Additional Structure on Baxter Permutations

Kevin Dilks

University of Minnesota

July 5, 2013

Kevin Dilks Additional Structure on Baxter Permutations

Inverse

3 Conjugation by Longest Element

4 Inverse

What is a Baxter Permutation?

Definition

A *Baxter permutation* is a permutation that avoids the vincular patterns 3-14-2 and 2-41-3. This is to say that there are no instances of the patterns 3142 or 2413 where the letters representing 1 and 4 are adjacent in the original word.

What is a Baxter Permutation?

Definition

A *Baxter permutation* is a permutation that avoids the vincular patterns 3-14-2 and 2-41-3. This is to say that there are no instances of the patterns 3142 or 2413 where the letters representing 1 and 4 are adjacent in the original word.

Example

41352 is a Baxter permutation.

What is a Baxter Permutation?

Definition

A *Baxter permutation* is a permutation that avoids the vincular patterns 3-14-2 and 2-41-3. This is to say that there are no instances of the patterns 3142 or 2413 where the letters representing 1 and 4 are adjacent in the original word.

Example

41352 is a Baxter permutation.

What is a sub-Baxter Permutation?

Definition

A *sub-Baxter permutation* is a permutation that avoids the vincular patterns 2-14-3 and 3-41-2. For every Baxter permutation of length n + 1, there is a unique sub-Baxter permutation that it is compatible with.

What is a sub-Baxter Permutation?

Definition

A *sub-Baxter permutation* is a permutation that avoids the vincular patterns 2-14-3 and 3-41-2. For every Baxter permutation of length n + 1, there is a unique sub-Baxter permutation that it is compatible with.

(I'm not married to the name sub-Baxter, open to suggestions)

Both Baxter permutations and sub-Baxter permutations are closed under the following operations:

 Reversing the word / flipping the permutation matrix horizontally / left multiplication by w₀

- Reversing the word / flipping the permutation matrix horizontally / left multiplication by w₀
- Reversing the labels / flipping the permutation matrix vertically / right multiplication by w₀.

- Reversing the word / flipping the permutation matrix horizontally / left multiplication by w₀
- Reversing the labels / flipping the permutation matrix vertically / right multiplication by w₀.
- Taking the inverse of a permutation / flipping the permutation matrix across its diagonal.

- Reversing the word / flipping the permutation matrix horizontally / left multiplication by w₀
- Reversing the labels / flipping the permutation matrix vertically / right multiplication by w₀.
- Taking the inverse of a permutation / flipping the permutation matrix across its diagonal.
- Combining one of the first two with the third leads to a quarter-turn of the permutation matrix.

 One can show this by looking at the avoided patterns, but adjacency makes the third point tricky.

- One can show this by looking at the avoided patterns, but adjacency makes the third point tricky.
- Easier to look at Aztec Diamond/floorplan tilings.

The General Program

 Often times, looking at objects fixed under an action leads to interesting combinatorics.

The General Program

- Often times, looking at objects fixed under an action leads to interesting combinatorics.
- First two actions are fixed-point free (n > 1).

The General Program

- Often times, looking at objects fixed under an action leads to interesting combinatorics.
- First two actions are fixed-point free (n > 1).
- But actions w → w⁻¹, w → w₀ww₀, w → w₀w⁻¹ have non-trivial set of fixed points.

The General Program

- Often times, looking at objects fixed under an action leads to interesting combinatorics.
- First two actions are fixed-point free (n > 1).
- But actions w → w⁻¹, w → w₀ww₀, w → w₀w⁻¹ have non-trivial set of fixed points.

Goal

Look at what happens when you consider how many permutations/Baxter permutations/sub-Baxter permutations are fixed under the actions $w \mapsto w$ (enumeration), $w \mapsto w^{-1}$, $w \mapsto w_0 w w_0$, $w \mapsto w_0 w^{-1}$.

3 Conjugation by Longest Element

4 Inverse

How Many Permutations Are There of Length n?

How Many Permutations Are There of Length n?

n!

Kevin Dilks Additional Structure on Baxter Permutations

Making the question more interesting

One can analyze how the permutations are distributed with respect to a statistic, for example, descents.

Making the question more interesting

One can analyze how the permutations are distributed with respect to a statistic, for example, descents.

Definition

The Eulerian polynomials are given by

$$A_n(x) = \sum_{w \in S_n} x^{des(w)}$$

Making the question more interesting

One can analyze how the permutations are distributed with respect to a statistic, for example, descents.

