Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns o Height 1

Applications

Conclusion

# Block Patterns in Stirling Permutations

Andy Wilson Joint w/ Jeff Remmel

UC San Diego

Permutation Patterns 2013

# Outline

#### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

## A new notion of patterns that

generalizes patterns in permutations/words/trees, and

イロト (雪) (ヨ) (ヨ) (ヨ) ()

has applications to operad theory.

## Outline:

- Stirling permutations
- Blocks and block patterns
- Block patterns of height 1
- Applications
  - Strong Wilf-type equivalence
  - Generating functions

# Stirling Permutations

#### Block Patterns in Stirling Permutations

Andy Wilson

#### Stirling Permutations

Blocks

Patterns of Height 1 Application

Conclusion

### Definition

The Stirling permutations of order  $n(Q_n)$  are the rearrangements of

$$\{1^2, 2^2, \ldots, n^2\}$$

such that,  $\forall i$ , every element between two *i*'s is greater than *i*. (Equivalently, they avoid the classical pattern 212.)

イロト (雪) (ヨ) (ヨ) (ヨ) ()

Example: 4415778852213663.

Non-example: 4366431577885221

# Stirling Permutations

#### Block Patterns in Stirling Permutations

Andy Wilson

#### Stirling Permutations

Blocks

Patterns of Height 1 Application

Conclusion

### Definition

The Stirling permutations of order  $n(Q_n)$  are the rearrangements of

$$\{1^2, 2^2, \ldots, n^2\}$$

such that,  $\forall i$ , every element between two *i*'s is greater than *i*. (Equivalently, they avoid the classical pattern 212.)

イロト (雪) (ヨ) (ヨ) (ヨ) ()

Example: 4415778852213663.

Non-example: 4366431577885221

## **Basic Facts**

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

- Introduced in [Gessel and Stanley, 1978].
- Patterns studied by Janson, Kuba, Panholzer, others.
- Bijection between Stirling permutations and (a class of) labeled binary trees.



• Observe recursively that  $|Q_n| = (2n - 1)!!$ .

This implies

$$\sum_{n\geq 0} |\mathcal{Q}_n| \frac{t^n}{n!} = \frac{1}{\sqrt{1-2t}}.$$

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

## Definition

The *i*th *block* of  $\sigma \in Q_n$ , written  $[i, i]_{\sigma}$ , is the subsequence of  $\sigma$  beginning and ending with *i*.

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

## Definition

The *i*th *block* of  $\sigma \in Q_n$ , written  $[i, i]_{\sigma}$ , is the subsequence of  $\sigma$  beginning and ending with *i*.

4415778852213663

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

## Definition

The *i*th *block* of  $\sigma \in Q_n$ , written  $[i, i]_{\sigma}$ , is the subsequence of  $\sigma$  beginning and ending with *i*.

4415778852213663

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

## Definition

The *i*th *block* of  $\sigma \in Q_n$ , written  $[i, i]_{\sigma}$ , is the subsequence of  $\sigma$  beginning and ending with *i*.

441577885<mark>22</mark>13663

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

## Definition

The *i*th *block* of  $\sigma \in Q_n$ , written  $[i, i]_{\sigma}$ , is the subsequence of  $\sigma$  beginning and ending with *i*.

441577885221<mark>3663</mark>

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma = 4415778852213663$ .

[4, 4]

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma = 4415778852213663$ .

[4, 4] [1, 1]

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

#### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma = 4415778852213663$ .

[5, 5] [4, 4] [1, 1]

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

$$\begin{bmatrix} 7,7 \end{bmatrix} \begin{bmatrix} 8,8 \end{bmatrix}$$
$$\begin{bmatrix} 5,5 \end{bmatrix} \begin{bmatrix} 2,2 \end{bmatrix}$$
$$\begin{bmatrix} 4,4 \end{bmatrix} \begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} 3,3 \end{bmatrix}$$

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

Let  $\sigma = 4415778852213663$ .

[7,7] [8,8] [5,5] [2,2] [6,6] [4,4] [1,1] [3,3]

• The *level* of a block is the number of blocks containing it.

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

Let  $\sigma = 4415778852213663$ .

