
Pattern Avoidance in Poset Permutations

Pattern Avoidance in Poset Permutations

Sam Hopkins and Morgan Weiler

Massachusetts Institute of Technology and University of California, Berkeley

Permutation Patterns, Paris; July 5th, 2013



Pattern Avoidance in Poset Permutations

1 Definitions and Introduction

2 The Patterns 132 and 123

3 The Pattern {1}{1,2}{2} on the Boolean Lattice

4 Further Directions



Pattern Avoidance in Poset Permutations
Definitions and Introduction

Section 1

Definitions and Introduction



Pattern Avoidance in Poset Permutations
Definitions and Introduction

Preliminary Definitions and Notation

Throughout, let P be a partially ordered set on n elements, under the
relation ≺.

Definition
A permutation σ on P is a bijection

σ : {1, . . . ,n} → P

σi := σ(i), the entry at the ith position

σ = (σ1, · · · , σn)

SP denotes the set of permutations on P

Bn denotes the set of permutations on Bn, the Boolean lattice
on n elements
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Pattern Containment

Throughout, for a, b ∈ P let a ∼ b denote “a is incomparable to b.”

Definition
A pattern is a permutation considered only as a set of positions and a
set of order relations (including ∼), one specified for each pair of
positions. In that case we do not use parenthesis and commas, but
simply let σ = σ1 · · ·σn.

Definition
Let P be a poset on n elements and Q a poset on k elements under
the relation ≺′. For σ ∈ SP and π ∈ SQ, we say σ contains the pattern
π if there are k entries σi1 , . . . , σik ∈ {σ1, . . . , σn} with i1 < · · · < ik
such that for all 1 ≤ a < b ≤ k we have

σia ≺,�,∼ σib if and only if πa ≺′,�′,∼ πb respectively



Pattern Avoidance in Poset Permutations
Definitions and Introduction

Pattern Containment

Throughout, for a, b ∈ P let a ∼ b denote “a is incomparable to b.”

Definition
A pattern is a permutation considered only as a set of positions and a
set of order relations (including ∼), one specified for each pair of
positions. In that case we do not use parenthesis and commas, but
simply let σ = σ1 · · ·σn.

Definition
Let P be a poset on n elements and Q a poset on k elements under
the relation ≺′. For σ ∈ SP and π ∈ SQ, we say σ contains the pattern
π if there are k entries σi1 , . . . , σik ∈ {σ1, . . . , σn} with i1 < · · · < ik
such that for all 1 ≤ a < b ≤ k we have

σia ≺,�,∼ σib if and only if πa ≺′,�′,∼ πb respectively



Pattern Avoidance in Poset Permutations
Definitions and Introduction

Pattern Containment

Throughout, for a, b ∈ P let a ∼ b denote “a is incomparable to b.”

Definition
A pattern is a permutation considered only as a set of positions and a
set of order relations (including ∼), one specified for each pair of
positions. In that case we do not use parenthesis and commas, but
simply let σ = σ1 · · ·σn.

Definition
Let P be a poset on n elements and Q a poset on k elements under
the relation ≺′. For σ ∈ SP and π ∈ SQ, we say σ contains the pattern
π if there are k entries σi1 , . . . , σik ∈ {σ1, . . . , σn} with i1 < · · · < ik
such that for all 1 ≤ a < b ≤ k we have

σia ≺,�,∼ σib if and only if πa ≺′,�′,∼ πb respectively



Pattern Avoidance in Poset Permutations
Definitions and Introduction

An Example and Further Definitions

Example
Let σ ∈ B3 be given by ({2, 3}, {2}, {1, 3}, {1, 2, 3}, {1}, ∅, {1, 2}, {3}).
σ contains the pattern {1}{3}{1, 2} in the subsequence
({2}, {1, 3}, {1, 2}), but avoids ∅{1}{1, 2}.

When considering patterns within chains of a poset we use the
notation from permutations on sets [k] = {1, . . . , k}; in this way
the pattern ∅{1}{1, 2} can be represented 123. Else we use
notation from the Boolean lattice on the smallest required
number of elements.

