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Other Collaborators and Titles

Collaborators and Titles

» Three recent collaborators who have proved some new results
along these lines are Stephanie deGraaf, Zoe Koch, and
Kathleen Lan.

» Other titles we have used include:

» Vapnik-Cervonenkis (VC) dimension of random permutations
(Statistics, learning theory);

» Shattering n permutations in any t positions (also Statistics
and learning theory);

» t-covering arrays (combinatorial design theory);

» The phrase “scrambling” has been used before in the

permutations context, as pointed out by a referee of our
submitted paper.
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Basic Definitions and Equivalences

VC Dimension

DEFINITION: A class F of subsets of a set X is said to shatter a
subset A= {a1,...,a;} C X if

VS C A,3F € F such that ANF =S,
or equivalently, if
HANF}: FeF|l=2".

DEFINITION: The VC dimension of F, VC(F), is the cardinality
of the smallest subset not shattered by F. If all subsets of finite
size are shattered by F, then the VC(F) = occ.
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Basic Definitions and Equivalences

Examples

» X =R, F = {(—o0, t]; t € R}; VC(F)=2;
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» X =R? F = {all convex sets}; VC(F)=3.

» Many authors define the VC dimension to be the size of the
largest shattered set, in this case our values would be 1 and
oo respectively.
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Basic Definitions and Equivalences

Examples

v

X =R, F = {(—o0, t];t € R}; VC(F)=2;
X = R?, F = {all convex sets}; VC(F)=3.

» Many authors define the VC dimension to be the size of the
largest shattered set, in this case our values would be 1 and
oo respectively.

v

» Often, the two numbers are off by one, as in Example 1.
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Basic Definitions and Equivalences

Covering Arrays

» A k x n array with entries from the alphabet {0,1,...,q9 — 1}
is said to be a (t, g, n, k)-covering array, or briefly a t-covering
array, if for each of the (’t’) choices of t columns, each of the
g' g-ary words of length t can be found at least once among

the rows of the selected columns.

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Basic Definitions and Equivalences

Covering Arrays

» A k x n array with entries from the alphabet {0,1,...,q9 — 1}
is said to be a (t, g, n, k)-covering array, or briefly a t-covering
array, if for each of the (’t’) choices of t columns, each of the
g' g-ary words of length t can be found at least once among
the rows of the selected columns.

> If g =2, we can interpret any row as the characteristic vector
of a subset of [n] — by making a correspondence between the
positions where the row has ones, and the set of those
positions.

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Basic Definitions and Equivalences

Covering Arrays

» A k x n array with entries from the alphabet {0,1,...,q9 — 1}
is said to be a (t, g, n, k)-covering array, or briefly a t-covering

array, if for each of the (’t’) choices of t columns, each of the
q' g-ary words of length t can be found at least once among
the rows of the selected columns.

> If g =2, we can interpret any row as the characteristic vector
of a subset of [n] — by making a correspondence between the
positions where the row has ones, and the set of those
positions.

> We thus have the following alternative formulation of covering
arrays: A family F of subsets of [n] is a t-covering array if for

each {a1,...,a:} C [n],
{{a1,...,a:} NF}: F e F|=2"
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Basic Definitions and Equivalences

Connections, More Terminology, Scrambling

» Thus if an array is binary t-covering, then its smallest
unshattered set must be of size > t + 1 and thus
VC(F)>t+ 1

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Basic Definitions and Equivalences

Connections, More Terminology, Scrambling

» Thus if an array is binary t-covering, then its smallest
unshattered set must be of size > t + 1 and thus
VC(F) > t+1.

» If g > 3 we do not have an exact analogy with shattering sets
and dimension, but we can make a parallel with shattering
multisets.

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Basic Definitions and Equivalences

Connections, More Terminology, Scrambling

» Thus if an array is binary t-covering, then its smallest
unshattered set must be of size > t + 1 and thus
VC(F) > t+1.

» If g > 3 we do not have an exact analogy with shattering sets
and dimension, but we can make a parallel with shattering
multisets.

» What about permutations, which we focus on in this talk?

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Basic Definitions and Equivalences

Connections, More Terminology, Scrambling

» Thus if an array is binary t-covering, then its smallest
unshattered set must be of size > t + 1 and thus
VC(F) > t+1.

