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Outline

A new notion of patterns that

generalizes patterns in permutations/words/trees, and

has applications to operad theory.

Outline:

Stirling permutations

Blocks and block patterns

Block patterns of height 1

Applications

Strong Wilf-type equivalence
Generating functions
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Stirling Permutations

Definition

The Stirling permutations of order n (Qn) are the
rearrangements of

{12, 22, . . . , n2}
such that, ∀i , every element between two i ’s is greater than i .
(Equivalently, they avoid the classical pattern 212.)

Example: 4415778852213663.

Non-example: 4366431577885221
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Stirling Permutations

Definition

The Stirling permutations of order n (Qn) are the
rearrangements of

{12, 22, . . . , n2}
such that, ∀i , every element between two i ’s is greater than i .
(Equivalently, they avoid the classical pattern 212.)

Example: 4415778852213663.

Non-example: 4366431577885221
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Basic Facts

Introduced in [Gessel and Stanley, 1978].

Patterns studied by Janson, Kuba, Panholzer, others.

Bijection between Stirling permutations and (a class of)
labeled binary trees.

1

2 4

3

←→ 133221

Observe recursively that |Qn| = (2n − 1)!!.

This implies
∑

n≥0

|Qn|
tn

n!
=

1√
1− 2t

.
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Blocks

Definition

The ith block of σ ∈ Qn, written [i , i ]σ, is the subsequence of
σ beginning and ending with i .
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Blocks

Definition

The ith block of σ ∈ Qn, written [i , i ]σ, is the subsequence of
σ beginning and ending with i .

4415778852213663
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Blocks

Definition

The ith block of σ ∈ Qn, written [i , i ]σ, is the subsequence of
σ beginning and ending with i .

4415778852213663
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Blocks

Definition

The ith block of σ ∈ Qn, written [i , i ]σ, is the subsequence of
σ beginning and ending with i .

4415778852213663
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Blocks

Definition

The ith block of σ ∈ Qn, written [i , i ]σ, is the subsequence of
σ beginning and ending with i .

4415778852213663
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1]

[5, 5]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1]

[5, 5]

[7, 7]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1]

[5, 5]

[7, 7] [8, 8]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1]

[5, 5] [2, 2]

[7, 7] [8, 8]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1] [3, 3]

[5, 5] [2, 2]

[7, 7] [8, 8]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1] [3, 3]

[5, 5] [2, 2] [6, 6]

[7, 7] [8, 8]
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1] [3, 3]

[5, 5] [2, 2] [6, 6]

[7, 7] [8, 8]

The level of a block is the number of blocks containing it.
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1] [3, 3]

[5, 5] [2, 2] [6, 6]

[7, 7] [8, 8]

(level 1)

(level 2)

(level 3)

The level of a block is the number of blocks containing it.
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Comparability

Definition

Two blocks are comparable if they are contained in all of the
same blocks except themselves.

Let σ = 4415778852213663.

[4, 4] [1, 1] [3, 3]

[5, 5] [2, 2] [6, 6]

[7, 7] [8, 8]

(level 1)

(level 2)

(level 3)

The level of a block is the number of blocks containing it.

The height of a Stirling permutation is its maximum level.
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Restricting Height

Restricting height leads to well-known sets of objects.

Stirling perms with height = 1↔ permutations.

441155223366 ←→ 415236

Stirling perms with height ≤ 2↔ ordered cycle decomps.

455413322661 ←→ (4, 5)(1, 3, 2, 6)

Counted by ordered Stirling numbers of first kind.
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.

Let σ = 4415778852213663, τ = 2211.
class(τ) occurs
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.

Let σ = 4415778852213663, τ = 2211.
class(τ) occurs

2 times at level 1
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.

Let σ = 4415778852213663, τ = 2211.
class(τ) occurs

2 times at level 1
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.

Let σ = 4415778852213663, τ = 2211.
class(τ) occurs

2 times at level 1
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.