 $\begin{bmatrix} 7,7 \end{bmatrix} \begin{bmatrix} 8,8 \end{bmatrix}$  (level 3)  $\begin{bmatrix} 5,5 \end{bmatrix} \begin{bmatrix} 2,2 \end{bmatrix} \begin{bmatrix} 6,6 \end{bmatrix}$  (level 2)  $\begin{bmatrix} 4,4 \end{bmatrix} \begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} 3,3 \end{bmatrix}$  (level 1)

The *level* of a block is the number of blocks containing it.

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Two blocks are *comparable* if they are contained in all of the same blocks except themselves.

Let  $\sigma = 4415778852213663$ .

 $\begin{bmatrix} 7,7 \end{bmatrix} \begin{bmatrix} 8,8 \end{bmatrix}$  (level 3)  $\begin{bmatrix} 5,5 \end{bmatrix} \begin{bmatrix} 2,2 \end{bmatrix} \begin{bmatrix} 6,6 \end{bmatrix}$  (level 2)  $\begin{bmatrix} 4,4 \end{bmatrix} \begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} 3,3 \end{bmatrix}$  (level 1)

The *level* of a block is the number of blocks containing it.The *height* of a Stirling permutation is its maximum level.

# Restricting Height

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

Blocks

Patterns of Height 1 Applications Conclusion

- Restricting height leads to well-known sets of objects.
- $\blacksquare$  Stirling perms with height = 1  $\leftrightarrow$  permutations.

 $441155223366 \longleftrightarrow 415236$ 

Stirling perms with height  $\leq 2 \leftrightarrow$  ordered cycle decomps.

 $455413322661 \longleftrightarrow (4,5)(1,3,2,6)$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Counted by ordered Stirling numbers of first kind.

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

Blocks

Patterns of Height 1 Application An occurrence of *τ* ∈ *Q*<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

Blocks

Patterns of Height 1 Applications Conclusion

- An occurrence of *τ* ∈ *Q*<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."
- The *level* of an occurrence is the level of  $\tau_1$  in this occurrence.

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Conclusion

- An occurrence of *τ* ∈ *Q*<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."
- The *level* of an occurrence is the level of  $\tau_1$  in this occurrence.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ . class( $\tau$ ) occurs

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Conclusion

- An occurrence of *τ* ∈ *Q*<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."
- The *level* of an occurrence is the level of  $\tau_1$  in this occurrence.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma =$  4415778852213663,  $\tau =$  2211. class( $\tau$ ) occurs

2 times at level 1

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

Blocks

Patterns of Height 1 Applications Conclusion An occurrence of τ ∈ Q<sub>ℓ</sub> as a *classical block pattern* (class(τ)) is an occurrence of τ that "respects comparability."

■ The *level* of an occurrence is the level of  $\tau_1$  in this occurrence.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma =$  4415778852213663,  $\tau =$  2211. class( $\tau$ ) occurs

2 times at level 1

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Conclusion An occurrence of *τ* ∈ Q<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."

The *level* of an occurrence is the level of \(\tau\_1\) in this occurrence.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ . class( $\tau$ ) occurs

2 times at level 1

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Conclusion

- An occurrence of *τ* ∈ *Q*<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."
- The *level* of an occurrence is the level of  $\tau_1$  in this occurrence.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma =$  4415778852213663,  $\tau =$  2211. class( $\tau$ ) occurs

- 2 times at level 1
- 1 time at level 2

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Conclusion

- An occurrence of *τ* ∈ *Q*<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."
- The *level* of an occurrence is the level of  $\tau_1$  in this occurrence.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ . class( $\tau$ ) occurs

- 2 times at level 1
- 1 time at level 2

Definition

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Conclusion

- An occurrence of *τ* ∈ *Q*<sub>ℓ</sub> as a *classical block pattern* (class(*τ*)) is an occurrence of *τ* that "respects comparability."
- The *level* of an occurrence is the level of  $\tau_1$  in this occurrence.

イロト (雪) (ヨ) (ヨ) (ヨ) ()

Let  $\sigma =$  4415778852213663,  $\tau =$  2211. class( $\tau$ ) occurs

- 2 times at level 1
- 1 time at level 2
- 0 times at level 3

## **Consecutive Block Patterns**

#### Block Patterns in Stirling Permutations

Andy Wilson

Definition

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Conclusion Form a vincular pattern v(\(\tau\)) by underlining everywhere except between elements of tau that are consecutive and equal.

## **Consecutive Block Patterns**

#### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

### Definition

Form a vincular pattern v(τ) by underlining everywhere except between elements of tau that are consecutive and equal.