» If g > 3 we do not have an exact analogy with shattering sets
and dimension, but we can make a parallel with shattering
multisets.

» What about permutations, which we focus on in this talk?

» We say that a k x n rectangular array of k permutations on
[n] is t-scrambling if for each set of t columns, each of the t!
permutations on [t] may be found in an order isomorphic
fashion at least once among the rows of the selected columns.

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Basic Definitions and Equivalences

Connections, More Terminology, Scrambling

» Thus if an array is binary t-covering, then its smallest
unshattered set must be of size > t + 1 and thus
VC(F) > t+1.

» If g > 3 we do not have an exact analogy with shattering sets
and dimension, but we can make a parallel with shattering
multisets.

» What about permutations, which we focus on in this talk?

» We say that a k x n rectangular array of k permutations on
[n] is t-scrambling if for each set of t columns, each of the t!
permutations on [t] may be found in an order isomorphic
fashion at least once among the rows of the selected columns.

» There are clear parallels with VC, shattering, t-covering arrays
etc, but the original terminology is “scrambling” .
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Basic Definitions and Equivalences

Dartmouth PP Conference

» At PP2010 in Dartmouth, Cibulka and Kyné&l investigated VC
dimension of permutation arrays also;
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Basic Definitions and Equivalences

Dartmouth PP Conference

» At PP2010 in Dartmouth, Cibulka and Kyné&l investigated VC
dimension of permutation arrays also;

» They used the second, i.e., “largest shattered set” definition to
assemble arrays of permutations with the following property:

> If we write each of the ~ 4" 123-avoiders in an array, there
would be no 123 in any set of 3 columns, no matter what row
we choose;

» How much larger can such an array be?

» They provided superexponential bounds on the size of the
extremal such array.
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Bounds

Known Results

» Let k = m(t, n) be the size (i.e. number of rows) of the
smallest array that is t-scrambling, i.e., all t! perms are
present in any set of t columns, i.e. arrays with VC dimension
>t+1. Then
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Bounds

Known Results

» Let k = m(t, n) be the size (i.e. number of rows) of the
smallest array that is t-scrambling, i.e., all t! perms are
present in any set of t columns, i.e. arrays with VC dimension
>t+1. Then

» m(n,t) < hg(ﬂ;l(%; t > 4 (Spencer, 1972).

» For t = 3, however, m(n,3) < 2lgn (Tarui, 2008).

» Lower bounds of Fiiredi (1996) were improved by
Radhakrishnan (2003).

» We were able to improve the Spencer 1972 bound using the
Lovasz Local Lemma:

» (deGraaf, G, Koch, Lan, 2013+):

hm(lz, t) < %; t > 4. Furthermore, a loglog result
olds:
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Bounds

Improved Upper Bounds (deGraaf, G, Koch, Lan, 2013+)

» If m(n,t,\) is the smallest number of rows so that for any
choice of t columns, each of the t! permutations are present at
least A times among the rows of the selected columns, then....
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Bounds

Improved Upper Bounds (deGraaf, G, Koch, Lan, 2013+)

» If m(n,t,\) is the smallest number of rows so that for any
choice of t columns, each of the t! permutations are present at
least A times among the rows of the selected columns, then....

» Reverting to Spencer’s bound for a start, we have for t > 3,

> (deGraaf, G, Koch, Lan, 2013+):

m(n, t,3) < (BrEO-Digan) 5 3

» We conjecture that the t can be replaced by t — 1.
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Bounds

Outline of Proof

> We will prove the t — t — 1 improvement using the Lovasz
lemma:
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Bounds

Outline of Proof

> We will prove the t — t — 1 improvement using the Lovasz
lemma:

» If E; are events in some probability space with P(E;) < pVi,
and if

» E; is dependent on at most d other Ej, with
» ep(d + 1) < 1, then
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Bounds

Outline of Proof

> We will prove the t — t — 1 improvement using the Lovasz
lemma:

» If E; are events in some probability space with P(E;) < pVi,
and if

» E; is dependent on at most d other Ej, with
» ep(d + 1) < 1, then
» P(none of the E; occur) = P(NEF) > 0
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Bounds

Implementing the Lovdsz Local Lemma

» E; is the event that the jth set of t columns is missing at least
one permutation.
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» E; is the event that the jth set of t columns is missing at least
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» P(E) < tl(t! —1/t)k == p.
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Bounds

Implementing the Lovdsz Local Lemma

» E; is the event that the jth set of t columns is missing at least
one permutation.