Let σ = 4415778852213663, τ = 2211.
class(τ) occurs

2 times at level 1

1 time at level 2
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.

Let σ = 4415778852213663, τ = 2211.
class(τ) occurs

2 times at level 1

1 time at level 2
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Classical Block Patterns

Definition

An occurrence of τ ∈ Qℓ as a classical block pattern

(class(τ)) is an occurrence of τ that “respects
comparability.”

The level of an occurrence is the level of τ1 in this
occurrence.

Let σ = 4415778852213663, τ = 2211.
class(τ) occurs

2 times at level 1

1 time at level 2

0 times at level 3
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Consecutive Block Patterns

Definition

Form a vincular pattern v(τ) by underlining everywhere
except between elements of tau that are consecutive and
equal.
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Consecutive Block Patterns

Definition

Form a vincular pattern v(τ) by underlining everywhere
except between elements of tau that are consecutive and
equal.

331221 → 3 312 21
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Consecutive Block Patterns

Definition

Form a vincular pattern v(τ) by underlining everywhere
except between elements of tau that are consecutive and
equal.

An occurrence of τ as a consecutive block pattern

(cons(τ)) is just an occurrence of v(τ).

331221 → 3 312 21
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
v(τ) = 2 21 1.
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
v(τ) = 2 21 1. cons(τ) occurs
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
v(τ) = 2 21 1. cons(τ) occurs

1 time at level 1
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
v(τ) = 2 21 1. cons(τ) occurs

1 time at level 1
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
v(τ) = 2 21 1. cons(τ) occurs

1 time at level 1

1 time at level 2
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
v(τ) = 2 21 1. cons(τ) occurs

1 time at level 1

1 time at level 2
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Consecutive Block Pattern Example

Let σ = 4415778852213663, τ = 2211.
v(τ) = 2 21 1. cons(τ) occurs

1 time at level 1

1 time at level 2

0 times at level 3



Block
Patterns in
Stirling

Permutations

Andy Wilson

Stirling
Permutations

Blocks

Patterns of
Height 1

Applications

Conclusion

Why Block Patterns?

Naturally correspond to patterns in labeled trees!

Inherently account for trivial symmetries.

More specific motivation:

Consecutive block patterns = tree patterns in
[Dotsenko, 2012].
Block patterns = labeled versions of patterns in
[Rowland, 2010], [Dairyko et al., 2012].
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What’s Been Done With Block Patterns?

Some (consecutive) Wilf equivalence [Dotsenko, 2012]

Some (consecutive) asymptotic results

Patterns of height 1 (which correspond to combs in trees)
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Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:
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Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:

1 Partition {1, 2, . . . , n} into
level 1 blocks (without
ordering).
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Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:

1 Partition {1, 2, . . . , n} into
level 1 blocks (without
ordering).

16|2379|45|8
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Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:

1 Partition {1, 2, . . . , n} into
level 1 blocks (without
ordering).

2 Use non-minimal elements
to form Stirling
permutations starting at
level 2.

16|2379|45|8
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Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:

1 Partition {1, 2, . . . , n} into
level 1 blocks (without
ordering).

2 Use non-minimal elements
to form Stirling
permutations starting at
level 2.

16|2379|45|8
66 | 99377 | 55 |



Block
Patterns in
Stirling

Permutations

Andy Wilson

Stirling
Permutations

Blocks

Patterns of
Height 1

Applications

Conclusion

Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:

1 Partition {1, 2, . . . , n} into
level 1 blocks (without
ordering).

2 Use non-minimal elements
to form Stirling
permutations starting at
level 2.

16|2379|45|8
1661|2993772|4554|88
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Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:

1 Partition {1, 2, . . . , n} into
level 1 blocks (without
ordering).

2 Use non-minimal elements
to form Stirling
permutations starting at
level 2.

3 Permute the level 1 blocks
in some way.

16|2379|45|8
1661|2993772|4554|88
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Building Stirling Permutations by Levels

Every σ ∈ Qn is formed uniquely by the following process:

1 Partition {1, 2, . . . , n} into
level 1 blocks (without
ordering).

2 Use non-minimal elements
to form Stirling
permutations starting at
level 2.

3 Permute the level 1 blocks
in some way.

16|2379|45|8
1661|2993772|4554|88

29937732|88|4554|1661
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Notation

For patterns a, c ∈ S∞, let

Pa
c (t, z) =

∑

n≥0

tn

n!

