Efficiently Generating Classical and Vincular Pattern Avoiding Permutations Based on Permutation Decision Diagrams

Yuma Inoue¹, Takahisa Toda², Shin-ichi Minato^{1,2} Hokkaido University¹, JST ERATO project²

Main result

* Provide efficient algorithms for generating all permutations which avoid classical pattern σ .

- * use permutation decision diagrams (πDD)
- fast and low memory usage on computational experiment

 Extend the algorithm to generate vincular pattern avoiding permutations.

Outline

* Preparation Permutation Pattern * π DD (Permutation Decision Diagrams) Our Algorithm Experimental Result * Conclusion

Permutation Pattern

Permutation

Permutation: bijection on {1, 2, ... n}

* Example:
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$$

* We use one-line notation, e.g., $\pi = (2 \ 4 \ 3 \ 5 \ 1)$.

Classical Pattern Avoiding

 $\pi = (\pi_1 \ \pi_2 \dots \ \pi_n)$: permutation $\sigma = (\sigma_1 - \sigma_2 - \dots - \sigma_k)$: classical pattern

Definition:

* π **contains** σ if there is length *k* subsequence of π , $(\pi_{i_1} \pi_{i_2} \dots \pi_{i_k})$ with $1 \leq i_1 < i_2 < \dots < i_k \leq n$, such that $\pi_{i_x} < \pi_{i_y}$ iff $\sigma_x < \sigma_y$.

* Otherwise, π avoids σ .

Note: "-" means "not have to be adjacent".

Permutation Patterns 2013

Classical Pattern Avoiding

Classical Pattern Avoiding

Problem

* Let $A_n(\sigma)$ be the set of *n*-permutations which avoid σ .

Problem:

Generate $A_n(\sigma)$ for given positive integer *n* and pattern σ .

Example:

* input:
$$n = 4, \sigma = (2-3-1)$$

• output: {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 4 2 3), (1 4 3 2), (2 1 3 4), (2 1 4 3), (3 1 2 4), (3 2 1 4), (4 1 2 3), (4 1 3 2), (4 2 1 3), (4 3 1 2), (4 3 2 1) }

πDD (Permutation Decision Diagrams)

πDD (permutation decision diagrams)

πDD: decision diagrams which represent set of permutations

one πDD correspond to one unique set of permutations

 based on decomposition of permutation by transposition

 $\{(2\ 1\ 4\ 3), (4\ 1\ 3\ 2), (4\ 2\ 3\ 1)\} \\ = \{\tau_{1,2} \circ \tau_{3,4}, \tau_{1,2} \circ \tau_{2,4}, \tau_{1,4}\}$

July 4, 2013

- * Transposition $\tau_{x,y}$: exchange only two elements x and y.
- * Any *n*-permutation π can be uniquely decomposed into at most *n*-1 transpositions.
 - ◆ Until π is not in ascending order, repeat the followings:
 ◆ Let x be maximum element i such that π_i ≠ i.
 ◆ Exchange x and π_x, and add τ_{x,πx} to its decomposition.

$$\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}$$

$$\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}$$

$$\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}$$

$$= (3 \ 4 \ 2 \ 1)$$

- * Transposition $\tau_{x,y}$: exchange only two elements x and y.
- * Any *n*-permutation π can be uniquely decomposed into at most *n*-1 transpositions.
 - * Until π is not in ascending order, repeat the followings: * Let *x* be maximum element *i* such that $\pi_i \neq i$.
 - * Exchange x and π_x , and add $\tau_{x,\pi x}$ to its decomposition.

$$= (3\ 1\ 2\ 4) \circ \tau_{1,4} = (3\ 4\ 2\ 1)$$

"o" means composition of perm.

July 4, 2013

Permutation Patterns 2013

- * Transposition $\tau_{x,y}$: exchange only two elements x and y.
- * Any *n*-permutation π can be uniquely decomposed into at most *n*-1 transpositions.
 - Wntil π is not in ascending order, repeat the followings:
 Let x be maximum element i such that π_i ≠ i.
 Exchange x and π_x, and add τ_{x,πx} to its decomposition.

- * Transposition $\tau_{x,y}$: exchange only two elements x and y.
- * Any *n*-permutation π can be uniquely decomposed into at most *n*-1 transpositions.
 - Wntil π is not in ascending order, repeat the followings:
 Let x be maximum element i such that π_i ≠ i.
 Exchange x and π_x, and add τ_{x,πx} to its decomposition.

