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Overall Goal

Example

Let des(π) be the number of descents in π, and consider
S3(1-2-3) = {132, 213, 231, 312, 321}. The distribution is:∑

π∈S3(1-2-3)

qdes(π) = 4 q1 + 1 q2

I want to repurpose enumeration schemes to answer:
Given a set of pattern-avoiding permtuations Sn(B) and a
permutation statistic f : Sn → Z, find the distribution of f
over Sn(B):

F (Sn(B), f , q) :=
∑

π∈Sn(B)

qf (π)



Schemes for
statistics

A.M. Baxter

Introduction

Scheme
Overview

ES-
compatibility

Applications

Conclusion

Vincular patterns

(Also called “generalized patterns” or “dashed patterns”.)
Definition by examples: Permutation π ∈ Sn contains a copy
of 23-1 if there are indices 1 ≤ i < i + 1 < j ≤ n such that
πiπi+1πj ≈ 231.
Example: 24315 contains a copy of 23-1
Example: 31524 avoids 23-1.
Example: 31524 contains a copy of 2-31 (and 2-3-1).

Absence of a dash indicates adjacency required.
Presence of a dash indicates space is allowed.

Notation

For set of patterns B, let Sn(B) be the set of permutations of
length n which avoid every pattern in B.
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Overview of Enumeration Schemes

An enumeration scheme encodes a recurrence to compute∣∣Sn(B)
∣∣ for a given set of patterns B.

Enumeration schemes may be constructed algorithmically:
Input A set of patterns B, two search parameters.

Output An enumeration scheme to compute
∣∣Sn(B)

∣∣, or
a proof that one does not exist within the search
parameters.

Theorem (B.-Pudwell, 2012)

Enumeration schemes can be constructed algorithmically for
sets B which contain only vincular patterns.
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Previous Work

Theorem (Zeilberger 1998, Vatter 2008, Zeilberger 2007)

If pattern-set B admits a finite enumeration scheme, then∣∣Sn(B)
∣∣ can be computed in polynomial time.

Theorem (B. 2011)

If pattern-set B admits a finite enumeration scheme, then∑
π∈Sn(B)

qinv(π) can be computed in polynomial time, where

inv(π) is the number of inversions.

Today: Finite enumeration schemes compute
∑

π∈Sn(B)

qf (π) for

other permutation statistics f .



Schemes for
statistics

A.M. Baxter

Introduction

Scheme
Overview

ES-
compatibility

Applications

Conclusion

Outline of Talk

X Introduction and Statement of Goal

How schemes work

ES-compatibility

Application



Schemes for
statistics

A.M. Baxter

Introduction

Scheme
Overview

ES-
compatibility

Applications

Conclusion

Schemes Overview

Schemes follow a “divide and conquer” approach to build a
recurrence.

1 Divide (partition) Sn(B) according to prefix-pattern.

2 Conquer (enumerate) using gap vectors and
reversibly-deletable letters.
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Dividing

Notation

For permutation p ∈ Sk , let Sn(B)[p] be the set of all
π ∈ Sn(B) so that π1 · · ·πk ≈ p.
Example: S4(1-3-2)[12] = {1234, 2314, 2341, 3412, 3421}.

Notation

For permutation p ∈ Sk and word w ∈ [n]k so that w ≈ p, let
Sn(B)[p; w ] be the set of all π ∈ Sn(B)[p] so that
π1 · · ·πk = w.
Example: S4(1-3-2)[12; 34] = {3412, 3421}.

Partition Sn(B) into these Sn(B)[p].

Sn(B) = Sn(B)[1] = Sn(B)[12] ∪Sn(B)[21]

Sn(B)[12] =
⋃

1≤a<b≤n
Sn(B)[12; ab]
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Conquering

How do we compute
∣∣Sn(B)[p]

∣∣?
For prefix p ∈ Sk , one of the following events might be true:

(a) Sn(B)[p] = {p} or ∅ (only when n ≤ k).

(b) For each w ∈ [n]k such that w ≈ p, one of the following
happens:

Sn(B)[p; w ] is empty

(Gap vector criteria)

Sn(B)[p; w ] is in bijection with some Sn′(B)[p′; w ′] for
n′ < n.