Definition

The Eulerian polynomials are given by

$$A_n(x) = \sum_{w \in S_n} x^{des(w)}$$

$$A_n(x) = \sum_i \gamma_i t^i (1+t)^{n-1-2i}, \gamma_i \ge 0$$

Making the question more interesting

One can analyze how the permutations are distributed with respect to a statistic, for example, descents.

Definition

The Eulerian polynomials are given by

$$A_n(x) = \sum_{w \in S_n} x^{des(w)}$$

$$A_n(x) = \sum_i \gamma_i t^i (1+t)^{n-1-2i}, \gamma_i \ge 0$$

Bivariate version

Bivariate version

Definition

The bivariate Eulerian polynomial is given by

$$A_n(x,y) = \sum_{w \in S_n} x^{des(w)} y^{ides(w)}$$

Bivariate version

Definition

The bivariate Eulerian polynomial is given by

$$A_n(x,y) = \sum_{w \in S_n} x^{des(w)} y^{ides(w)}$$

Nice functional expression due to Garsia/Gessel.

Bivariate version

Definition

The bivariate Eulerian polynomial is given by

$${\sf A}_n(x,y) = \sum_{w\in S_n} x^{{\sf des}(w)} y^{{\sf ides}(w)}$$

Nice functional expression due to Garsia/Gessel.

Conjecture

$$\begin{array}{l} \mathcal{A}_n(x,y) = \sum \gamma_{i,j}(xy)^i (x+y)^j (1+xy)^{n-1-2i-j} \\ \text{with } \gamma_{i,j} \geq 0 \end{array}$$

Number of Baxter Permutations

Number of Baxter Permutations

Theorem (Chung, Graham, Hoggatt, Kleiman)

The number of Baxter permutations of length n is

$$B(n) := \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{1} \binom{n+1}{2}}$$

Number of Baxter Permutations

Theorem (Chung, Graham, Hoggatt, Kleiman)

The number of Baxter permutations of length n is

$$B(n) := \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{1} \binom{n+1}{2}}$$

For n = 1, 2, 3..., B(n) = 1, 2, 6, 22, 92, 422, 2074, 10754...

Number of Baxter Permutations

Theorem (Chung, Graham, Hoggatt, Kleiman)

The number of Baxter permutations of length n is

$$B(n) := \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{1} \binom{n+1}{2}}$$

For n = 1, 2, 3..., B(n) = 1, 2, 6, 22, 92, 422, 2074, 10754...

Theorem (Mallows)

The number of Baxter permutations with k ascents is given by the k^{th} summand.

Baxter Eulerian Polynomial

Baxter Eulerian Polynomial

Definition

$$B(n,x) = \sum_{Bax(n)} x^{des(w)} = \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{2} \binom{n+1}{1}} x^k$$
Baxter Eulerian Polynomial

Definition

$$B(n,x) = \sum_{Bax(n)} x^{des(w)} = \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{2} \binom{n+1}{1}} x^{k}$$

Theorem

$$B(n,x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(n+3)_i(1-n)_{2i}}{(1)_i(2)_i(3)_i} x^i (1+x)^{n-1-2i}$$

Baxter Eulerian Polynomial

Definition

$$B(n,x) = \sum_{Bax(n)} x^{des(w)} = \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{2} \binom{n+1}{1}} x^{k}$$

Theorem

$$B(n,x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(n+3)_i(1-n)_{2i}}{(1)_i(2)_i(3)_i} x^i (1+x)^{n-1-2i}$$

Combinatorial intepretation for γ_i ?

Bivariate Eulerian Analog

Definition

$$B(n, x, y) = \sum_{Bax(n)} x^{des(w)} y^{ides(w)}$$

Bivariate Eulerian Analog

Definition

$$B(n, x, y) = \sum_{Bax(n)} x^{des(w)} y^{ides(w)}$$

Theorem (D.)

If w is a Baxter permutation, then des(w) = ides(w).

Bivariate Eulerian Analog

Definition

$$B(n, x, y) = \sum_{Bax(n)} x^{des(w)} y^{ides(w)}$$

Theorem (D.)

If w is a Baxter permutation, then des(w) = ides(w).

Corollary

$$B(n, x, y) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(n+3)_i(1-n)_{2i}}{(1)_i(2)_i(3)_i} (xy)^i (1+xy)^{n-1-2i}$$

Baxter Objects

Baxter Objects

Numerous combinatorial objects are known to be in bijection with Baxter permutations.