## $331221 \rightarrow \underline{3\,312\,21}$

## **Consecutive Block Patterns**

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Application

### Definition

- Form a vincular pattern v(τ) by underlining everywhere except between elements of tau that are consecutive and equal.
- An occurrence of τ as a consecutive block pattern (cons(τ)) is just an occurrence of v(τ).

## $331221 \rightarrow \underline{3\,312\,21}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへで
Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

### Blocks

Patterns of Height 1 Applications Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

### Blocks

Patterns of Height 1 Applications Conclusion Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ .  $v(\tau) = 2211$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

### Blocks

Patterns of Height 1 Applications Conclusion Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ .  $v(\tau) = 2211$ . cons $(\tau)$  occurs

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

### Blocks

Patterns of Height 1 Applications Conclusion Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ .  $v(\tau) = 2211$ . cons $(\tau)$  occurs

イロト (母) (ヨ) (ヨ) (ヨ) () ()

1 time at level 1

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

### Blocks

Patterns of Height 1 Applications Conclusion Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ .  $v(\tau) = 2211$ . cons $(\tau)$  occurs 1 time at level 1

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

### Blocks

Patterns of Height 1 Applications Conclusion Let  $\sigma =$  4415778852213663,  $\tau =$  2211.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$$v(\tau) = \underline{2211}$$
. cons $(\tau)$  occurs

- 1 time at level 1
- 1 time at level 2

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

### Blocks

Patterns of Height 1 Applications Conclusion Let  $\sigma = 4415778852213663$ ,  $\tau = 2211$ .  $v(\tau) = 2211$ . cons $(\tau)$  occurs

イロト (母) (ヨ) (ヨ) (ヨ) () ()

1 time at level 1
1 time at level 2

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

### Blocks

Patterns of Height 1 Applications Conclusion Let  $\sigma =$  4415778852213663,  $\tau =$  2211.

```
v(\tau) = \underline{2211}. cons(\tau) occurs
```

- 1 time at level 1
- 1 time at level 2
- 0 times at level 3

## Why Block Patterns?

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

### Blocks

Patterns of Height 1 Applications Conclusion

- Naturally correspond to patterns in labeled trees!
- Inherently account for trivial symmetries.
- More specific motivation:
  - Consecutive block patterns = tree patterns in [Dotsenko, 2012].
  - Block patterns = labeled versions of patterns in [Rowland, 2010], [Dairyko et al., 2012].

## What's Been Done With Block Patterns?

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1 Applications Conclusion

- Some (consecutive) Wilf equivalence [Dotsenko, 2012]
  Some (consecutive) asymptotic results
- Patterns of height 1 (which correspond to combs in trees)

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in Q_n$  is formed uniquely by the following process:

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in \mathcal{Q}_n$  is formed uniquely by the following process:

イロト (母) (ヨ) (ヨ) (ヨ) () ()

 Partition {1,2,...,n} into level 1 blocks (without ordering).

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in Q_n$  is formed uniquely by the following process: **1** Partition  $\{1, 2, ..., n\}$  into

level 1 blocks (without ordering).

16|2379|45|8

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in Q_n$  is formed uniquely by the following process:

- Partition {1, 2, ..., n} into level 1 blocks (without ordering).
- 2 Use non-minimal elements to form Stirling permutations starting at level 2.

16|2379|45|8

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in Q_n$  is formed uniquely by the following process:

- Partition {1, 2, ..., n} into level 1 blocks (without ordering).
- Use non-minimal elements to form Stirling permutations starting at level 2.

16|2379|45|8 66 | 99377 | 55 |

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in Q_n$  is formed uniquely by the following process:

- Partition {1, 2, ..., n} into level 1 blocks (without ordering).
- 2 Use non-minimal elements to form Stirling permutations starting at level 2.

16|2379|45|8 1661|2993772|4554|88

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in Q_n$  is formed uniquely by the following process:

- Partition {1, 2, ..., n} into level 1 blocks (without ordering).
- 2 Use non-minimal elements to form Stirling permutations starting at level 2.

16|2379|45|8 1661|2993772|4554|88

イロト (雪) (ヨ) (ヨ) (ヨ) ()

3 Permute the level 1 blocks in some way.

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

Every  $\sigma \in Q_n$  is formed uniquely by the following process:

- Partition {1, 2, ..., n} into level 1 blocks (without ordering).
- 2 Use non-minimal elements to form Stirling permutations starting at level 2.