πDD

- * πDD: reduced binary decision diagrams which represent the set of permutations
 - node: transposition
 - * path to 1-terminal node: permutation
 - each nodes have only two edges:
 - I-edge (means "use")
 - ✤ 0-edge (means "ignore").

July 4, 2013

πDD

- * πDD: reduced binary decision diagrams which represent the set of permutations
 - node: transposition
 - * path to 1-terminal node: permutation
 - each nodes have only two edges:
 - I-edge (means "include")
 - ✤ 0-edge (means "exclude").

 $\{(2\ 1\ 4\ 3), (4\ 1\ 3\ 2), (4\ 2\ 3\ 1)\} \\ = \{\tau_{1,2} \circ \tau_{3,4}, \tau_{1,2} \circ \tau_{2,4}, \tau_{1,4}\}$

July 4, 2013

Binary Operation

- * πDD has binary operation, such as union, intersection, difference and so on, without restoring.
- These computation time depend on the number of nodes, not permutations.
- Because they are based on recursive method.

* πDD also has cartesian product operation "×":
* P × Q = {p∘q | p∈P, q∈Q}
* Example:

* πDD also has cartesian product operation "×":
* P × Q = {p∘q | p∈P, q∈Q}
* Example:

* πDD also has cartesian product operation "×":
* P × Q = {p∘q | p∈P, q∈Q}
* Example:

* πDD also has cartesian product operation "×":
* P × Q = {p∘q | p∈P, q∈Q}
* Example:

* πDD also has cartesian product operation "×":
* P × Q = {p∘q | p∈P, q∈Q}
* Example:

 $\{ \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}, \\ (1 & 2 & 3 & 1 \end{pmatrix}, \\ (3 & 1 & 2 \end{pmatrix}, (3 & 2 & 1) \}$ $\{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}, \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & 4 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & 4 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & 4 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & 4 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 4 & 5 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 4 & 5 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 4 & 5 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 4 & 5 \\ (1 & 2 & 3 & 6 & 4 & 5 \end{pmatrix}, \\ \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \\ (1 & 2 & 3 & 6 & 4 & 5 \\ (1 & 2 & 3 & 6 & 5 & 4 \end{pmatrix} \}$

 $\{ (1\ 2\ 3\ 4\ 5\ 6), (1\ 2\ 3\ 4\ 6\ 5), (1\ 2\ 3\ 5\ 4\ 6), \\ (1\ 2\ 3\ 5\ 6\ 4), (1\ 2\ 3\ 6\ 4\ 5), (1\ 2\ 3\ 6\ 5\ 4), \\ (1\ 3\ 2\ 4\ 5\ 6), (1\ 3\ 2\ 4\ 6\ 5), (1\ 3\ 2\ 5\ 4\ 6), \\ (1\ 3\ 2\ 5\ 6\ 4), (1\ 3\ 2\ 6\ 4\ 5), (2\ 1\ 3\ 5\ 4\ 6), \\ (2\ 1\ 3\ 5\ 6\ 4), (2\ 1\ 3\ 6\ 4\ 5), (2\ 1\ 3\ 5\ 4\ 6), \\ (2\ 3\ 1\ 4\ 5\ 6), (2\ 3\ 1\ 4\ 6\ 5), (2\ 3\ 1\ 5\ 4\ 6), \\ (3\ 1\ 2\ 5\ 6\ 4), (3\ 1\ 2\ 6\ 4\ 5), (3\ 1\ 2\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 4\ 6\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 4\ 6\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 4\ 6\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 4\ 6\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 4\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 4\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 5\ 4), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 5\ 4), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 5\ 4\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 5\ 4\ 5), (3\ 2\ 1\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 5\ 4\ 5), (3\ 2\ 1\ 5\ 6\ 5\ 4), \\ (3\ 2\ 1\ 5\ 6\ 4), (3\ 2\ 1\ 6\ 5\ 5\ 4\ 6), \\ (3\ 2\ 1\ 5\ 6\ 5\ 4), \\ (3\ 2\ 1\ 6\ 5\ 4\ 5), (3\ 2\ 1\ 6\ 5\ 5\ 4) \} \}$

cardinality: Product # of node: Sum

Permutation Patterns 2013

Our Algorithm

Naive Method

General generating approach:

- * generate all *n*-permutations.
- * check the avoidance for each permutations.

Permutation Patterns 2013

July 4, 2013

Basic idea

Our approach: use π DD's operations.