Equivalence classes of floorplan tilings

Baxter Objects

- Equivalence classes of floorplan tilings
- Pairs of binary trees with a compatibility condition

Baxter Objects

- Equivalence classes of floorplan tilings
- Pairs of binary trees with a compatibility condition
- Plane partitions in a $k \times (n k 1) \times 3$ box

Baxter Objects

- Equivalence classes of floorplan tilings
- Pairs of binary trees with a compatibility condition
- Plane partitions in a $k \times (n k 1) \times 3$ box
- Triples of non-intersecting lattice paths

Baxter Objects

- Equivalence classes of floorplan tilings
- Pairs of binary trees with a compatibility condition
- Plane partitions in a $k \times (n k 1) \times 3$ box
- Triples of non-intersecting lattice paths
- Plane bipolar orientations

Baxter Objects

- Equivalence classes of floorplan tilings
- Pairs of binary trees with a compatibility condition
- Plane partitions in a $k \times (n k 1) \times 3$ box
- Triples of non-intersecting lattice paths
- Plane bipolar orientations
- 2-orientations on quadrangulations

Baxter Objects

- Equivalence classes of floorplan tilings
- Pairs of binary trees with a compatibility condition
- Plane partitions in a $k \times (n k 1) \times 3$ box
- Triples of non-intersecting lattice paths
- Plane bipolar orientations
- 2-orientations on quadrangulations
- Twisted Baxter permutations (Av(2-41-3,3-41-2))

Baxter Objects

- Equivalence classes of floorplan tilings
- Pairs of binary trees with a compatibility condition
- Plane partitions in a $k \times (n k 1) \times 3$ box
- Triples of non-intersecting lattice paths
- Plane bipolar orientations
- 2-orientations on quadrangulations
- Twisted Baxter permutations (Av(2-41-3,3-41-2))
- Standard 3 × *n* Young tableaux with no consecutive entries in any row

Definition

Call a pair of complete binary trees *twin trees* if their pattern of left and right leaves (read from left to right, excluding the left-most left leaf and right-most right leaf) are complementary.

Definition

Call a pair of complete binary trees *twin trees* if their pattern of left and right leaves (read from left to right, excluding the left-most left leaf and right-most right leaf) are complementary.

Truncated Twin Trees

Given a complete binary tree, one can truncate it by removing all of the leaves. This process is clearly invertible.

Truncated Twin Trees

Given a complete binary tree, one can truncate it by removing all of the leaves. This process is clearly invertible.

Definition

Call a pair of twin trees with all of their leaves truncated a pair *truncated twin trees*

Truncated Twin Trees

Given a complete binary tree, one can truncate it by removing all of the leaves. This process is clearly invertible.

Definition

Call a pair of twin trees with all of their leaves truncated a pair *truncated twin trees*

Theorem (Dulucq and Guibert)

There is a bijection between Baxter permutations and pairs of truncated twin trees

The map is given by taking the increasing and decreasing trees of the permutation, and then forgetting their labels.

Map From Baxter to Diagonal Rectangulations

sub-Baxter Permutations

Theorem (Asinowski, Barequet, Bousquet-Melou, Mansour, Pinter)

The number of sub-Baxter permutations is

$$\sum_{i=0}^{\lfloor \frac{n+1}{2} \rfloor} (-1)^{i} \binom{n+1-i}{i} B(n+1-i)$$

sub-Baxter Permutations

Theorem (Asinowski, Barequet, Bousquet-Melou, Mansour, Pinter)

The number of sub-Baxter permutations is

$$\sum_{i=0}^{\lfloor \frac{n+1}{2} \rfloor} (-1)^{i} \binom{n+1-i}{i} B(n+1-i)$$

Grading by descents doesn't give anything obviously nice

sub-Baxter Permutations

Theorem (Asinowski, Barequet, Bousquet-Melou, Mansour, Pinter)

The number of sub-Baxter permutations is

$$\sum_{i=0}^{\lfloor \frac{n+1}{2} \rfloor} (-1)^{i} \binom{n+1-i}{i} B(n+1-i)$$

- Grading by descents doesn't give anything obviously nice
- Computationally, sub-Baxter (multivariate) Eulerian polynomials appear γ-positive.

sub-Baxter Permutations

Theorem (Asinowski, Barequet, Bousquet-Melou, Mansour, Pinter)

The number of sub-Baxter permutations is

$$\sum_{i=0}^{\lfloor \frac{n+1}{2} \rfloor} (-1)^{i} \binom{n+1-i}{i} B(n+1-i)$$

- Grading by descents doesn't give anything obviously nice
- Computationally, sub-Baxter (multivariate) Eulerian polynomials appear γ-positive.
- Is descent the right statistic?