(Reversible deletions)

Event (b) is detected through gap vector criteria and
reversible deletions.

If neither (a) or (b) occurs, then Sn(B)[p] must be partitioned
further.
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Gap Vectors

For what w does Sn(B)[p; w ] = ∅?
Example: No permutation avoids 1-3-2 and has the first two
letters π1π2 = 24. The vertical “gap” between these first two
letters is too large.

For prefix p, a gap vector ~g encodes a vertical space condition
on w for when Sn(B)[p; w ] = ∅.
Example: Sn(1-3-2)[12; w1w2] = ∅ if w2 − w1 > 1. This is
encoded as 〈0, 1, 0〉.
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Reversible Deletions

Let dR : Sn → Sn−|R| be the map deleting πr for each r ∈ R
and “reducing” the resulting word.
Example: d{2,4} : 2573641 7→ 2 7 641

7→ 25431

For domain Sn[p; w ] and R ⊆ {1, . . . , |p|}, dR is a bijection:

dR : Sn[p; w ]→ Sn−|R|[p
′; w ′]

R is reversibly deletable for prefix p if dR restricts to a
bijection:

dR : Sn(B)[p; w ]→ Sn−|R|(B)[p′; w ′]

whenever Sn(B)[p; w ] 6= ∅.

Example: d{1} : Sn(1-3-2)[21; ab]→ Sn−1(1-3-2)[1; b] is
bijective when a > b.
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The scheme for
∣∣Sn(1-3-2)

∣∣
Let B = {1-3-2}. The scheme for

∣∣Sn(B)
∣∣ looks like:

E =
{

(1, ∅, ∅), (12, {〈0, 1, 0〉}, {1}), (21, ∅, {1})
}

1

12
〈0, 1, 0〉

21
�� ��

d1
22

d1
ll
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The recurrence for
∣∣Sn(1-3-2)

∣∣ from the scheme

Let B = {1-3-2}. The scheme for
∣∣Sn(B)

∣∣ encodes the
recurrence:∣∣Sn(B)

∣∣ =
∣∣Sn(B)[1]

∣∣
=

n∑
a=1

∣∣Sn(B)[1; a]
∣∣

∣∣Sn(B)[1; a]
∣∣ =

a−1∑
b=1

∣∣Sn(B)[21; ab]
∣∣+

n∑
b=a+1

∣∣Sn(B)[12; ab]
∣∣

=
a−1∑
b=1

∣∣Sn−1(B)[1; b]
∣∣+
∣∣Sn−1(B)[1; a]

∣∣+ 0

=
a∑

b=1

∣∣Sn−1(B)[1; b]
∣∣

But we want to compute more than just the cardinality
∣∣Sn(B)

∣∣.
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R-deletion difference

Definition

Let f :
⋃

n≥0Sn → Z be a permutation statistic. For a
permutation π, define the R-deletion difference to be

(∆R f )(π) := f (π)− f (dR(π)).

i.e., (∆R f )(π) measures how f changes when applying dR .

Example:
(∆{1}des)(621534) = des(621534)− des(21534) = 1.
i.e., 1 descent is lost.
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ES-compatibility

Definition

A permutation statistic f is ES-compatible with margin m if for
any prefix pattern p ∈ Sk for k ≥ m and any
R ⊆ {1, . . . , k −m} the difference ∆R f is constant over any
nonempty set Sn[p; w ].

i.e., the deletion dR changes the value of f by the same
amount for all permutations in Sn[p; w ] as long as R does not
cut too close to the right edge of p.

Trivial Example: The length of a permutation `(π1 · · ·πn) = n
is ES-compatible with margin 0, since ∆R`(π) = |R| for any
π ∈ Sn with n ≥ |R|.
Non-example: The “final letter” f (π1 · · ·πn) = πn is not
ES-compatible for any margin. 625431 and 621345 both lie in
Sn[21; 62], but ∆{2}f (625431) = 0 and ∆{2}f (621345) = 1.
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ES-compatibility and schemes

Notation: For a set of permutations S and permutation
statistic f , let F (S , f , q) =

∑
π∈S

qf (π).