Definition
Let AvP(σ) denote the number of permutations in SP which avoid σ.
Let Avn(σ) denote the number of permutations in Bn which avoid σ.
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Motivation

We have two principle motivations, one from pattern avoidance theory
and one from order theory:

To see how little order structure is necessary to recapture results
from classical pattern avoidance (e.g. generalizes multiset
permutations).

As a generalization of counting linear extensions of a poset.
(What does stack “sorting” a partially ordered set look like?)
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Easy Equivalences

Example
The reverse of ({1, 2}, ∅, {1}, {2}) ∈ B2 is ({2}, {1}, ∅, {1, 2}).

Example
The dual of ({1, 2}, ∅, {1}, {2}) ∈ B2 is (∅, {1, 2}, {2}, {1}).

Fact
σ and its reverse are Wilf equivalent. If P is self-dual, σ and its dual
are Wilf equivalent.
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Wilf Classes of Length Two Patterns

There are three length two patterns, corresponding to the possible
relations between distinct elements of any poset: 12, 21, and {1}{2}.

Definition
A linear extension is a bijection λ : [n]→ P such that for all
1 ≤ i < j ≤ n, we have λi < λj ⇒ i < j.

Example
The permutation

(∅, {1}, {3}, {1, 3}, {2}, {1, 2}, {2, 3}, {1, 2, 3})

is a linear extension of B3.
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An Asymptotic Bound on Linear Extensions

Linear extensions are total orderings of P which “respect” the partial
order of P; in our language, these are exactly the 21-avoiding
elements of SP . We shall denote the number of linear extensions
by Avn(21) so as to be consistent with our notation.

We have the asymptotic bound

log Avn(21)
2n = log

(
n
bn/2c

)
− 3

2 log e + O
(

ln n
n

)
with logarithms base 2 (Brightwell and Tetali).
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Wilf Classes of Length Three Patterns for Bn

123, 321

132, 312, 213, 231

or

{1}{2}{1, 2}, {1}{2}∅,
∅{1}{2}, {1, 2}{1}{2}

{1}{1, 2}{2}, {1}∅{2}
{1}{3}{1, 2}, {1, 2}{3}{1}

{1}{1, 2}{3}, {1, 2}{1}{3},
{3}{1}{1, 2}, {3}{1, 2}{1}

{1}{2}{3}
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Poset 132- vs. 123-avoidance

We want to mimic the classic bijection between 123- and 132-avoiders
of Simion and Schmidt. However, fixing the left-to-right minimal
elements (LRME) of σ, there may be many ways to fill in the
remaining entries and avoid 123 or 132.

Example
With σ = ({2, 3}, {1}, {1, 2}, {2}, ∅, {3}, {1, 3}, {1, 2, 3}), the LRME
are in red. Note that σ avoids 132 but the permutations

({2, 3}, {1}, {1, 3}, {2}, ∅, {1, 2}, {3}, {1, 2, 3});
({2, 3}, {1}, {1, 3}, {2}, ∅, {3}, {1, 2}, {1, 2, 3})

have the same LRME in the same positions as σ and also avoid 132.



Pattern Avoidance in Poset Permutations
The Patterns 132 and 123

Poset 132- vs. 123-avoidance

We want to mimic the classic bijection between 123- and 132-avoiders
of Simion and Schmidt. However, fixing the left-to-right minimal
elements (LRME) of σ, there may be many ways to fill in the
remaining entries and avoid 123 or 132.

Example
With σ = ({2, 3}, {1}, {1, 2}, {2}, ∅, {3}, {1, 3}, {1, 2, 3}), the LRME
are in red. Note that σ avoids 132 but the permutations

({2, 3}, {1}, {1, 3}, {2}, ∅, {1, 2}, {3}, {1, 2, 3});
({2, 3}, {1}, {1, 3}, {2}, ∅, {3}, {1, 2}, {1, 2, 3})

have the same LRME in the same positions as σ and also avoid 132.



Pattern Avoidance in Poset Permutations
The Patterns 132 and 123

An injection from 132- to 123-avoiders

Theorem
We have AvP(132) ≤ AvP(123) for any poset P, with strict inequality
iff P contains one of Q1, Q2, or Q3 below as an induced subposet:

d e

c

a b

Q1

d e

c

a b

Q2

d
e

c

a
b

Q3
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Proof sketch of injection

We construct an injection from the 132-avoiders to the 123-avoiders.
Let σ be a 132-avoider.