16|2379|45|8 1661|2993772|4554|88 29937732|88|4554|1661

イロト (雪) (ヨ) (ヨ) (ヨ) ()

3 Permute the level 1 blocks in some way.

## Notation

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

For patterns  $a,c\in\mathfrak{S}_\infty$ , let

$$P_c^a(t,z) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\substack{\pi \in \mathfrak{S}_n \\ \pi \text{ avoids } a}} z^{\# c \text{ in } \pi}.$$

For sequences of block patterns  $A, C : \{1, 2, \ldots\} \rightarrow \mathcal{Q}_{\infty}$ ,

$$\begin{aligned} \mathcal{Q}_n^A &= \{ \sigma \in \mathcal{Q}_n \text{ avoiding } A_i \text{ at level } i \} \\ Q_C^A(t; \vec{x}; \vec{y}) &= \\ \sum_{n \geq 0} \frac{t^n}{n!} \sum_{\sigma \in \mathcal{Q}_n^A} \prod_{i \geq 1} x_i^{\# C_i \text{ at level } i \text{ in } \sigma} y_i^{\# \text{ blocks at level } i} \end{aligned}$$

イロト イポト イヨト イヨト

3

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

## Theorem

# Assume that $A_1$ , $C_1$ have height 1, i.e. they are just permutations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

## Theorem

Assume that  $A_1$ ,  $C_1$  have height 1, i.e. they are just permutations. If we know

・ロト ・日 ・ モ ・ モ ・ モ ・ つくぐ

$$P_{C_1}^{A_1}(t,z)$$

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

## Theorem

Assume that  $A_1$ ,  $C_1$  have height 1, i.e. they are just permutations. If we know

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$P_{C_1}^{A_1}(t,z)$$

$$Q_{(C_2,C_3,...)}^{(A_2,A_3,...)}(t;\vec{x};\vec{y})$$

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

## Theorem

Assume that  $A_1$ ,  $C_1$  have height 1, i.e. they are just permutations. If we know

$$P_{C_1}^{A_1}(t,z)$$

$$Q_{(C_2,C_3,...)}^{(A_2,A_3,...)}(t;\vec{x};\vec{y})$$

then  $Q_C^A(t; \vec{x}; \vec{y})$  is equal to

$$P_{C_1}^{A_1}\left(y_1\int_0^t Q_{(C_2,C_3,\ldots)}^{(A_2,A_3,\ldots)}(u;x_2,x_3,\ldots;y_2,y_3,\ldots)\mathrm{d} u,x_1\right)$$

## **Proof Sketch**

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

$$P_{C_1}^{A_1}\left(y_1\int_0^t Q_{(C_2,C_3,\ldots)}^{(A_2,A_3,\ldots)}(u;x_2,x_3,\ldots;y_2,y_3,\ldots)\mathrm{d} u,x_1\right)$$

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Partition {1, 2, ..., n} into level 1 blocks (without ordering). (Taken care of by EGF.)

## **Proof Sketch**

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

$$P_{C_1}^{A_1}\left(y_1\int_0^t Q_{(C_2,C_3,\ldots)}^{(A_2,A_3,\ldots)}(u;x_2,x_3,\ldots;y_2,y_3,\ldots)\mathrm{d} u,x_1\right)$$

- Partition {1, 2, ..., n} into level 1 blocks (without ordering). (Taken care of by EGF.)
- **2** Use non-minimal elements to form Stirling permutations starting at level 2.

## **Proof Sketch**

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

$$P_{C_1}^{A_1}\left(y_1\int_0^t Q_{(C_2,C_3,...)}^{(A_2,A_3,...)}(u;x_2,x_3,...;y_2,y_3,...)du,\mathbf{x_1}\right)$$

- Partition {1, 2, ..., n} into level 1 blocks (without ordering). (Taken care of by EGF.)
- **2** Use non-minimal elements to form Stirling permutations starting at level 2.

イロト (雪) (ヨ) (ヨ) (ヨ) ()

**3** Permute the level 1 blocks in some way.

# Application to Strong Wilf-Type Equivalence

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns of Height 1

Applications

Conclusion

## Corollary

$$f P^{A_i}_{C_i}(t,z) = P^{A_i'}_{C_i'}(t,z)$$
 for all  $i$ , then

$$Q_C^A(t; \vec{x}; \vec{y}) = Q_{C'}^{A'}(t; \vec{x}; \vec{y}).$$

### Proof.

The previous theorem provides a functional equation both Q's must satisfy.

