1)

(2, 3)

4

#
7

#
8

Fig. 5. The uncompacted trie of SufCodes(w) for w = (1, 2, 4, 4, 2, 5, 5, 1) (to the left)
and its compacted version, the complete op-su�x-tree of w (to the right). The dotted
arrows (left figure) show su�x links for branching nodes, note that one of them leads
to an implicit node. Labels in the right figure that are in bold are present also in the
incomplete op-su�x-tree.

compute LastCode(x); append a single letter to x; and DelFirst(x).

The first and the third operations are invalid if x is empty.

Proof. The main tool is here the y-fast tree, a data structure for dynamic pre-
decessor queries. The following fact has been shown in [19].

Claim. Let N be an integer such that N = O(log w), where w is the machine
word-size. There exists a data structure that uses O(|X|) space to maintain a

6

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 60 / 69

Consecutive patterns
Order-preserving suffix trees

Theorem ([Crochemore, et al. 2013])
The order-preserving suffix tree of a sequence of length n can be
constructed in O(n log n

log log n) randomized time.

Theorem ([Crochemore, et al. 2013])
Assume we are given an order-preserving suffix tree for a sequence π of
length n.

Given a pattern σ of length m, one can check if σ is a substring of π in
O(m log n

log log n) time and report in all occurrences in O(m log n
log log n + occ),

where occ is the number of occurrences.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 61 / 69

Consecutive patterns
Order-preserving suffix trees

Definition
A sequence uv is called an order-preserving square (op-square) if
u ≈ v.

Lemma ([Crochemore, et al. 2013])
The sequence π[i . . . i + 2k − 1] is an op-square if and only if the LCA
of the leaves corresponding to suffi and suffi+k in the order-preserving
suffix tree of π has depth at least k.

Theorem ([Crochemore, et al. 2013])
All op-squares in a sequence πof length n can be computed in
O(n log n + occ) time, where occ is the total number of occurrences of
op-squares.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 62 / 69

Outline

1 The general problem

2 A few restricted permutations

3 Small patterns

4 A focus on separable permutations

5 Consecutive occurrences

6 Some open problems

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 63 / 69

Some open problems (my point of view)
Parameterized complexity

Confining the combinatorial explosion to σ

For π ∈ Sn and σ ∈ Sk , can we decide whether σ is involved in π in
f (k) nO(1) time, where f is an arbitrary function depending only on k?

If yes, how large has to be the associated kernel?

Remarks
Deciding whether σ is involved in π is W[1]-complete for vincular
patterns [Bruner, Lackner 11],
Deciding whether σ is involved in π is W[1]-complete for
2-coloured σ and π [Guillemot, V. 09].

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 64 / 69

Some open problems (my point of view)
Approximate occurrences

Approximate order-preserving matching
What about “approximate” order-preserving matching?

Remarks
Probably more suited for consecutive patterns!?
Probably more suited for sequences!?
But what is (should be) an approximate order-preserving
matching?

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 65 / 69

Some open problems (my point of view)
Fixed length patterns

Pattern involvement for O(1) size pattern
What about the complexity of deciding whether σ is involved in π for
|σ| = 5, 6, . . . ?

Remarks
Is there a generic approach for this task?

What jump in complexity should we expect going from |σ| = i to
|σ| = i + 1?

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 66 / 69

Some open problems (my point of view)
Stringology

Further lines of research
Pattern matching for compressed permutations.

Suffix arrays viewed as permutations, Burrows-Wheeler
permutations, . . .

Combinatorics on words.

Comparative genomics.

. . .

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 67 / 69

Open Combinatorial Structures (OCS)

A database structured by subjects for storing combinatorial structures
seen in everyday practices.

Collaborative database.

Automatic data acquisition.

Open Database License (ODbL).

Data indexing.

Funded by Université Paris-Est Marne-la-Vallée.

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 68 / 69

Open Combinatorial Structures (OCS)

Patched JVM

Storing and organizing data

Data visualization

Vialette (LIGM – UPEMLV) Pattern Matching PP 2013 69 / 69

	The general problem
	A few restricted permutations
	Small patterns
	A focus on separable permutations
	Consecutive occurrences
	Some open problems