∑

π∈Sn
π avoids a

z# c in π.

For sequences of block patterns A,C : {1, 2, . . .} → Q∞,

QA
n = {σ ∈ Qn avoiding Ai at level i}

QA
C (t;~x ;~y) =

∑

n≥0

tn

n!

∑

σ∈QA
n

∏

i≥1

x
# Ci at level i in σ
i y

# blocks at level i
i
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Level 1 Patterns

Theorem

Assume that A1,C1 have height 1, i.e. they are just

permutations.
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Level 1 Patterns

Theorem

Assume that A1,C1 have height 1, i.e. they are just

permutations. If we know

PA1
C1
(t, z)
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Level 1 Patterns

Theorem

Assume that A1,C1 have height 1, i.e. they are just

permutations. If we know

PA1
C1
(t, z)

Q
(A2,A3,...)
(C2,C3,...)

(t;~x ;~y)
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Level 1 Patterns

Theorem

Assume that A1,C1 have height 1, i.e. they are just

permutations. If we know

PA1
C1
(t, z)

Q
(A2,A3,...)
(C2,C3,...)

(t;~x ;~y)

then QA
C (t;~x ;~y) is equal to

PA1
C1

(

y1

∫ t

0
Q

(A2,A3,...)
(C2,C3,...)

(u; x2, x3, . . . ; y2, y3, . . .)du, x1

)
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Proof Sketch

PA1
C1

(

y1

∫ t

0
Q

(A2,A3,...)
(C2,C3,...)

(u; x2, x3, . . . ; y2, y3, . . .)du, x1

)

1 Partition {1, 2, . . . , n} into level 1 blocks (without
ordering). (Taken care of by EGF.)



Block
Patterns in
Stirling

Permutations

Andy Wilson

Stirling
Permutations

Blocks

Patterns of
Height 1

Applications

Conclusion

Proof Sketch

PA1
C1

(

y1

∫ t

0
Q

(A2,A3,...)
(C2,C3,...)

(u; x2, x3, . . . ; y2, y3, . . .)du, x1

)

1 Partition {1, 2, . . . , n} into level 1 blocks (without
ordering). (Taken care of by EGF.)

2 Use non-minimal elements to form Stirling permutations
starting at level 2.
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Proof Sketch

PA1
C1

(

y1

∫ t

0
Q

(A2,A3,...)
(C2,C3,...)

(u; x2, x3, . . . ; y2, y3, . . .)du, x1

)

1 Partition {1, 2, . . . , n} into level 1 blocks (without
ordering). (Taken care of by EGF.)

2 Use non-minimal elements to form Stirling permutations
starting at level 2.

3 Permute the level 1 blocks in some way.
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Application to Strong Wilf-Type Equivalence

Corollary

If P
Ai

Ci
(t, z) = P

A′

i

C ′

i

(t, z) for all i , then

QA
C (t;~x ;~y) = QA′

C ′(t;~x ;~y).

Proof.

The previous theorem provides a functional equation both Q’s
must satisfy.

E.g. Ai = class(112233),A′
i = class(113322).
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Applications to Generating Functions

Restrict to Stirling permutations of height ≤ 2.

Stirling numbers (of both kinds)
Alteration of zig-zag numbers

Ignore blocks beyond level 1.

Bessel polynomials
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Height ≤ 2, Increasing at Level 1

A = (2211, ∅, 11, ∅, . . .), C = (∅, . . .).