E.g. 
$$A_i = class(112233), A'_i = class(113322).$$

## Applications to Generating Functions

- Block Patterns in Stirling Permutations
- Andy Wilson
- Stirling Permutation
- Blocks
- Patterns of Height 1
- Applications
- Conclusion

**Restrict** to Stirling permutations of height  $\leq 2$ .

- Stirling numbers (of both kinds)
- Alteration of zig-zag numbers
- Ignore blocks beyond level 1.
  - Bessel polynomials

## Height $\leq$ 2, Increasing at Level 1

Block Patterns in Stirling Permutations

Stirling

Blocks

Patterns of Height 1

Applications

Conclusion

$$A = (2211, \emptyset, 11, \emptyset, ...), C = (\emptyset, ...).$$
$$P_{\emptyset}^{21}(t, z) = \exp(t)$$
$$Q_{C}^{A}(t; \vec{x}; \vec{y}) = \exp\left(y_{1} \int_{0}^{t} \frac{\mathrm{d}u}{1 - uy_{2}}\right)$$
$$= \exp\left(\frac{-y_{1}}{y_{2}}\log(1 - ty_{2})\right)$$
$$= (1 - ty_{2})^{-y_{1}/y_{2}}$$

Stirling numbers of the first kind! (OEIS A008275)

## Height $\leq$ 2, Increasing at Level 2

### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

$$A = (\emptyset, 2211, 11, \emptyset, ...), \ C = (\emptyset, ...).$$
$$P_{\emptyset}^{\emptyset}(t, z) = \frac{1}{1 - t}$$
$$Q_{C}^{A}(t; \vec{x}; \vec{y}) = \frac{1}{1 - y_{1} \int_{0}^{t} \exp(uy_{2}) du}$$
$$= \frac{y_{2}}{y_{2} - y_{1}(\exp(ty_{2}) - 1)}$$

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Ordered Stirling numbers of second kind! (OEIS A019538)

## Height $\leq$ 2, Counting Level 1 "Descents"

Block Patterns in Stirling Permutations

Applications

 $A = (\emptyset, \emptyset, 11, \emptyset, \ldots), \ C = (\operatorname{cons}(2211), \emptyset, \ldots).$ 

$$P_{\underline{21}}^{\emptyset}(t,z) = \frac{z-1}{z - \exp(t(z-1))}$$
$$Q_C^A(t;\vec{x};\vec{y}) = \frac{x_1 - 1}{x_1 - \exp\left((x_1 - 1)y_1 \int_0^t \frac{1}{1 - uy_2} du\right)}$$
$$= \frac{x_1 - 1}{x_1 - (1 - ty_2)^{y_1(1 - x_1)/y_2}}$$

Refinement of ordered Stirling numbers (first kind). Not in OEIS.

1, 
$$x + 2$$
,  $x^2 + 7x + 6$ ,  $x^3 + 17x^2 + 46x + 24$ , ....

## <u>Height $\leq$ 2, Zig-Zag at Level 1</u>

Block Patterns in Stirling Permutations

Α

Applications

$$\begin{aligned} A &= (\{\cos(123), \cos(321)\}, \emptyset, 1, \emptyset, \ldots), C = (\emptyset, \ldots). \\ P_{\emptyset}^{\{\underline{123}, \underline{321}\}}(t, z) &= \sec t + \tan t \\ Q_{C}^{A}(t; \vec{x}; \vec{y}) &= \sec \left(y_{1} \int_{0}^{t} \frac{\mathrm{d}u}{1 - uy_{2}}\right) + \tan \left(y_{1} \int_{0}^{t} \frac{\mathrm{d}u}{1 - uy_{2}}\right) \\ &= \sec \left(\frac{-y_{1}}{y_{2}} \log(1 - ty_{2})\right) + \\ &\quad \tan \left(\frac{-y_{1}}{y_{2}} \log(1 - ty_{2})\right) \end{aligned}$$

١

10

э.

١

Not in OEIS (even with y's set to 1). 1, 1, 2, 7, 34, 210, ....

