
July 4, 2013Permutation Patterns 2013

Efficiently Generating
Classical and Vincular Pattern Avoiding Permutations

Based on Permutation Decision Diagrams

Hokkaido University1, JST ERATO project2
Yuma Inoue1,   Takahisa Toda2,  Shin-ichi Minato1,2

1



Permutation Patterns 2013 July 4, 2013

Main result

Provide efficient algorithms for generating all 
permutations which avoid classical pattern σ.

use permutation decision diagrams (πDD)

fast and low memory usage on computational 
experiment

Extend the algorithm to generate vincular 
pattern avoiding permutations.
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Permutation Pattern
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Permutation

5

Permutation: bijection on {1, 2, ... n}

Example: π = 

We use one-line notation, e.g., π = (2 4 3 5 1).

1
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4
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Classical Pattern Avoiding

6

Definition:

π = (π1 π2 ... πn): permutation
σ = (σ1-σ2-...-σk): classical pattern

π contains σ if  there is length k subsequence
of  π, (πi1 πi2 ... πik) with 1≦i1<i2<...<ik≦n, such that
πix<πiy iff  σx<σy.

Otherwise, π avoids σ.

Note: “-” means “not have to be adjacent”.
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Classical Pattern Avoiding

7

Example:

(2 3 1 4) contains (2-1-3), but avoids (3-2-1).

(2 3 1 4)

(3 1 4) (2 1 4) (2 3 4) (2 3 1)length 3 subsequences

2-1-3

match!!
(order isomorphic)
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Classical Pattern Avoiding
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Example:

(2 3 1 4) contains (2-1-3), but avoids (3-2-1).

(2 3 1 4)

(3 1 4) (2 1 4) (2 3 4) (2 3 1)length 3 subsequences

3-2-1
no match...
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Problem

input: n = 4, σ = (2-3-1)

output: {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 4 2 3), 
               (1 4 3 2), (2 1 3 4), (2 1 4 3), (3 1 2 4), (3 2 1 4),
               (4 1 2 3), (4 1 3 2), (4 2 1 3), (4 3 1 2), (4 3 2 1) }

9

Problem:

Generate An(σ) for given positive integer n and pattern σ.

Example:

Let An(σ) be the set of  n-permutations which avoid σ. 



Permutation Patterns 2013 July 4, 2013

πDD
(Permutation Decision Diagrams)

10
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πDD
(permutation decision diagrams)

πDD: decision diagrams which 
represent set of  permutations

one πDD correspond to one 
unique set of  permutations

based on decomposition of  
permutation by transposition

11

τ1,4

1

{(2 1 4 3), (4 1 3 2), (4 2 3 1)}
    ={τ1,2○τ3,4, τ1,2○τ2,4, τ1,4}

τ2,4

τ3,4

τ1,2

0
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Decomposition of  permutation

12

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into 
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.

1
2
3
4

1
2
3
4

= (3 4 2 1)
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Decomposition of  permutation

13

1
2
3
4

1
2
3
4

1
2
3
4

= (3 1 2 4)○τ1,4 = (3 4 2 1)

“○” means composition of  perm.

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into 
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.



Permutation Patterns 2013 July 4, 2013

Decomposition of  permutation

14

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

= (2 1 3 4)○τ2,3○τ1,4 = (3 4 2 1)

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into 
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.
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Decomposition of  permutation

15

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

= τ1,2○τ2,3○τ1,4 = (3 4 2 1)

Transposition τx,y: exchange only two elements x and y.

Any n-permutation π can be uniquely decomposed into 
at most n-1 transpositions.

Until π is not in ascending order, repeat the followings:

Let x be maximum element i such that πi ≠ i.

Exchange x and πx, and add τx,πx to its decomposition.
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πDD

πDD: reduced binary decision diagrams 
which represent the set of  permutations

node: transposition

path to 1-terminal node: permutation

each nodes have only two edges:

1-edge (means “use”)

0-edge (means “ignore”).

16

τ1,4

1

{(2 1 4 3), (4 1 3 2), (4 2 3 1)}
    ={τ1,2○τ3,4, τ1,2○τ2,4, τ1,4}

τ2,4

τ3,4

τ1,2

0



Permutation Patterns 2013 July 4, 2013

πDD

πDD: reduced binary decision diagrams 
which represent the set of  permutations

node: transposition

path to 1-terminal node: permutation

each nodes have only two edges:

1-edge (means “include”)

0-edge (means “exclude”).