» P(E) < tl(t! —1/t)k == p.
» d = O(n*71) (why?)
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Bounds

Implementing the Lovdsz Local Lemma

» E; is the event that the jth set of t columns is missing at least
one permutation.

» P(E) < tl(t! —1/t)k == p.

» d = O(n*71) (why?)

» This, on simplification, yields the required bound,;

P(NEF) > 0 means that a construction exists, which yields an
upper bound for the minimum size of a scrambling array.
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Thresholds

Key Results of this talk

Theorem
Let t = 3. Then, for ¢(n) growing to infinity arbitrarily slowly we
have

k < (3lgn—¢(n))/Ig(6/5) = P(array is 3 — scrambling) — 0; n — oo
and

k > (3lgn+¢(n))/lg(6/5) = P(array is 3 — scrambling) — 1; n — 0.
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Thresholds

Key Results

» In fact, we have recently proved with deGraaf, Koch, Lan,
that the above result actually holds for all t at the threshold
given by the “Spencer bound.” The correlation analysis is
much harder than for the t = 3 case, however.
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Key Results

» In fact, we have recently proved with deGraaf, Koch, Lan,
that the above result actually holds for all t at the threshold
given by the “Spencer bound.” The correlation analysis is
much harder than for the t = 3 case, however.

» IDEA OF PROOF:

» Let X denote the number of sets of defective columns, i.e.
those that do not contain at least one 3-permutation. Then,
» P(X>1)<E(X)<(3)-6-(5/6)—0if
k> (3lgn+ o(n)),/ g (6/5).
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Thresholds

Key Results

» In fact, we have recently proved with deGraaf, Koch, Lan,
that the above result actually holds for all t at the threshold
given by the “Spencer bound.” The correlation analysis is
much harder than for the t = 3 case, however.

» IDEA OF PROOF:

» Let X denote the number of sets of defective columns, i.e.
those that do not contain at least one 3-permutation. Then,
» P(X>1)<E(X)<(3)-6-(5/6)—0if
k > (3lgn + ¢(n))/Ig(6/5).
» Thus the chance that the array is 3-scrambling tends to one.
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Thresholds

Outline of Proof, continued

» For the lower bound, we proceed as follows:
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Outline of Proof, continued

» For the lower bound, we proceed as follows:

> P(X =0) < T3
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Thresholds

Outline of Proof, continued

» For the lower bound, we proceed as follows:

> P(X =0) < T3

» by Chebychev's inequality, and an intricate correlation analysis
reveals that this quantity tends to zero with n if

k < (3lgn — ¢(n))/1g(6/5).
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Thresholds

Outline of Proof, continued

» For the lower bound, we proceed as follows:

> P(X =0) < T3

» by Chebychev's inequality, and an intricate correlation analysis
reveals that this quantity tends to zero with n if
k < (3lgn — 6(n))/1g(6/5).

» Thus, the chance that the array is scrambling tends to zero!
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Current and Future Work

Current Work

» With deGraaf, Koch, and Lan, we are currently working on
ways to reduce the upper bound even more;

Anant Godbole, Samantha Pinella, Yan Zhuang t-Scrambling Permutations



Current and Future Work

Current Work

» With deGraaf, Koch, and Lan, we are currently working on
ways to reduce the upper bound even more;

» Several techniques are being explored, including packing
permutations, various statistics for, e.g., 312-avoiding
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Current and Future Work

Current Work

» With deGraaf, Koch, and Lan, we are currently working on
ways to reduce the upper bound even more;

» Several techniques are being explored, including packing
permutations, various statistics for, e.g., 312-avoiding
permutations, etc.

» With Yuan and Koch, we are investigating similar questions
for t-covering arrays, in which we are to shatter sets (g = 2)
and words/multisets, g > 3.
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