
July 4, 2013Permutation Patterns 2013

Efficiently Generating
Classical and Vincular Pattern Avoiding Permutations

Based on Permutation Decision Diagrams

Hokkaido University1, JST ERATO project2
Yuma Inoue1, Takahisa Toda2, Shin-ichi Minato1,2

1

Permutation Patterns 2013 July 4, 2013

Main result

Provide efficient algorithms for generating all
permutations which avoid classical pattern σ.

use permutation decision diagrams (πDD)

fast and low memory usage on computational
experiment

Extend the algorithm to generate vincular
pattern avoiding permutations.

2

Permutation Patterns 2013 July 4, 2013

Outline

Preparation

Permutation Pattern

πDD (Permutation Decision Diagrams)

Our Algorithm

Experimental Result

Conclusion

3

Permutation Patterns 2013 July 4, 2013

Permutation Pattern

4

Permutation Patterns 2013 July 4, 2013

Permutation

5

Permutation: bijection on {1, 2, ... n}

Example: π =

We use one-line notation, e.g., π = (2 4 3 5 1).

1
2
3
4
5

1
2
3
4
5

Permutation Patterns 2013 July 4, 2013

Classical Pattern Avoiding

6

Definition:

π = (π1 π2 ... πn): permutation
σ = (σ1-σ2-...-σk): classical pattern

π contains σ if there is length k subsequence
of π, (πi1 πi2 ... πik) with 1≦i1<i2<...<ik≦n, such that
πix<πiy iff σx<σy.

Otherwise, π avoids σ.

Note: “-” means “not have to be adjacent”.

Permutation Patterns 2013 July 4, 2013

Classical Pattern Avoiding

7

Example:

(2 3 1 4) contains (2-1-3), but avoids (3-2-1).

(2 3 1 4)

(3 1 4) (2 1 4) (2 3 4) (2 3 1)length 3 subsequences

2-1-3

match!!
(order isomorphic)

Permutation Patterns 2013 July 4, 2013

Classical Pattern Avoiding

8

Example:

(2 3 1 4) contains (2-1-3), but avoids (3-2-1).

(2 3 1 4)

(3 1 4) (2 1 4) (2 3 4) (2 3 1)length 3 subsequences

3-2-1
no match...

Permutation Patterns 2013 July 4, 2013

Problem

input: n = 4, σ = (2-3-1)

output: {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 4 2 3),
 (1 4 3 2), (2 1 3 4), (2 1 4 3), (3 1 2 4), (3 2 1 4),
 (4 1 2 3), (4 1 3 2), (4 2 1 3), (4 3 1 2), (4 3 2 1) }

9

Problem:

Generate An(σ) for given positive integer n and pattern σ.

Example:

Let An(σ) be the set of n-permutations which avoid σ.

Permutation Patterns 2013 July 4, 2013

πDD
(Permutation Decision Diagrams)

10

Permutation Patterns 2013 July 4, 2013

πDD
(permutation decision diagrams)

πDD: decision diagrams which
represent set of permutations

one πDD correspond to one
unique set of permutations

based on decomposition of
permutation by transposition

11

τ1,4

1

{(2 1 4 3), (4 1 3 2), (4 2 3 1)}
 ={τ1,2○τ3,4, τ1,2○τ2,4, τ1,4}

τ2,4

τ3,4

τ1,2

0

Permutation Patterns 2013 July 4, 2013

Decomposition of permutation

12

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.

1
2
3
4

1
2
3
4

= (3 4 2 1)

Permutation Patterns 2013 July 4, 2013

Decomposition of permutation

13

1
2
3
4

1
2
3
4

1
2
3
4

= (3 1 2 4)○τ1,4 = (3 4 2 1)

“○” means composition of perm.

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.

Permutation Patterns 2013 July 4, 2013

Decomposition of permutation

14

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

= (2 1 3 4)○τ2,3○τ1,4 = (3 4 2 1)

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.