## Ignoring Higher Blocks, Increasing at Level 1

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

$$A = (2211, \emptyset, \ldots), \ C = (\emptyset, \ldots).$$

$$P^{21}_{\emptyset}(t,z) = \exp(t)$$
 $Q^A_C(t; \vec{x}; y, 1, \ldots) = \exp\left(y(1-\sqrt{1-2t})
ight)$ 

Bessel polynomials! (OEIS A001497) Definition of Bessel polynomials gives coefficient of  $\frac{t^n}{n!}y^k$ :

$$\frac{(2n-k-1)!}{2^{n-k}(n-k)!(k-1)!}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Ignoring Higher Blocks, Counting Lvl. 1 "Descents"

Block Patterns in Stirling Permutations

Α

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

$$= (\emptyset, ...), \ C = (\cos(2211), \emptyset, ...).$$

$$P_{\underline{21}}^{\emptyset}(t, z) = \frac{z - 1}{z - \exp(t(z - 1))}$$

$$Q_{C}^{A}(t; \vec{x}; y, 1, ...) = \frac{x_{1} - 1}{x_{1} - \exp\left(y(x_{1} - 1)\int_{0}^{t} \frac{\mathrm{d}u}{\sqrt{1 - 2u}}\right)}$$

$$= \frac{x_{1} - 1}{x_{1} - \exp\left(y(x_{1} - 1)(1 - \sqrt{1 - 2t})\right)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

Not in OEIS.

## Ignoring Higher Blocks, Avoiding <u>123</u> at Level 1

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

Blocks

Patterns of Height 1

Applications

Conclusion

 $A = (cons(112233), \emptyset, ...), C = (\emptyset, ...).$  As proven in [Elizalde and Noy, 2003]

$$P_{\emptyset}^{\underline{123}}(t,z) = \frac{\sqrt{3}e^{t/2}}{2\cos\left(\frac{\sqrt{3}}{2}t + \frac{\pi}{6}\right)}$$
$$Q_{C}^{A}(t;\vec{x};y,1,\ldots) = P_{\emptyset}^{\underline{123}}(y(1-\sqrt{1-2t}),x)$$

## Recap

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation:

Blocks

Patterns o Height 1

Applications

Conclusion

Stirling permutations

Blocks and block patterns

- Block patterns of height 1
- Applications
  - Strong Wilf-type equivalence

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Generating functions
### Extensions

#### Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns o Height 1

Applications

Conclusion

- Dotsenko's trees generally correspond to *colored k-Stirling* permutations.
- Colored means each  $i \in \{1, ..., n\}$  is labeled with an integer in  $\{0, 1, ..., c 1\}$ .
- k-Stirling permutations are just 212-avoiding rearrangements of

$$\{1^k, 2^k, \ldots, n^k\}.$$

イロト (四) (日) (日) (日) (日) (日)

 Our theorem still applies, but there are fewer known generating functions.

## Future Work?

- Block Patterns in Stirling Permutations
- Andy Wilson
- Stirling Permutation
- Blocks
- Patterns o Height 1
- Applications
- Conclusion

- Patterns of height > 1?
- Interplay between block and normal patterns?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Stanley-Wilf limits?

# Citations I

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutation

Blocks

Patterns of Height 1

Applications

Conclusion

Dairyko, M., Pudwell, L., Tyner, S., and Wynn, C. (2012). Non-Contiguous Pattern Avoidance in Binary Trees. *ArXiv e-prints*.

Dotsenko, V. (2012).
Pattern avoidance in labelled trees.
Séminaire Lotharingien de Combinatoire, B67b.

Elizalde, S. and Noy, M. (2003).
Consecutive patterns in permutations.
Advanced in Applied Math, 30:110–125.

Gessel, I. and Stanley, R. P. (1978).
Stirling polynomials.
Journal of Combinatorial Theory, Series A, 24(1):24–33.

イロト (雪) (ヨ) (ヨ) (ヨ) ()

# Citations II

Block Patterns in Stirling Permutations

Andy Wilson

Stirling Permutations

Blocks

Patterns o Height 1

Applications

Conclusion

Janson, S., Kuba, M., and Panholzer, A. (2011).

Generalized stirling permutations, families of increasing trees and urn models.

Journal of Combinatorial Theory, Series A, 118(1):94–114.

#### Rowland, E. S. (2010). Pattern avoidance in binary trees.

Journal of Combinatorial Theory, Series A, 117:741–758.

イロト (雪) (ヨ) (ヨ) (ヨ) ()

| Block         |   |
|---------------|---|
| Patterns in   |   |
| Stirling      |   |
| Permutation   | • |
| r critication | Ì |
|               |   |

Andy Wilson

Stirling Permutation:

Blocks

Patterns of Height 1

Applications

Conclusion

#### Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで