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I Three recent collaborators who have proved some new results
along these lines are Stephanie deGraaf, Zoe Koch, and
Kathleen Lan.

I Other titles we have used include:

I Vapnik-Červonenkis (VC) dimension of random permutations
(Statistics, learning theory);

I Shattering n permutations in any t positions (also Statistics
and learning theory);

I t-covering arrays (combinatorial design theory);

I The phrase “scrambling” has been used before in the
permutations context, as pointed out by a referee of our
submitted paper.
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I Vapnik-Červonenkis (VC) dimension of random permutations
(Statistics, learning theory);

I Shattering n permutations in any t positions (also Statistics
and learning theory);

I t-covering arrays (combinatorial design theory);

I The phrase “scrambling” has been used before in the
permutations context, as pointed out by a referee of our
submitted paper.

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Outline
Other Collaborators and Titles

Basic Definitions and Equivalences
Bounds

Thresholds
Current and Future Work

Collaborators and Titles

I Three recent collaborators who have proved some new results
along these lines are Stephanie deGraaf, Zoe Koch, and
Kathleen Lan.

I Other titles we have used include:
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VC Dimension

DEFINITION: A class F of subsets of a set X is said to shatter a
subset A = {a1, . . . , at} ⊆ X if

∀S ⊆ A, ∃F ∈ F such that A ∩ F = S ,

or equivalently, if

|{A ∩ F} : F ∈ F| = 2t .

DEFINITION: The VC dimension of F , VC (F), is the cardinality
of the smallest subset not shattered by F . If all subsets of finite
size are shattered by F , then the VC (F) =∞.
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Examples

I X = R,F = {(−∞, t]; t ∈ R}; VC(F)=2;

I X = R2,F = {all convex sets}; VC(F)=3.

I Many authors define the VC dimension to be the size of the
largest shattered set, in this case our values would be 1 and
∞ respectively.

I Often, the two numbers are off by one, as in Example 1.
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Covering Arrays

I A k × n array with entries from the alphabet {0, 1, . . . , q − 1}
is said to be a (t, q, n, k)-covering array, or briefly a t-covering
array, if for each of the

(n
t

)
choices of t columns, each of the

qt q-ary words of length t can be found at least once among
the rows of the selected columns.

I If q = 2, we can interpret any row as the characteristic vector
of a subset of [n] – by making a correspondence between the
positions where the row has ones, and the set of those
positions.

I We thus have the following alternative formulation of covering
arrays: A family F of subsets of [n] is a t-covering array if for
each {a1, . . . , at} ⊂ [n],

|{{a1, . . . , at} ∩ F} : F ∈ F| = 2t .
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Connections, More Terminology, Scrambling

I Thus if an array is binary t-covering, then its smallest
unshattered set must be of size ≥ t + 1 and thus
VC(F) ≥ t + 1.

I If q ≥ 3 we do not have an exact analogy with shattering sets
and dimension, but we can make a parallel with shattering
multisets.

I What about permutations, which we focus on in this talk?
I We say that a k × n rectangular array of k permutations on

[n] is t-scrambling if for each set of t columns, each of the t!
permutations on [t] may be found in an order isomorphic
fashion at least once among the rows of the selected columns.

I There are clear parallels with VC, shattering, t-covering arrays
etc, but the original terminology is “scrambling”.
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Dartmouth PP Conference

I At PP2010 in Dartmouth, Cibulka and Kynčl investigated VC
dimension of permutation arrays also;

I They used the second, i.e., “largest shattered set” definition to
assemble arrays of permutations with the following property:

I If we write each of the ∼ 4n 123-avoiders in an array, there
would be no 123 in any set of 3 columns, no matter what row
we choose;

I How much larger can such an array be?

I They provided superexponential bounds on the size of the
extremal such array.
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Known Results

I Let k = m(t, n) be the size (i.e. number of rows) of the
smallest array that is t-scrambling, i.e., all t! perms are
present in any set of t columns, i.e. arrays with VC dimension
≥ t + 1. Then

I m(n, t) ≤ tlgn
lg(t!/(t!−1)) ; t ≥ 4 (Spencer, 1972).

I For t = 3, however, m(n, 3) ≤ 2lgn (Tarui, 2008).
I Lower bounds of Füredi (1996) were improved by

Radhakrishnan (2003).
I We were able to improve the Spencer 1972 bound using the

Lovász Local Lemma:
I (deGraaf, G, Koch, Lan, 2013+):

m(n, t) ≤ (t−1)lgn
lg(t!/(t!−1)) ; t ≥ 4. Furthermore, a log log result

holds:
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Improved Upper Bounds (deGraaf, G, Koch, Lan, 2013+)

I If m(n, t, λ) is the smallest number of rows so that for any
choice of t columns, each of the t! permutations are present at
least λ times among the rows of the selected columns, then....

I Reverting to Spencer’s bound for a start, we have for t ≥ 3,

I (deGraaf, G, Koch, Lan, 2013+):

m(n, t, λ) ≤ (tlgn+(λ−1)lglgn)
lg(t!/(t!−1)) ; t ≥ 3.

I We conjecture that the t can be replaced by t − 1.
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Outline of Proof

I We will prove the t → t − 1 improvement using the Lovász
lemma:

I If Ei are events in some probability space with P(Ei ) ≤ p∀i ,
and if

I Ei is dependent on at most d other Ej , with

I ep(d + 1) < 1, then

I P(none of the Ei occur) = P(∩EC
i ) > 0
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Implementing the Lovász Local Lemma

I Ei is the event that the ith set of t columns is missing at least
one permutation.

I P(Ei ) ≤ t!(t!− 1/t!)k := p.

I d = O(nt−1) (why?)

I This, on simplification, yields the required bound;
P(∩EC

i ) > 0 means that a construction exists, which yields an
upper bound for the minimum size of a scrambling array.
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Key Results of this talk

Theorem
Let t = 3. Then, for φ(n) growing to infinity arbitrarily slowly we
have

k ≤ (3lgn−φ(n))/lg(6/5)⇒ P(array is 3− scrambling)→ 0; n→∞

and

k ≥ (3lgn+φ(n))/lg(6/5)⇒ P(array is 3− scrambling)→ 1; n→∞.
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Key Results

I In fact, we have recently proved with deGraaf, Koch, Lan,
that the above result actually holds for all t at the threshold
given by the “Spencer bound.” The correlation analysis is
much harder than for the t = 3 case, however.

I IDEA OF PROOF:

I Let X denote the number of sets of defective columns, i.e.
those that do not contain at least one 3-permutation. Then,

I P(X ≥ 1) ≤ E(X ) ≤
(n
3

)
· 6 · (5/6)k → 0 if

k ≥ (3lgn + φ(n))/lg(6/5).

I Thus the chance that the array is 3-scrambling tends to one.
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Outline of Proof, continued

I For the lower bound, we proceed as follows:

I P(X = 0) ≤ Var(X )
E2(X )

,

I by Chebychev’s inequality, and an intricate correlation analysis
reveals that this quantity tends to zero with n if
k ≤ (3lgn − φ(n))/lg(6/5).

I Thus, the chance that the array is scrambling tends to zero!
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Current Work

I With deGraaf, Koch, and Lan, we are currently working on
ways to reduce the upper bound even more;

I Several techniques are being explored, including packing
permutations, various statistics for, e.g., 312-avoiding
permutations, etc.

I With Yuan and Koch, we are investigating similar questions
for t-covering arrays, in which we are to shatter sets (q = 2)
and words/multisets, q ≥ 3.
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