Fix the positions of the LRME of σ. Let P ′ be the induced subposet
of P on the non-LRME elements of σ. Label the non-LRME positions
from left to right as 1, . . . , k. Each x ∈ P ′ has a first position ω(x) it
can occupy so that it is not an LRME. If, as we fill in non-LRME
positions from left to right we always chose a maximal element among
legal choices in P ′ we will avoid 123; if we always chose a minimal
element we will avoid 132.

Example
Consider σ = ({2, 3}, {1}, {1, 2}, {2}, ∅, {3}, {1, 3}, {1, 2, 3}). The
LRME are in red. We have ω({1, 3}) = ω({1, 2}) = ω({1, 2, 3}) = 1,
while ω({3}) = 2.
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Proof sketch of injection cont’d

We say σ is ω-legal if ω(σi) ≤ i. Let Λω ⊆ SP′ be the ω-legal perms.

Λω
min ⊆ Λω which is left-to-right minimal;

Λω
max ⊆ Λω which is left-to-right maximal.

Example

a4

b3 c2

d2

e1 f1

P ′

In the diagram on the left, each
x ∈ P ′ has as subscript ω(x).

σ = f c b a d e is in Λω
min;

τ = f e d c b a is in Λω
max;

π = f e d a b c is in neither.
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Proof sketch of injection cont’d

Crucially, x ≥ y ⇒ ω(x) ≤ ω(y). This allows an injective algorithm,
call it φ : Λω

min → Λω
max. The algorithm considers each entry in turn,

cycling through greater elements that could occupy that position.

Example

a4

b3 c2

d2

e1 f1

P ′

σ =: σ0 = f c b a d e

σ1 = f c b a d e
σ2 = f e b a c d
σ3 = f e d a c b
σ4 = f e d c a b
σ5 = f e d c b a
σ6 = f e d c b a = φ(σ)
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The Pattern {1}{1,2}{2} on the Boolean
Lattice
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What Kind of Permutations Avoid {1}{1, 2}{2}?:
V-shaped Permutations

Definition
σ ∈ SP is V-shaped if there is some 1 ≤ i ≤ n such that (σ1, . . . , σi)
is 12-avoiding and (σi+1, . . . , σn) is 21-avoiding.

V-shaped permutations avoid {1}{1, 2}{2}, since there are no
increases followed by decreases. The following diagram explains
the name:

Example
The permutation ({1, 3}, {3}, {1}, {2}, {2, 3}, {1, 2}, {1, 2, 3}) in B3
avoids {1}{1, 2}{2}.

{1,2,3}
{1,3} {2,3},{1,2}

{3},{1},{2}
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The Asymptotic Approximation: Lower Bound

Definition
For σ ∈ Bn, let σ−∅ denote (σ1, . . . , σi−1, σi+1, . . . , σn), where σi = ∅.

We construct and count a subset of distinct V-shaped permutations
on Bn −∅. (Since ∅ can never be part of a {1}{1, 2}{2} pattern, it can
to anywhere.) This provides a basis for our lower bound
on Avn({1}{1, 2}{2}).

Theorem

2n−1

n + 1

n∏
k=0

((
n
k

)
+ 1
)

! ≤ Avn({1}{1, 2}{2})
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Towards an Upper Bound

Lemma
Let σ ∈ Bn. If σ has a subsequence abc such that a ≺ b, c ≺ b, and
neither a nor c is empty, then σ contains a {1}{1, 2}{2} pattern.

This provides a simpler description for {1}{1, 2}{2}-avoidance.
For all x ∈ Bn, every element less than x in Bn\∅ must be to the
same side of x as all the others in any {1}{1, 2}{2}-avoiding
permutation.
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δ Functions

Let δ : P → {L,R}. We are considering an arbitrary poset.