Theorem (B., 2013)

Let f be an ES-compatible permutation statistic with margin
m. If R is reversibly-deletable for p and max R + m ≤ |p|, then
there is an integer δ(f , n,R,w) such that

F (Sn(B)[p; w ], f , q) = qδ(f ,n,R,w) F (Sn−|R|(B)[p′; w ′], f , q),

Remark: The analogous result holds when f is replaced by a
multistatistic f = 〈f1, . . . , fs〉 and the weights are given by
qf = q1

f1(π) · · · qs
fs(π)
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Example: Descents over Sn(1-3-2)

Example: des is an ES-compatible statistic with margin 1.
Let B = {1-3-2}. The scheme from earlier implies:

F (Sn(B)[12; a(a+1)],des, q) = q0 F (Sn−1(B)[1; a],des, q)

F (Sn(B)[21; ab],des, q) = q1 F (Sn−1(B)[1; b], des, q)

Let G (n, a) := F (Sn(B)[1; a],des, q). Then the above implies:

F (Sn(B),des, q) =
n∑

a=1

G (n, a)

G (n, a) = G (n − 1, a) +
a−1∑
b=1

q G (n − 1, b)
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Non-trivial examples of ES-compatible statistics

Theorem (B., 2013)

Let σ ∈ St and f (π) be the number of copies of the
(consecutive) pattern σ1 · · ·σt in π. Then f is an
ES-compatible statistic with margin t − 1.

Remark: des(π) = f (π) for σ = 21.

Theorem (B., 2013)

Let σ ∈ St and let g(π) be the number of copies of the
pattern σ1 · · ·σt−1-σt in π. Then g is an ES-compatible
statistic with margin t − 2.

Remark: inv(π) = g(π) for σ = 2-1.
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Non-trivial examples of ES-compatible statistics

Theorem (B., 2013)

The following statistics are ES-compatible with margin 0:

The number of right-to-left maxima

The number of right-to-left minima
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Non-trivial examples of ES-compatible statistics

We may use the multistatistic versions to prove:

Corollary (B., 2013)

Any linear combination of ES-compatible statistics is also
ES-compatible.

Examples:

majr (π) := maj(πr ) =
(23-1)(π) + (13-2)(π) + (12-3)(π) + (12)(π) is
ES-compatible with margin 1.

The peak-number peak(π) = (231)(π) + (132)(π) is
ES-compatible with margin 2.
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Concept of proof for consecutive pattern function

Let f (π) be the number of copies of 123 in π. Why is f
ES-compatible with margin 2?

Suppose R = {2} is reversibly-deletable for a prefix p of length
at least 4. Then no deleted letter can be part of a 123 not
involving a letter outside the prefix.
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Suppose R = {2} is reversibly-deletable for a prefix p of length
at least 4.

Then no deleted letter can be part of a 123 not
involving a letter outside the prefix.
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Concept of proof for consecutive pattern function

Let f (π) be the number of copies of 123 in π. Why is f
ES-compatible with margin 2?
Suppose R = {2} is reversibly-deletable for a prefix p of length
at least 4. Then no deleted letter can be part of a 123 not
involving a letter outside the prefix.
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Concept of proof for vincular pattern function

Let g(π) be the number of copies of 13-2 in π. Why is g
ES-compatible with margin 1?

Suppose R = {2} is reversibly-deletable for a prefix p of length
at least 4. Then we know how many copies of 13-2 π2 is part
of, and how many will be present after applying d{2}.
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Concept of proof for vincular pattern function

Let g(π) be the number of copies of 13-2 in π. Why is g
ES-compatible with margin 1?
Suppose R = {2} is reversibly-deletable for a prefix p of length
at least 4.

Then we know how many copies of 13-2 π2 is part
of, and how many will be present after applying d{2}.



