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Ag(x,1) =1+ 11x + 11x° + X3
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» Better: An(x,1) is positive in the basis x/(1 4 x)" 172/,

> It is the h-polynomial of the type A Coxeter complex.

> It is the partition function of the PASEP on a line segment
with n sites [Corteel-Williams]

» |{m: DES(7) = S}| is [Mé&bius| evaluated on the S-selection
of the Boolean poset.
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Which properties generalize?

» First studied by Carlitz and Scoville (1966)
» Explicit formula (0 0y (1) )[Garsia-Gessel].
> Is Ay(x,y) positive in the basis

(xv)'(y + x)Y(1 + yx)""1721=J7 [Gessel].
An(x,y) =" 3 aer, x> yronle) [Visontai.

v



e = 123135




e = 123135

ASC(e) ={i:e > ei11} ={1,2,4,5}



e = 123135

) = {I e > e,'+1} = {1727475}



e = 123135

ASC(e) ={i:e > ei11} ={1,2,4,5}
asc(e) = 4
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Want to prove

Z Xdes(7r) ides(7 Z Xasc row

TESH ecl,

Stronger but true:

Z XDES(w)yides(n) _ Z XASC(e)yrow(e)'

WESn EEHn

Fix S. Sufficient to prove:

Z yides(ﬂ) — Z yrow(e)'

7E€Sy,DES(7)2S e€l, ASC(e)2S



Choose S = {1,4,5,7,8}.

ides(7) = row(e)
S C DES(7), ASC(e)
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5=1{1,4,5,7,8}
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1+ (2 — 1) new inverse descents.
2 new occupied rows.
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Remarks

> An(x,y) = 2Xarn A()A(Y) (RSK)

» Fix 7. Look at (7, ) such that 7o = 7. Depends only on
des(7)! [Gessell

» (DES,ides) «+— (ASC, row)

» (maj, ides) «— (amaj, row)
Here, maj = Y DES,amaj = > ASC

> (DES, IDES) « /— (ASC, ROW)

» (3 DES, > IDES) « /— (>- ASC, > ROW)



Thanks!