- 1. Obtain π DD for S_n , which is the set of *n*-permutations.
- 2. Obtain π DD for $C_n(\sigma)$, which is the set of *n*-permutations containing σ .
- 3. Calculate the set difference $S_n \setminus C_n(\sigma)$, i.e., obtain π DD for $A_n(\sigma)$ (= the set of *n*-permutations avoiding σ .)

Basic idea

Our approach: use π DD's operations.

- 1. Obtain π DD for S_n , which is the set of *n*-permutations.
- 2. Obtain π DD for $C_n(\sigma)$, which is the set of *n*-permutations containing σ .
- 3. Calculate the set difference $S_n \setminus C_n(\sigma)$, i.e., obtain π DD for $A_n(\sigma)$ (= the set of *n*-permutations avoiding σ .)

Generate S_n

* It is very compact and easy to obtain. Direct construction takes only $O(n^2)$ time.

(1 4 2 3), (1 4 3 2), (2 1 3 4), (2 1 4 3), $(2\ 3\ 1\ 4), (2\ 3\ 4\ 1), (2\ 4\ 1\ 3), (2\ 4\ 3\ 1),$ $(3\ 1\ 2\ 4), (3\ 1\ 4\ 2), (3\ 2\ 1\ 4), (3\ 2\ 4\ 1),$ (3 4 1 2), (3 4 2 1), (4 1 2 3), (4 1 3 2), $(4\ 2\ 1\ 3), (4\ 2\ 3\ 1), (4\ 3\ 1\ 2), (4\ 3\ 2\ 1) \}$

n!

 $\frac{\tau_{3,4}}{\tau_{2,3}}$ $\frac{\tau_{1,3}}{\tau_{1,2}}$ $\frac{r_{1,2}}{1}$ $\frac{n(n-1)}{2} + 1$

 $\tau_{2,4}$

 $\tau_{1.4}$

Basic idea

Our approach: use π DD's operations.

- 1. Obtain π DD for S_n , which is the set of *n*-permutations.
- 2. Obtain π DD for $C_n(\sigma)$, which is the set of *n*-permutations containing σ .
- 3. Calculate the set difference $S_n \setminus C_n(\sigma)$, i.e., obtain π DD for $A_n(\sigma)$ (= the set of length *n*-permutations avoiding σ .)

Generate $C_n(\sigma)$ - part.A

* Let *k* be length of σ .

Generate all permutations whose k-prefix is in ascending order.

Generate $C_n(\sigma)$ - part.A

* Let *k* be length of σ .

Generate all permutations whose k-prefix is in ascending order.

* Example: $n = 5, \sigma = (2-3-1), k = 3$ { (1 2 3 4 5), (1 2 4 3 5), ..., (2 4 5 1 3), ..., (3 4 5 1 2), (1 2 3 5 4), (1 2 4 5 3), ..., (2 4 5 3 1), ..., (3 4 5 2 1) } all $\binom{n}{k}$

Generate $C_n(\sigma)$ - part.B

* Rearrange each *k*-prefixes into the order which is order isomorphic to σ .

 $\begin{aligned} & \text{Example: } n = 5, \, \sigma = (2 - 3 - 1), \, k = 3 \\ & \{ (1 \ 2 \ 3 \ 4 \ 5), (1 \ 2 \ 3 \ 5 \ 4), \dots, (2 \ 4 \ 5 \ 1 \ 3), \dots, (3 \ 4 \ 5 \ 2 \ 1) \} \\ & \swarrow \\ & \{ (2 \ 3 \ 1 \ 4 \ 5), (2 \ 3 \ 1 \ 5 \ 4), \dots, (4 \ 5 \ 2 \ 1 \ 3), \dots, (4 \ 5 \ 3 \ 2 \ 1) \} \end{aligned}$

Generate $C_n(\sigma)$ - part.C

* Rearrange each *k*-prefixes into all possible $\binom{n}{k}$ positions.

Example: n = 5, $\sigma = (2-3-1)$, k = 3{ (23(1)45), (23154), ..., (45321)} { (23(1)45), (23(4)(15)), ..., (2453(1)), ..., (45(2)(3)), (23154), (23514)), ..., (25431), ..., (54231), ..., (45321), (45321), ..., (42153), ..., (21453) }

Generate $C_n(\sigma)$

- * All 3 parts of generating $C_n(\sigma)$ are "rearrangement".
- Rearrangement is realized by permutation composition.
 - * Example: $(4\ 3\ 2\ 1)\circ(2\ 4\ 1\ 3) = (3\ 1\ 4\ 2)$
- * π DD's cartesian product can rearrange permutations into multiple order at once.