Permutation Patterns 2013 July 4, 2013

Decomposition of permutation

15

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

= τ1,2○τ2,3○τ1,4 = (3 4 2 1)

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.

Permutation Patterns 2013 July 4, 2013

πDD

πDD: reduced binary decision diagrams
which represent the set of permutations

node: transposition

path to 1-terminal node: permutation

each nodes have only two edges:

1-edge (means “use”)

0-edge (means “ignore”).

16

τ1,4

1

{(2 1 4 3), (4 1 3 2), (4 2 3 1)}
 ={τ1,2○τ3,4, τ1,2○τ2,4, τ1,4}

τ2,4

τ3,4

τ1,2

0

Permutation Patterns 2013 July 4, 2013

πDD

πDD: reduced binary decision diagrams
which represent the set of permutations

node: transposition

path to 1-terminal node: permutation

each nodes have only two edges:

1-edge (means “include”)

0-edge (means “exclude”).

17

τ1,4

1

{(2 1 4 3), (4 1 3 2), (4 2 3 1)}
 ={τ1,2○τ3,4, τ1,2○τ2,4, τ1,4}

τ2,4

τ3,4

τ1,2

0

Permutation Patterns 2013 July 4, 2013

Binary Operation

πDD has binary operation,
such as union, intersection,
difference and so on,
without restoring.

These computation time
depend on the number of
nodes, not permutations.

Because they are based on
recursive method.

18

τ1,4

0 1

τ2,4

τ1,2

τ2,4

0 1

τ3,4

τ1,2

τ2,4

0 1

τ3,4

τ1,2

τ1,4

=

X

P1P0

X

Q1Q0

X

P1◇Q1P0◇Q0

→◇

Permutation Patterns 2013 July 4, 2013

Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p P, q Q}

Example:

 { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
 (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

19

Permutation Patterns 2013 July 4, 2013

Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p P, q Q}

Example:

 { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
 (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

20

Permutation Patterns 2013 July 4, 2013

Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p P, q Q}

Example:

 { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
 (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

21

Permutation Patterns 2013 July 4, 2013

Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p P, q Q}

Example:

 { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
 (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

22

Permutation Patterns 2013 July 4, 2013

Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p P, q Q}

Example:

 { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
 (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }
= { (2 1 3 4), (3 1 2 4), (3 1 2 4), (2 1 3 4) }

= { (2 1 3 4), (3 1 2 4), (2 1 3 4) }

23

Permutation Patterns 2013 July 4, 2013

Cartesian Product

24

τ1,3

1

τ2,3

τ1,2

{(1 2 3), (1 3 2),
 (2 1 3),(2 3 1),
 (3 1 2), (3 2 1)}

τ4,6

1

τ5,6

τ4,5

{(1 2 3 4 5 6), (1 2 3 4 6 5),
 (1 2 3 5 4 6), (1 2 3 5 6 4),
 (1 2 3 6 4 5), (1 2 3 6 5 4)}

τ1,3

1

τ2,3

τ1,2

τ4,6

τ5,6

τ4,5

{(1 2 3 4 5 6), (1 2 3 4 6 5), (1 2 3 5 4 6),
 (1 2 3 5 6 4), (1 2 3 6 4 5), (1 2 3 6 5 4),
 (1 3 2 4 5 6), (1 3 2 4 6 5), (1 3 2 5 4 6),
 (1 3 2 5 6 4), (1 3 2 6 4 5), (1 3 2 6 5 4),
 (2 1 3 4 5 6), (2 1 3 4 6 5), (2 1 3 5 4 6),
 (2 1 3 5 6 4), (2 1 3 6 4 5), (2 1 3 6 5 4),
 (2 3 1 4 5 6), (2 3 1 4 6 5), (2 3 1 5 4 6),
 (2 3 1 5 6 4), (2 3 1 6 4 5), (2 3 1 6 5 4),
 (3 1 2 4 5 6), (3 1 2 4 6 5), (3 1 2 5 4 6),
 (3 1 2 5 6 4), (3 1 2 6 4 5), (3 1 2 6 5 4),
 (3 2 1 4 5 6), (3 2 1 4 6 5), (3 2 1 5 4 6),
 (3 2 1 5 6 4), (3 2 1 6 4 5), (3 2 1 6 5 4) }

× =

cardinality: Product
of node: Sum

Permutation Patterns 2013 July 4, 2013

Our Algorithm

25

Permutation Patterns 2013 July 4, 2013

Naive Method

26

General generating approach:

generate all n-permutations.

check the avoidance for each permutations.

σ avoid?(1 2 3 ... n) ○
σ avoid?(2 1 3 ... n) ×

σ avoid?(n ... 3 2 1) ○

:
:

generate
all perm. :

:

n!

Permutation Patterns 2013 July 4, 2013

Basic idea

27

Our approach: use πDD’s operations.

1. Obtain πDD for Sn, which is the set of n-permutations.

2. Obtain πDD for Cn(σ), which is the set of n-permutations
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for
An(σ) (= the set of n-permutations avoiding σ.)

Permutation Patterns 2013 July 4, 2013

Basic idea

28

Our approach: use πDD’s operations.

1. Obtain πDD for Sn, which is the set of n-permutations.

2. Obtain πDD for Cn(σ), which is the set of n-permutations
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for
An(σ) (= the set of n-permutations avoiding σ.)

Permutation Patterns 2013 July 4, 2013

Generate Sn

It is very compact and easy to obtain.
Direct construction takes only O(n2) time.

29

τ1,4

τ2,4

τ1,2

τ3,4

τ1,3

τ2,3

1

{(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2),
 (1 4 2 3), (1 4 3 2), (2 1 3 4), (2 1 4 3),
 (2 3 1 4), (2 3 4 1), (2 4 1 3), (2 4 3 1),
 (3 1 2 4), (3 1 4 2), (3 2 1 4), (3 2 4 1),
 (3 4 1 2), (3 4 2 1), (4 1 2 3), (4 1 3 2),
 (4 2 1 3), (4 2 3 1), (4 3 1 2), (4 3 2 1) }

n!

Permutation Patterns 2013 July 4, 2013

1. Obtain πDD for Sn, which is the set of n-permutations.

2. Obtain πDD for Cn(σ), which is the set of n-permutations
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for
An(σ) (= the set of length n-permutations avoiding σ.)

Basic idea

30

Our approach: use πDD’s operations.

Permutation Patterns 2013 July 4, 2013

Generate Cn(σ) - part.A

Let k be length of σ.

Generate all permutations whose k-prefix is in
ascending order.

Example: n = 5, σ = (2-3-1), k = 3
 { (1 2 3 4 5), (1 2 4 3 5), ... , (2 4 5 1 3), ... , (3 4 5 1 2),
 (1 2 3 5 4), (1 2 4 5 3), ... , (2 4 5 3 1), ... , (3 4 5 2 1) }

31

Permutation Patterns 2013 July 4, 2013

Generate Cn(σ) - part.A

Let k be length of σ.

Generate all permutations whose k-prefix is in
ascending order.

Example: n = 5, σ = (2-3-1), k = 3
 { (1 2 3 4 5), (1 2 4 3 5), ... , (2 4 5 1 3), ... , (3 4 5 1 2),
 (1 2 3 5 4), (1 2 4 5 3), ... , (2 4 5 3 1), ... , (3 4 5 2 1) }

32

all

Permutation Patterns 2013 July 4, 2013

Generate Cn(σ) - part.B

Rearrange each k-prefixes into the order which is
order isomorphic to σ.

Example: n = 5, σ = (2-3-1), k = 3
 { (1 2 3 4 5), (1 2 3 5 4), ... , (2 4 5 1 3), ... , (3 4 5 2 1)}

 { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 2 1 3), ... , (4 5 3 2 1)}

33

Permutation Patterns 2013 July 4, 2013

Generate Cn(σ) - part.C

Rearrange each k-prefixes into all possible
positions.