Definition
σ ∈ SP is δ-legal when the following hold

If δ(x) = L then x is to the left of all elements less than x.
If δ(x) = R then x is to the right of all elements less than x.
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A Visualization of δ-legal Permutations

Example
The following is a δ-legal permutation:

({1, 2, 3}, {1}, ∅, {2, 3}, {3}, {1, 3}, {2}, {1, 2})

An appropriate function is given by δ : {1} 7→ R; {2} 7→ R; {3} 7→
R; {1, 2} 7→ L; {1, 3} 7→ R; {2, 3} 7→ L; {1, 2, 3} 7→ L. Note that the
images of the atoms (the singleton sets) are arbitrary.
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Things Get More Complicated on B4

Example
The following is a δ-legal permutation:

({1, 2, 3, 4}, {1, 2}, {1, 3}, {1}, {2, 3, 4}, {4}, {1, 4}, ∅, {2, 3}, {3}, {3, 4},

{2}, {2, 4}, {1, 2, 4}, {1, 2, 3}, {1, 3, 4})

An appropriate function is given by sending everything in blue to L
and everything in red to R.

Thus it is possible to have a {1}{1, 2}{2}-avoiding permutation
which is not V-shaped.



Pattern Avoidance in Poset Permutations
The Pattern {1}{1,2}{2} on the Boolean Lattice

Things Get More Complicated on B4

Example
The following is a δ-legal permutation:

({1, 2, 3, 4}, {1, 2}, {1, 3}, {1}, {2, 3, 4}, {4}, {1, 4}, ∅, {2, 3}, {3}, {3, 4},

{2}, {2, 4}, {1, 2, 4}, {1, 2, 3}, {1, 3, 4})

An appropriate function is given by sending everything in blue to L
and everything in red to R.

Thus it is possible to have a {1}{1, 2}{2}-avoiding permutation
which is not V-shaped.
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Why are δ functions useful?

If we go back to our criterion for avoidance, it is now possible to
restate it using our new language. σ avoids {1}{1, 2}{2} only if there
is some δ : Bn − ∅ → {L,R} such that σ − ∅ is δ-legal.

Since it is eas(ier) to count the number of δ-legal functions for a
poset, the number of δ functions on Bn − ∅ provides a basis for our
upper bound on Avn({1}{1, 2}{2}).

However, given a δ function, there could be many permutations for
which that function displays δ-legality. So we also have to bound the
number of possible ways to create a permutation which is δ-legal for a
given δ-function.
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The Asymptotic Approximation: Upper Bound

We give an upper bound for the number of δ-legal permutations given
some δ function—the number of linear extensions of the initial poset,
whence the Avn(21) term.

Here we relied on a result stating that a poset has fewer linear
extensions than another it properly contains (Stachowiak).

Theorem

Avn({1}{1, 2}{2}) ≤ 22n−1+nAvn(21)

Corollary
These two bounds imply

o(1) ≤ log(Avn({1}{1, 2}{2}))− log(Avn(21))
2n ≤ 1 + o(1)

when considered alongside the Brightwell Tetali result.
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Section 4

Further Directions
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An injection from {1}{1, 2}{2} to {1}{2}{1, 2}?

Conjecture
We have AvP({1}{1, 2}{2}) ≤ AvP({1}{2}{1, 2}) for any poset P,
with strict inequality iff P contains either of R1 or R2 below as an
induced subposet:

R1
R2
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{1}{1, 3}{2} and {1}{3}{1, 2}: Who knows?

The relationship between avoidance in the last pair of non-trivial
length three patterns, {1}{1, 2}{3} and {1}{3}{1, 2}, is more
complicated.

Example
With posets T and U as below, we have that

AvT({1}{1, 2}{3}) < AvT({1}{3}{1, 2}),

but
AvU ({1}{3}{1, 2}) < AvU ({1}{1, 2}{3}) :

T U
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Connection to classical permutations: “gap” patterns

We are briefly in the world of classical permutations (so Avn(π)
denotes the number of avoiders of π in Sn). Let 1−k 2−k 3 mean the
pattern 123, where there must be a gap of at least size k between
the 1 and 2 and between the 2 and 3.

Example
12453 does not contain 1−1 2−1 3.

Corollary
For k ≥ 1, we have

Avn(1−k 3−k 2) ≤ Avn(1−k 2−k 3),

with strict inequality iff n ≥ 3(k + 1) + 1.
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