Schemes for
statistics

A.M. Baxter

Introduction

Scheme
Overview

ES-
compatibility

Applications

Conclusion

Concept of proof for vincular pattern function

Let g(π) be the number of copies of 13-2 in π. Why is g
ES-compatible with margin 1?
Suppose R = {2} is reversibly-deletable for a prefix p of length
at least 4. Then we know how many copies of 13-2 π2 is part
of,

and how many will be present after applying d{2}.
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Concept of proof for vincular pattern function

Let g(π) be the number of copies of 13-2 in π. Why is g
ES-compatible with margin 1?
Suppose R = {2} is reversibly-deletable for a prefix p of length
at least 4. Then we know how many copies of 13-2 π2 is part
of, and how many will be present after applying d{2}.
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Accommodating margins

Potential Problem: Not all enumeration schemes
accommodate statistics with “large” margins.
Example: The earlier scheme for 1-3-2 can only accommodate
statistics with margin at most 1.

Theorem (B., 2013)

Let m ≥ 0. If B admits a finite enumeration scheme E , then B
admits a finite enumeration scheme E ′ which can
accommodate a ES-compatible statistic of margin m.

Drawback: The encoded recurrence for E ′ is more complicated
(but still polynomial time).
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Potential Problem: Not all enumeration schemes
accommodate statistics with “large” margins.
Example: The earlier scheme for 1-3-2 can only accommodate
statistics with margin at most 1.

Theorem (B., 2013)

Let m ≥ 0. If B admits a finite enumeration scheme E , then B
admits a finite enumeration scheme E ′ which can
accommodate a ES-compatible statistic of margin m.
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A deepened scheme

Scheme for Sn(1-3-2) for statistics with margin ≤ 1.

1

12
〈0, 1, 0〉

21
�� ��

d1
22

d1
ll
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A deepened scheme

Scheme for Sn(1-3-2) for statistics with margin ≤ 2.

1

12

123
〈0, 0, 1, 0〉
〈0, 1, 0, 0〉

132
〈0, 0, 0, 0〉

231
〈0, 0, 1, 0〉

21

321312
〈0, 1, 0, 0〉

213
〈0, 0, 1, 0〉
〈0, 1, 0, 0〉

{{ ##

{{ 
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11 //00nnoo mm



Schemes for
statistics

A.M. Baxter

Introduction

Scheme
Overview

ES-
compatibility

Applications

Conclusion

Outline of Talk

X Introduction and Statement of Goal

X How schemes work

X ES-compatibility

Applications
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Implementation

The Maple package Statter, available for download, can do
the following:

1 Discover an enumeration scheme for Sn(B) (if one exists
within search parameters) which can accomodate given
margins for ES-compatible statistics.

2 Read enumeration schemes to compute the distribution∑
π∈Sn(B)

qf (π) for (multi)statistics f chosen from:

Number of copies of a consecutive pattern
Number of copies of a vincular pattern of the form
σ1 · · ·σk−1-σk
Number of right-to-left maxima or minima.
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Applications

Data from Statter suggested the following information about
the distributions of the number of peaks over classical
avoidance classes, which were proven by other methods.

Theorem (B., 2013)

∑
π∈Sn(1-2-3)

qpeak(π) =
∑

π∈Sn(3-2-1)

qpeak(π) =
∑

π∈Sn(3-1-2)

qpeak(π)

Theorem (B., 2013)

The distribution of peaks over Sn(1-3-2) equals the
distribution of subfactors DDU over Dyck words of length n.
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Other directions

The distributions F (Sn(B), f , q) =
∑

π∈Sn(B)

qf (π) can be mined

for many other qualities:

deg F (Sn(B), f , q) corresponds to “pattern-packing”
questions.
d

dq

[
F (Sn(B), f , q)

]∣∣∣
q=1

corresponds to “total number of

copies” questions.

For what combinations of B and f are the distributions
F (Sn(B), f , q) symmetric? unimodal? log-concave?
asymptotically normal?

Do the distributions exhibit cyclic-sieving properties?

(I will take requests for data.)
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Conclusion

Enumeration schemes can now compute (in polynomial time)
the number of B-avoiding permutations of length n with k
copies of a consecutive or “nearly-consecutive” pattern. In
some cases, the recurrences themselves lead to proofs of these
conjectures.

These procedures are implemented in the Maple package
Statter, available for download.

Thank you!
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some cases, the recurrences themselves lead to proofs of these
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These procedures are implemented in the Maple package
Statter, available for download.

Thank you!
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