P21
∅ (t, z) = exp(t)

QA
C (t;~x ;~y ) = exp

(

y1

∫ t

0

du

1− uy2

)

= exp

(−y1
y2

log(1− ty2)

)

= (1− ty2)
−y1/y2

Stirling numbers of the first kind!
(OEIS A008275)
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Height ≤ 2, Increasing at Level 2

A = (∅, 2211, 11, ∅, . . .), C = (∅, . . .).

P∅
∅ (t, z) =

1

1− t

QA
C (t;~x ;~y) =

1

1− y1
∫ t

0 exp(uy2)du

=
y2

y2 − y1(exp(ty2)− 1)

Ordered Stirling numbers of second kind!
(OEIS A019538)
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Height ≤ 2, Counting Level 1 “Descents”

A = (∅, ∅, 11, ∅, . . .), C = (cons(2211), ∅, . . .).

P∅
21(t, z) =

z − 1

z − exp (t(z − 1))

QA
C (t;~x ;~y) =

x1 − 1

x1 − exp
(

(x1 − 1)y1
∫ t

0
1

1−uy2
du

)

=
x1 − 1

x1 − (1− ty2)y1(1−x1)/y2

Refinement of ordered Stirling numbers (first kind).
Not in OEIS.

1, x + 2, x2 + 7x + 6, x3 + 17x2 + 46x + 24, . . . .
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Height ≤ 2, Zig-Zag at Level 1

A = ({cons(123), cons(321)}, ∅, 1, ∅, . . .),C = (∅, . . .).

P
{123,321}
∅ (t, z) = sec t + tan t

QA
C (t;~x ;~y) = sec

(

y1

∫ t

0

du

1− uy2

)

+ tan

(

y1

∫ t

0

du

1− uy2

)

= sec

(−y1
y2

log(1− ty2)

)

+

tan

(−y1
y2

log(1− ty2)

)

Not in OEIS (even with y ’s set to 1).
1, 1, 2, 7, 34, 210, . . . .
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Ignoring Higher Blocks, Increasing at Level 1

A = (2211, ∅, . . .), C = (∅, . . .).

P21
∅ (t, z) = exp(t)

QA
C (t;~x ; y , 1, . . .) = exp

(

y(1−
√
1− 2t)

)

Bessel polynomials! (OEIS A001497)
Definition of Bessel polynomials gives coefficient of tn

n! y
k :

(2n − k − 1)!

2n−k(n − k)!(k − 1)!
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Ignoring Higher Blocks, Counting Lvl. 1

“Descents”

A = (∅, . . .), C = (cons(2211), ∅, . . .).

P∅
21(t, z) =

z − 1

z − exp (t(z − 1))

QA
C (t;~x ; y , 1, . . .) =

x1 − 1

x1 − exp
(

y(x1 − 1)
∫ t

0
du√
1−2u

)

=
x1 − 1

x1 − exp
(

y(x1 − 1)(1 −
√
1− 2t)

)

Not in OEIS.
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Ignoring Higher Blocks, Avoiding 123 at Level 1

A = (cons(112233), ∅, . . .), C = (∅, . . .). As proven in
[Elizalde and Noy, 2003]

P
123
∅ (t, z) =

√
3et/2

2 cos
(√

3
2 t + π

6

)

QA
C (t;~x ; y , 1, . . .) = P123

∅ (y(1 −
√
1− 2t), x)
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Recap

Stirling permutations

Blocks and block patterns

Block patterns of height 1

Applications

Strong Wilf-type equivalence
Generating functions
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Extensions

Dotsenko’s trees generally correspond to colored k-Stirling

permutations.

Colored means each i ∈ {1, . . . , n} is labeled with an
integer in {0, 1, . . . , c − 1}.
k-Stirling permutations are just 212-avoiding
rearrangements of

{1k , 2k , . . . , nk}.

Our theorem still applies, but there are fewer known
generating functions.
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Future Work?

Patterns of height > 1?

Interplay between block and normal patterns?

Stanley-Wilf limits?
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Thank you!
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