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What is a Baxter Permutation?

Definition
A Baxter permutation is a permutation that avoids the vincular
patterns 3-14-2 and 2-41-3. This is to say that there are no
instances of the patterns 3142 or 2413 where the letters
representing 1 and 4 are adjacent in the original word.

Example
41352 is a Baxter permutation.
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What is a sub-Baxter Permutation?

Definition
A sub-Baxter permutation is a permutation that avoids the
vincular patterns 2-14-3 and 3-41-2. For every Baxter
permutation of length n + 1, there is a unique sub-Baxter
permutation that it is compatible with.

(I’m not married to the name sub-Baxter, open to suggestions)
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Symmetries

Both Baxter permutations and sub-Baxter permutations are
closed under the following operations:

Reversing the word / flipping the permutation matrix
horizontally / left multiplication by w0

Reversing the labels / flipping the permutation matrix
vertically / right multiplication by w0.
Taking the inverse of a permutation / flipping the
permutation matrix across its diagonal.
Combining one of the first two with the third leads to a
quarter-turn of the permutation matrix.
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One can show this by looking at the avoided patterns, but
adjacency makes the third point tricky.

Easier to look at Aztec Diamond/floorplan tilings.
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The General Program

Often times, looking at objects fixed under an action leads
to interesting combinatorics.

First two actions are fixed-point free (n > 1).
But actions w 7→ w−1, w 7→ w0ww0, w 7→ w0w−1 have
non-trivial set of fixed points.

Goal
Look at what happens when you consider how many
permutations/Baxter permutations/sub-Baxter permutations are
fixed under the actions w 7→ w (enumeration), w 7→ w−1,
w 7→ w0ww0, w 7→ w0w−1.
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Making the question more interesting

One can analyze how the permutations are distributed with
respect to a statistic, for example, descents.

Definition
The Eulerian polynomials are given by

An(x) =
∑

w∈Sn

xdes(w)

An(x) =
∑

i

γi t i(1 + t)n−1−2i , γi ≥ 0
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Bivariate version

Definition
The bivariate Eulerian polynomial is given by

An(x , y) =
∑

w∈Sn

xdes(w)y ides(w)

Nice functional expression due to Garsia/Gessel.

Conjecture

An(x , y) =
∑
γi,j(xy)i(x + y)j(1 + xy)n−1−2i−j

with γi,j ≥ 0
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Number of Baxter Permutations

Theorem (Chung, Graham, Hoggatt, Kleiman)

The number of Baxter permutations of length n is

B(n) :=
n−1∑
k=0

(n+1
k

)(n+1
k+1

)(n+1
k+2

)(n+1
1

)(n+1
2

)
For n = 1,2,3 . . ., B(n) = 1,2,6,22,92,422,2074,10754 . . ..

Theorem (Mallows)
The number of Baxter permutations with k ascents is given by
the k th summand.
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Baxter Eulerian Polynomial

Definition

B(n, x) =
∑

Bax(n)

xdes(w) =
n−1∑
k=0

(n+1
k

)(n+1
k+1

)(n+1
k+2

)(n+1
2

)(n+1
1

) xk

Theorem

B(n, x) =

bn/2c∑
k=0

(n + 3)i(1− n)2i

(1)i(2)i(3)i
x i(1 + x)n−1−2i

Combinatorial intepretation for γi?
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Bivariate Eulerian Analog

Definition

B(n, x , y) =
∑

Bax(n)

xdes(w)y ides(w)

Theorem (D.)

If w is a Baxter permutation, then des(w) = ides(w).

Corollary

B(n, x , y) =

bn/2c∑
k=0

(n + 3)i(1− n)2i

(1)i(2)i(3)i
(xy)i(1 + xy)n−1−2i
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Baxter Objects

Numerous combinatorial objects are known to be in bijection
with Baxter permutations.

Equivalence classes of floorplan tilings
Pairs of binary trees with a compatibility condition
Plane partitions in a k × (n − k − 1)× 3 box
Triples of non-intersecting lattice paths
Plane bipolar orientations
2-orientations on quadrangulations
Twisted Baxter permutations (Av(2-41-3,3-41-2))
Standard 3× n Young tableaux with no consecutive entries
in any row
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Twin Trees

Definition
Call a pair of complete binary trees twin trees if their pattern of
left and right leaves (read from left to right, excluding the
left-most left leaf and right-most right leaf) are complementary.