Example: n = 5, σ = (2-3-1), k = 3
 { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 3 2 1)}

 { (2 3 1 4 5), (2 3 4 1 5), ... , (2 4 5 3 1), ... , (4 5 2 3 1),
 (2 3 1 5 4), (2 3 5 1 4), ... , (2 5 4 3 1), ... , (5 4 2 3 1),
 ...
 (4 5 3 2 1), (4 5 2 3 1), ... , (4 2 1 5 3), ... , (2 1 4 5 3) }

34

Permutation Patterns 2013 July 4, 2013

Generate Cn(σ)

All 3 parts of generating Cn(σ) are “rearrangement”.

Rearrangement is realized by permutation composition.

Example: (4 3 2 1)○(2 4 1 3) = (3 1 4 2)

πDD’s cartesian product can rearrange permutations
into multiple order at once.

35

C × B × A =
Cn(σ)k-prefix pattern σpositions

Permutation Patterns 2013 July 4, 2013

Basic idea

36

Our approach: use πDD’s operations.

1. Obtain πDD for Sn, which is the set of n-permutations.

2. Obtain πDD for Cn(σ), which is the set of n-permutations
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for
An(σ) (= the set of n-permutations avoiding σ.)

Permutation Patterns 2013 July 4, 2013

1. Obtain πDD for Sn, which is the set of n-permutations.

2. Obtain πDD for Cn(σ), which is the set of n-permutations
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for
An(σ) (= the set of n-permutations avoiding σ.)

Basic idea

37

Our approach: use πDD’s operations.

Sn Cn(σ)
\ =

An(σ)

Permutation Patterns 2013 July 4, 2013

Algorithm summary

38

k-prefix

pattern σ

positions

Step1.
Generate Sn

Step2.
Generate Cn(σ)

Step3.
Calculate Sn\ Cn(σ) C

×
B

×
A

n and σ

An(σ)

Permutation Patterns 2013 July 4, 2013

Extended algorithm

39

Permutation Patterns 2013 July 4, 2013

Vincular pattern

Our algorithm is easy to be extended for
vincular pattern avoiding permutation.

Vincular pattern is pattern whose some element
must be adjacent.

If σi and σi+1 must be adjacent, we omit “-”.

Example: σ = (2 3-1)

(3 4 1 2) contains σ, but (3 1 4 2) avoids σ.

40

Permutation Patterns 2013 July 4, 2013

Generating Vincular pattern avoiding perm.

In the same way as classical pattern.

But step2-C change a little bit.

Example: n = 5, σ = (2 3-1)
 { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 3 2 1)}

 { (2 3 1 4 5), (2 3 4 1 5), ... , (2 4 5 3 1), ... , (4 5 2 3 1),
 (2 3 1 5 4), (2 3 5 1 4), ... , (2 5 4 3 1), ... , (5 4 2 3 1),
 ...
 (4 5 3 2 1), (4 5 2 3 1), ... , (4 2 1 5 3), ... , (2 1 4 5 3) }

41

not adjacent...

Permutation Patterns 2013 July 4, 2013

Generating Vincular pattern avoid perm.

In the same way as classical pattern.

But step2-C change a little bit.

Example: n = 5, σ = (2 3-1)
 { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 3 2 1)}

 { (2 3 1 4 5), (2 3 4 1 5), ... , (4 5 2 3 1),
 (2 3 1 5 4), (2 3 5 1 4), ... , (5 4 2 3 1),
 ...
 (4 5 3 2 1), (4 5 2 3 1), ... , (2 1 4 5 3) }

42

Permutation Patterns 2013 July 4, 2013

Experimental Results

43

Permutation Patterns 2013 July 4, 2013

Experiment for classical pattern

We carried out computational experiment
for classical pattern avoiding.