Permutation Patterns 2013

Basic idea

Our approach: use π DD's operations.

- 1. Obtain π DD for S_n , which is the set of *n*-permutations.
- 2. Obtain π DD for $C_n(\sigma)$, which is the set of *n*-permutations containing σ .

3. Calculate the set difference $S_n \setminus C_n(\sigma)$, i.e., obtain π DD for $A_n(\sigma)$ (= the set of *n*-permutations avoiding σ .)

Basic idea

Our approach: use π DD's operations.

- 1. Obtain π DD for S_n , which is the set of *n*-permutations.
- 2. Obtain π DD for $C_n(\sigma)$, which is the set of *n*-permutations containing σ .
- 3. Calculate the set difference $S_n \setminus C_n(\sigma)$, i.e., obtain π DD for $A_n(\sigma)$ (= the set of *n*-permutations avoiding σ .)

Permutation Patterns 2013

 $A_n(\sigma)$

Extended algorithm

Vincular pattern

Our algorithm is easy to be extended for vincular pattern avoiding permutation.

- Vincular pattern is pattern whose some element must be adjacent.
- * If σ_i and σ_{i+1} must be adjacent, we omit "-".
 - * Example: $\sigma = (2 \ 3-1)$

* (3 4 1 2) contains σ , but (3 1 4 2) avoids σ .

Generating Vincular pattern avoiding perm.

In the same way as classical pattern. But step2-C change a little bit. * Example: $n = 5, \sigma = (2 \ 3-1)$ $\{(23145), (23154), \dots, (45321)\}$ $\{(23145), (23415), \dots, (24531), \dots, (45231), \dots, (45231), \dots \}$ $(2\ 3\ 1\ 5\ 4), (2\ 3\ 5\ 1\ 4), \dots, (2\ 5\ 4\ 3\ 1), \dots, (5\ 4\ 2\ 3\ 1),$ not adjacent... $(45321), (45231), \dots, (42153), \dots, (21453) \}$

Generating Vincular pattern avoid perm.

In the same way as classical pattern. * But step2-C change a little bit. * Example: $n = 5, \sigma = (2 \ 3-1)$ $\{(23145), (23154), \dots, (45321)\}$ $\{(23145), (23415), \dots, (45231), \dots, (45231), \dots \}$ $(2\ 3\ 1\ 5\ 4), (2\ 3\ 5\ 1\ 4), \dots, (5\ 4\ 2\ 3\ 1),$ $(45321), (45231), \dots, (21453)$

Experimental Results

Experiment for classical pattern

 We carried out computational experiment for classical pattern avoiding.

Comparison with naive method:

Generate all *n*-permutations and check to avoid the given classical pattern or not for each.

Experiment:

Generate $A_n(\sigma)$, where σ is all patterns whose length is k for each k.

* π DD is faster than naive method.

Permutation Patterns 2013

Permutation Patterns 2013

Experiment of vincular pattern

 We also carried out computational experiments for vincular pattens.
 Comparison with naive method:

Generate all *n*-permutations and check to avoid the given vincular pattern or not for each.

Experiment:

Generate Baxter permutations, which avoid the two vincular patterns, (3-1 4-2) and (2-4 1-3).

* π DD method is also fast for vincular pattern.

Memory usage comparison

n	# of Baxter	$\pi DD(KB)$	Byte/# of Bax	naive(KB)	π DD/naive
8	10754	2760	256.65	2752	1.00
9	58202	4164	71.54	5676	0.73
10	326240	12984	39.80	37864	0.34
11	1882960	26828	14.25	181112	0.15
12	11140560	98924	8.88	1442904	0.07
13	67329992	383272	5.69		
14	414499438	824732	1.99		
15	2593341586	3151164	1.22		
16	16458756586	12403488	0.75		
17	105791986682	40788188	0.39		

* The larger *n* is, the higher compression ratio π DD has.

Permutation Patterns 2013

Conclusion

Conclusion

* We propose algorithms that generate classical and vincular pattern avoiding permutations using π DD.

- compact representation
- Is brand-new and simple approach
- * Experimental result looks good.
 - In almost cases, our algorithms are fast and use low memory to compare naive method.

Thank you!