0 1 0 1
,

1

0 1 0
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Truncated Twin Trees

Given a complete binary tree, one can truncate it by removing
all of the leaves. This process is clearly invertible.

Definition
Call a pair of twin trees with all of their leaves truncated a pair
truncated twin trees

Theorem (Dulucq and Guibert)
There is a bijection between Baxter permutations and pairs of
truncated twin trees

The map is given by taking the increasing and decreasing trees
of the permutation, and then forgetting their labels.
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Example

43512
l

( 1

3

4 5

2
,

5

4

3

2

1

)

↓

(
1 0 1

0
,

0 1 0 1

)

35142
l

( 1

3

5

2

4
,

5

3 4

1 2

)

↓

(
0 1 0 1

,
1

0 1 0

)
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sub-Baxter Permutations

Theorem (Asinowski, Barequet, Bousquet-Melou, Mansour,
Pinter)
The number of sub-Baxter permutations is

b n+1
2 c∑

i=0

(−1)i
(

n + 1− i
i

)
B(n + 1− i)

Grading by descents doesn’t give anything obviously nice
Computationally, sub-Baxter (multivariate) Eulerian
polynomials appear γ-positive.
Is descent the right statistic?
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Inverse

Quarter rotation

Conjugation by the longest element is half rotation of
permutation matrix

2kk ! permutations fixed by action (k = bn
2c).

If i is in position j , then n + 1− i is in position n + 1− j

Example
53827164

Naturally in bijection with signed permutations.
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Half Rotation for Baxter Objects

Theorem (D.)
The standard bijections between the previously listed Baxter
objects is equivariant with respect to each object’s natural
rotation action.

Simple Version
Map+Spin=Spin+Map

Upshot
Only need to find one Baxter object where it’s easy to count the
rotationally invariant ones.
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What are the rotations?

Still conjugation by w0 for Twisted Baxter.
Rotation of floorplans/diagonal rectangulations/lattice
paths
Evacuation on tableaux
Reflect and swap trees.
Complementation of plane partition in the box.
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Chart of Examples

Baxter Baxter Baxter Diagonal Baxter Plane
Perms Paths Tableaux Rects Partitions

2341
l

4123
l

1 4 6 9
2 5 8 11
3 7 1012
l

1 3 6 10
2 5 8 11
4 7 9 12

l
2 2
l

1 1
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Chart of Examples
Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane

Permutations Permutations Paths Tableaux Rectangulations Partitions

1243
l

2134

1243
l

2134
l

1 3 6 9
2 5 7 11
4 8 1012
l

1 3 5 9
2 6 8 11
4 7 1012

l
3 3
l

0 0

1342
l

3124

1342
l

3124
l

1 3 6 9
2 4 8 11
5 7 1012
l

1 3 6 8
2 5 9 11
4 7 1012

l
3 2
l

1 0

l l l l l l

1423
l

2314

1423
l

2314
l

1 3 5 7
2 6 9 11
4 8 1012
l

1 3 5 9
2 4 7 11
6 8 1012

l
3 1
l

2 0

2341
l

4123

2341
l

4123
l

1 4 6 9
2 5 8 11
3 7 1012
l

1 3 6 10
2 5 8 11
4 7 9 12

l
2 2
l

1 1

1324
	

1324
	

	

1 3 5 7
2 4 9 11
6 8 1012

	 	

3 0
	

3412
	

3142
	

	

1 3 7 9
2 5 8 11
4 6 1012

	 	

2 1
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q-analog

For
[
n
i

]
q

=
[n]!q

[k ]!q [n−k ]!q , [m]!q = [m]q[m − 1]q . . . [1]q, and

[j]q = 1 + q + . . .+ qj−1, we have

∑
π

q|π| =

[
n + 1

k

]
q

[
n + 1
k + 1

]
q

[
n + 1
k + 2

]
q[

n + 1
1

]
q

[
n + 1

2

]
q

:= Θk ,n−k−1(q)

where π runs over all plane partitions in the k × (n − k − 1)× 3
box.
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q=-1 Phenomenon

Theorem (Stembridge)

The number of self complementary plane partitions in an
a× b × c box is equal to

∑
π q|π||[q=−1], where π runs over all

plane partitions in an a× b × c box.