17

τ1,4

1

{(2 1 4 3), (4 1 3 2), (4 2 3 1)}
    ={τ1,2○τ3,4, τ1,2○τ2,4, τ1,4}

τ2,4

τ3,4

τ1,2

0
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Binary Operation

πDD has binary operation, 
such as union, intersection, 
difference and so on, 
without restoring.

These computation time 
depend on the number of  
nodes, not permutations.

Because they are based on 
recursive method.

18

τ1,4

0 1

τ2,4

τ1,2

τ2,4

0 1

τ3,4

τ1,2

τ2,4

0 1

τ3,4

τ1,2

τ1,4

=

X

P1P0

X

Q1Q0

X

P1◇Q1P0◇Q0

→◇
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Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p    P, q    Q}

Example:

    { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
       (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

19
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Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p    P, q    Q}

Example:

    { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
       (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

20
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Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p    P, q    Q}

Example:

    { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
       (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

21
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Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p    P, q    Q}

Example:

    { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
       (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }

22
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Cartesian Product

πDD also has cartesian product operation “×”:

P × Q = {p○q | p    P, q    Q}

Example:

    { (4 3 2 1), (2 3 4 1) } × { (4 3 1 2), (4 2 1 3) }
= { (4 3 2 1)○(4 3 1 2), (4 3 2 1)○(4 2 1 3),
       (2 3 4 1)○(4 3 1 2), (2 3 4 1)○(4 2 1 3) }
= { (2 1 3 4), (3 1 2 4), (3 1 2 4), (2 1 3 4) }

= { (2 1 3 4), (3 1 2 4), (2 1 3 4) }

23
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Cartesian Product

24

τ1,3

1

τ2,3

τ1,2

{(1 2 3), (1 3 2),
  (2 1 3),(2 3 1),
  (3 1 2), (3 2 1)}

τ4,6

1

τ5,6

τ4,5

{(1 2 3 4 5 6), (1 2 3 4 6 5), 
  (1 2 3 5 4 6), (1 2 3 5 6 4),
  (1 2 3 6 4 5), (1 2 3 6 5 4)}

τ1,3

1

τ2,3

τ1,2

τ4,6

τ5,6

τ4,5

{(1 2 3 4 5 6), (1 2 3 4 6 5), (1 2 3 5 4 6),
  (1 2 3 5 6 4), (1 2 3 6 4 5), (1 2 3 6 5 4),
  (1 3 2 4 5 6), (1 3 2 4 6 5), (1 3 2 5 4 6),
  (1 3 2 5 6 4), (1 3 2 6 4 5), (1 3 2 6 5 4),
  (2 1 3 4 5 6), (2 1 3 4 6 5), (2 1 3 5 4 6),
  (2 1 3 5 6 4), (2 1 3 6 4 5), (2 1 3 6 5 4),
  (2 3 1 4 5 6), (2 3 1 4 6 5), (2 3 1 5 4 6),
  (2 3 1 5 6 4), (2 3 1 6 4 5), (2 3 1 6 5 4),
  (3 1 2 4 5 6), (3 1 2 4 6 5), (3 1 2 5 4 6),
  (3 1 2 5 6 4), (3 1 2 6 4 5), (3 1 2 6 5 4),
  (3 2 1 4 5 6), (3 2 1 4 6 5), (3 2 1 5 4 6),
  (3 2 1 5 6 4), (3 2 1 6 4 5), (3 2 1 6 5 4) }

× =

cardinality: Product
# of  node: Sum
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Our Algorithm

25
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Naive Method

26

General generating approach:

generate all n-permutations.

check the avoidance for each permutations.

σ avoid?(1 2 3 ... n) ○
σ avoid?(2 1 3 ... n) ×

σ avoid?(n ... 3 2 1) ○

:
:

generate
all perm. :

:

n!
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Basic idea

27

Our approach: use πDD’s operations.

1. Obtain πDD for Sn, which is the set of  n-permutations.

2. Obtain πDD for Cn(σ), which is the set of  n-permutations 
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for 
An(σ) (= the set of  n-permutations avoiding σ.)
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Basic idea

28

Our approach: use πDD’s operations.

1. Obtain πDD for Sn, which is the set of  n-permutations.

2. Obtain πDD for Cn(σ), which is the set of  n-permutations 
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for 
An(σ) (= the set of  n-permutations avoiding σ.)
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Generate Sn

It is very compact and easy to obtain.
Direct construction takes only O(n2) time.

29

τ1,4

τ2,4

τ1,2

τ3,4

τ1,3

τ2,3

1

{(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2),
  (1 4 2 3), (1 4 3 2), (2 1 3 4), (2 1 4 3),
  (2 3 1 4), (2 3 4 1), (2 4 1 3), (2 4 3 1),
  (3 1 2 4), (3 1 4 2), (3 2 1 4), (3 2 4 1),
  (3 4 1 2), (3 4 2 1), (4 1 2 3), (4 1 3 2),
  (4 2 1 3), (4 2 3 1), (4 3 1 2), (4 3 2 1) }

n!
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1. Obtain πDD for Sn, which is the set of  n-permutations.

2. Obtain πDD for Cn(σ), which is the set of  n-permutations 
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for 
An(σ) (= the set of  length n-permutations avoiding σ.)

Basic idea

30

Our approach: use πDD’s operations.
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Generate Cn(σ) - part.A

Let k be length of  σ.

Generate all permutations whose k-prefix is in 
ascending order.

Example: n = 5, σ = (2-3-1), k = 3
  { (1 2 3 4 5), (1 2 4 3 5), ... , (2 4 5 1 3), ... , (3 4 5 1 2),
      (1 2 3 5 4), (1 2 4 5 3), ... , (2 4 5 3 1), ... , (3 4 5 2 1) }

31
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Generate Cn(σ) - part.A

Let k be length of  σ.

Generate all permutations whose k-prefix is in 
ascending order.

Example: n = 5, σ = (2-3-1), k = 3
  { (1 2 3 4 5), (1 2 4 3 5), ... , (2 4 5 1 3), ... , (3 4 5 1 2),
      (1 2 3 5 4), (1 2 4 5 3), ... , (2 4 5 3 1), ... , (3 4 5 2 1) }

32

all
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Generate Cn(σ) - part.B

Rearrange each k-prefixes into the order which is 
order isomorphic to σ.

Example: n = 5, σ = (2-3-1), k = 3
  { (1 2 3 4 5), (1 2 3 5 4), ... , (2 4 5 1 3), ... , (3 4 5 2 1)}

  { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 2 1 3), ... , (4 5 3 2 1)}

33
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Generate Cn(σ) - part.C

Rearrange each k-prefixes into all possible      
positions.

Example: n = 5, σ = (2-3-1), k = 3
  { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 3 2 1)}

  { (2 3 1 4 5), (2 3 4 1 5), ... , (2 4 5 3 1), ... , (4 5 2 3 1),
     (2 3 1 5 4), (2 3 5 1 4), ... , (2 5 4 3 1), ... , (5 4 2 3 1),
       ...
     (4 5 3 2 1), (4 5 2 3 1), ... , (4 2 1 5 3), ... , (2 1 4 5 3) }

34
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Generate Cn(σ)

All 3 parts of  generating Cn(σ) are “rearrangement”.

Rearrangement is realized by permutation composition.

Example: (4 3 2 1)○(2 4 1 3) = (3 1 4 2)

πDD’s cartesian product can rearrange  permutations 
into multiple order at once.

35

C × B × A =
Cn(σ)k-prefix pattern σpositions
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Basic idea

36

Our approach: use πDD’s operations.

1. Obtain πDD for Sn, which is the set of  n-permutations.

2. Obtain πDD for Cn(σ), which is the set of  n-permutations 
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for 
An(σ) (= the set of  n-permutations avoiding σ.)
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1. Obtain πDD for Sn, which is the set of  n-permutations.

2. Obtain πDD for Cn(σ), which is the set of  n-permutations 
containing σ .

3. Calculate the set difference Sn\Cn(σ), i.e, obtain πDD for 
An(σ) (= the set of  n-permutations avoiding σ.)

Basic idea

37

Our approach: use πDD’s operations.

Sn Cn(σ)
\ =

An(σ)



Permutation Patterns 2013 July 4, 2013

Algorithm summary

38

k-prefix 

pattern σ

positions

Step1.
Generate Sn

Step2.
Generate Cn(σ)

Step3.
Calculate Sn\ Cn(σ) C

×
B

×
A

n and σ

An(σ)



Permutation Patterns 2013 July 4, 2013

Extended algorithm

39
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Vincular pattern

Our algorithm is easy to be extended for 
vincular pattern avoiding permutation.

Vincular pattern is pattern whose some element 
must be adjacent.

If  σi and σi+1 must be adjacent, we omit “-”.

Example: σ = (2 3-1)

(3 4 1 2) contains σ, but (3 1 4 2) avoids σ.

40
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Generating Vincular pattern avoiding perm.

In the same way as classical pattern.

But step2-C change a little bit.

Example: n = 5, σ = (2 3-1)
  { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 3 2 1)}

  { (2 3 1 4 5), (2 3 4 1 5), ... , (2 4 5 3 1), ... , (4 5 2 3 1),
     (2 3 1 5 4), (2 3 5 1 4), ... , (2 5 4 3 1), ... , (5 4 2 3 1),
       ...
     (4 5 3 2 1), (4 5 2 3 1), ... , (4 2 1 5 3), ... , (2 1 4 5 3) }

41

not adjacent...
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Generating Vincular pattern avoid perm.

In the same way as classical pattern.

But step2-C change a little bit.

Example: n = 5, σ = (2 3-1)
  { (2 3 1 4 5), (2 3 1 5 4), ... , (4 5 3 2 1)}

  { (2 3 1 4 5), (2 3 4 1 5), ... , (4 5 2 3 1),
     (2 3 1 5 4), (2 3 5 1 4), ... , (5 4 2 3 1),
       ...
     (4 5 3 2 1), (4 5 2 3 1), ... , (2 1 4 5 3) }

42
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Experimental Results

43
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Experiment for classical pattern

We carried out computational experiment
for classical pattern avoiding.

44

Generate all n-permutations and check to avoid 
the given classical pattern or not for each.

Comparison with naive method:

Experiment:

Generate An(σ), where σ is all patterns whose 
length is k for each k.
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Computation time comparison

πDD is faster than naive method.

45
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Memory usage comparison

Note that naive method store An(σ) in arrays.

πDD use about 1% memory of  arrays when n=11 and k=5.
46
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Experiment of  vincular pattern

We also carried out computational experiments 
for vincular pattens.

47

Generate all n-permutations and check to avoid 
the given vincular pattern or not for each.

Comparison with naive method:

Experiment:

Generate Baxter permutations, which avoid
the two vincular patterns, (3-1 4-2) and (2-4 1-3).
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Computation time comparison

πDD method is also fast for vincular pattern.
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Memory usage comparison

The larger n is, the higher compression ratio 
πDD has.

49

n # of  Baxter 
perm.

πDD(KB) Byte/# of  Bax naive(KB) πDD/naive
8 10754 2760 256.65 2752 1.00
9 58202 4164 71.54 5676 0.73

10 326240 12984 39.80 37864 0.34
11 1882960 26828 14.25 181112 0.15
12 11140560 98924 8.88 1442904 0.07
13 67329992 383272 5.69 --- ---
14 414499438 824732 1.99 --- ---
15 2593341586 3151164 1.22 --- ---
16 16458756586 12403488 0.75 --- ---
17 105791986682 40788188 0.39 --- ---
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Conclusion

50
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Conclusion

We propose algorithms that generate classical and 
vincular pattern avoiding permutations using πDD.

compact representation

brand-new and simple approach

Experimental result looks good.

In almost cases, our algorithms are fast and use 
low memory to compare naive method.

51
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Thank you!

52
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Variable order

53

τ1,x

τ2,x

τx-1,x

τ1,x-1

τ1,x-1

τ1,x-1 τ1,x-1
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Compression Rules

54

x x

0

Po P1

x x

Po P1
Po

x

Po
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Generate Combination

The idea is based on Pascal’s Triangle

55

=1

=1=1

=1

=1

=2 =1

=1=3=3
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Generate Combination

The idea is based on Pascal’s Triangle

56

=φ

= {{1}}

={{1},{2}}

={{1},{2},{3}}

=φ

=φ

=φ

= {{1,2}}

= {{1,2,3}}
={{1,2},
     {1,3},{2,3}}
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Generate Combination

The idea is based on Pascal’s Triangle

57

={1234}

={1234,
     2134,3214}

={1234,
     1324,2314}

={1234}

={1234}

={1234}

={1234}

={1234}

={1234}

={1234,2134}