44

Generate all n-permutations and check to avoid
the given classical pattern or not for each.

Comparison with naive method:

Experiment:

Generate An(σ), where σ is all patterns whose
length is k for each k.

Permutation Patterns 2013 July 4, 2013

Computation time comparison

πDD is faster than naive method.

45

0.001

0.01

0.1

1

10

100

1000

8 9 10 11 12 13 14 15

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(se
c)

n

naive method (k=3)

naive method (k=5)

πDD (k=3)

πDD (k=5)

Permutation Patterns 2013 July 4, 2013

Memory usage comparison

Note that naive method store An(σ) in arrays.

πDD use about 1% memory of arrays when n=11 and k=5.
46

1M

10M

100M

1G

10G

8 9 10 11 12 13 14 15

av
er

ag
e

m
em

or
y

us
ag

e
(b

yt
e)

n

naive method (k=3)

naive method (k=5)

πDD (k=3)

πDD (k=5)

Permutation Patterns 2013 July 4, 2013

Experiment of vincular pattern

We also carried out computational experiments
for vincular pattens.

47

Generate all n-permutations and check to avoid
the given vincular pattern or not for each.

Comparison with naive method:

Experiment:

Generate Baxter permutations, which avoid
the two vincular patterns, (3-1 4-2) and (2-4 1-3).

Permutation Patterns 2013 July 4, 2013

Computation time comparison

πDD method is also fast for vincular pattern.

48

0.01

0.1

1

10

100

1000

8 9 10 11 12 13 14 15 16 17

co
m

pu
ta

tio
n

tim
e

(se
c)

n

naive method πDD

Permutation Patterns 2013 July 4, 2013

Memory usage comparison

The larger n is, the higher compression ratio
πDD has.

49

n # of Baxter
perm.

πDD(KB) Byte/# of Bax naive(KB) πDD/naive
8 10754 2760 256.65 2752 1.00
9 58202 4164 71.54 5676 0.73

10 326240 12984 39.80 37864 0.34
11 1882960 26828 14.25 181112 0.15
12 11140560 98924 8.88 1442904 0.07
13 67329992 383272 5.69 --- ---
14 414499438 824732 1.99 --- ---
15 2593341586 3151164 1.22 --- ---
16 16458756586 12403488 0.75 --- ---
17 105791986682 40788188 0.39 --- ---

Permutation Patterns 2013 July 4, 2013

Conclusion

50

Permutation Patterns 2013 July 4, 2013

Conclusion

We propose algorithms that generate classical and
vincular pattern avoiding permutations using πDD.

compact representation

brand-new and simple approach

Experimental result looks good.

In almost cases, our algorithms are fast and use
low memory to compare naive method.

51

Permutation Patterns 2013 July 4, 2013

Thank you!

52

Permutation Patterns 2013 July 4, 2013

Variable order

53

τ1,x

τ2,x

τx-1,x

τ1,x-1

τ1,x-1

τ1,x-1 τ1,x-1

Permutation Patterns 2013 July 4, 2013

Compression Rules

54

x x

0

Po P1

x x

Po P1
Po

x

Po

Permutation Patterns 2013 July 4, 2013

Generate Combination

The idea is based on Pascal’s Triangle

55

=1

=1=1

=1

=1

=2 =1

=1=3=3

Permutation Patterns 2013 July 4, 2013

Generate Combination

The idea is based on Pascal’s Triangle

56

=φ

= {{1}}

={{1},{2}}

={{1},{2},{3}}

=φ

=φ

=φ

= {{1,2}}

= {{1,2,3}}
={{1,2},
 {1,3},{2,3}}

Permutation Patterns 2013 July 4, 2013

Generate Combination

The idea is based on Pascal’s Triangle

57

={1234}

={1234,
 2134,3214}

={1234,
 1324,2314}

={1234}

={1234}

={1234}

={1234}

={1234}

={1234}

={1234,2134}