Corollary
The number of self complementary Baxter plane partitions in a
k × n − k − 1× 3 box is equal to Θk ,n−k−1(−1).
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q=-1 Phenomenon

Theorem (D.)
The number of Baxter objects with parameter k fixed under their

natural involution is given by

n + 1
k


q

n + 1
k + 1


q

n + 1
k + 2


qn + 1

1


q

n + 1
2


q

|[q=−1]
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n=4, k=1

Θk ,n−k−1(q) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

lim
q→1

Θk ,n−k−1(q) = 10

lim
q→−1

Θk ,n−k−1(q) = 2
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Half Rotation on sub-Baxter Permutations

Nothing obvious.

Possibly q = −1 phenomenon, but what is q?
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Self Involutive Permutations

Theorem (Robinson, Schensted)
There is a bijection between permutations of length n and pairs
of standard Young tableaux of the same shape (and size n).

Fact

If w 7→ (P,Q), then w−1 7→ (Q,P)

There’s a geometric version of RS due to Viennot that makes
this fact obvious.
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Self Involutive Permutations

Theorem
The number of self-involutive permutations is∑

λ`n

f λ,

where f λ is the number of standard Young tableaux of shape λ.

Other Interesting Fact

Number of fixed points of w is number of odd columns in sh(P).
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Self Involutive Baxter permutations

Unlike conjugation by w0, inverse action not carried to all
Baxter objects.
Only have univariate formulas for fixed-point free
self-involutive, and multivariate formulas.
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Self Involutive Baxter permutations

Theorem (Bousquet-Melou)
The number of involutive fixed-point free Baxter permutations of
length 2n is

3 · 2n−1

(n + 1)(n + 2)

(
2n
n

)

Combinatorial proof of this fact, and multivariate formula
given by Fusy by looking at plane bipolar orientations.
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Theorem (Fusy)
The number an,k ,p,r of self-involutive Baxter permutations with
2n non-fixed points, 2k descents not crossing the diagonal, p
fixed points, and r descents crossing the diagonal is

(p+r
r

)(n+p−1
k

)2(n
t

)
nq2(q + 1)(k + 1)(t + 1)

∣∣∣∣∣∣
q(q + 1) q(q − 1) s(s − 1)
k(q + 1) (k + 1)q s(t + 1)
k(k − 1) k(k + 1) t(t + 1)

∣∣∣∣∣∣
for q := n + p − k, s := n − k − r , t := k + r .
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Self Involutive sub-Baxter Permutations

OEIS match!

Grand Dyck paths of length 2n are words with exactly n 0’s
and n 1’s.
Self involutive sub-Baxter permutations appear to be in
bijection with Grand Dyck paths that avoid the consecutive
sequences 101 and 010 (zig-zag avoiding).
Fixed point free self-involutive sub-Baxter permutations of
length 2n appear to be equinumerous with sub-Baxter
permutations of length n − 1.
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Quarter Rotation on Permutations

Decomposes into 4-cycles of the form (i j n+1-i n+1-j),
possibly with central fixed point.
Must have n = 4k + 1 or n = 4k (same number of each).

Counted by (2k)!
k! ,quadruple factorial numbers.

Other objects counted by this, unsure if there is a bijection.
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Quarter Rotation on Baxter Permutations

Again, action doesn’t pass to all Baxter objects
Can only happen if n = 4k + 1.

“Theorem”
The number of Baxter permutations of length n = 4m + 1 fixed
under order 4 rotation is 2mCm, where Cm is the mth Catalan
number.

Proof.
Generating trees
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Quarter Rotation on sub-Baxter Permutations

Can be fixed if n = 4k or 4k + 1

Same number for each.
OEIS match!
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Consider all trees with positive integer weights on the
nodes so that the weight of a parent is the sum of the
weight of their children.

The weight of a tree is the weight of its root.
It appears that sub-Baxter permutations of length n = 4k
or 4k + 1 fixed under order 4 rotation are equinumerous
with trees of weight k .
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Thanks for sticking around!
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