4 Inverse

 Conjugation by the longest element is half rotation of permutation matrix

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.
- If *i* is in position *j*, then n + 1 i is in position n + 1 j

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.
- If *i* is in position *j*, then n + 1 i is in position n + 1 j

53827164

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.
- If *i* is in position *j*, then n + 1 i is in position n + 1 j

53827164

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.
- If *i* is in position *j*, then n + 1 i is in position n + 1 j

5382716**4**

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.
- If *i* is in position *j*, then n + 1 i is in position n + 1 j

5**3**8271**6**4

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.
- If *i* is in position *j*, then n + 1 i is in position n + 1 j

53**8**27**1**64

- Conjugation by the longest element is half rotation of permutation matrix
- $2^k k!$ permutations fixed by action $(k = \lfloor \frac{n}{2} \rfloor)$.
- If *i* is in position *j*, then n + 1 i is in position n + 1 j

538**27**164

Half Rotation for Baxter Objects
Half Rotation for Baxter Objects

Theorem (D.)

The standard bijections between the previously listed Baxter objects is equivariant with respect to each object's natural rotation action.

Half Rotation for Baxter Objects

Theorem (D.)

The standard bijections between the previously listed Baxter objects is equivariant with respect to each object's natural rotation action.

Simple Version

Map+Spin=Spin+Map

Half Rotation for Baxter Objects

Theorem (D.)

The standard bijections between the previously listed Baxter objects is equivariant with respect to each object's natural rotation action.

Simple Version

Map+Spin=Spin+Map

Upshot

Only need to find one Baxter object where it's easy to count the rotationally invariant ones.

What are the rotations?

Kevin Dilks Additional Structure on Baxter Permutations

What are the rotations?

• Still conjugation by w_0 for Twisted Baxter.

- Still conjugation by w_0 for Twisted Baxter.
- Rotation of floorplans/diagonal rectangulations/lattice paths

- Still conjugation by *w*₀ for Twisted Baxter.
- Rotation of floorplans/diagonal rectangulations/lattice paths
- Evacuation on tableaux

- Still conjugation by w_0 for Twisted Baxter.
- Rotation of floorplans/diagonal rectangulations/lattice paths
- Evacuation on tableaux
- Reflect and swap trees.

- Still conjugation by w_0 for Twisted Baxter.
- Rotation of floorplans/diagonal rectangulations/lattice paths
- Evacuation on tableaux
- Reflect and swap trees.
- Complementation of plane partition in the box.

Chart of Examples

Chart of Examples

Baxter	Twisted Baxter	Baxter	Baxter	Diagonal	Baxter Plane
Permutations	Permutations	Paths	Tableaux	Rectangulations	Partitions
1243 ↓ 2134	1243 ↓ 2134	÷	1 3 6 9 2 5 7 11 4 8 1012 ↓ 1 3 5 9 2 6 8 11 4 7 1012		3 3 ↓ 0 0
1342 ↓ 3124	1342 ↓ 3124		1 3 6 9 2 4 8 11 5 7 1012 ↓ 1 3 6 8 2 5 9 11 4 7 1012	t ₹ ₹	3 2 ↓ 1 0
↓ 1423 ↓ 2314	↓ 1423 ↓ 2314		↓ 1357 26911 481012 ↓ 1359 24711 681012		↓ 3 1 ↓ 2 0
2341 ↓ 4123	2341 ↓ 4123		1 4 6 9 2 5 8 11 3 7 1012 ↓ 1 3 6 10 2 5 8 11 4 7 9 12	ÌŢŢ ŢŢ	2 2 ↓ 1 1
1324 ්	1324 ්	°	1357 24911 681012	E.	30 ்
3412 ්	3142 ්		1379 25811 461012	°	2 1 ර

Kevin Dilks Addition

q-analog

For
$$\begin{bmatrix} n \\ i \end{bmatrix}_{q} = \frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}}$$
, $[m]!_{q} = [m]_{q}[m-1]_{q} \dots [1]_{q}$, and
 $[J]_{q} = 1 + q + \dots + q^{j-1}$, we have

$$\sum_{\pi} q^{|\pi|} = \frac{\begin{bmatrix} n+1 \\ k \end{bmatrix}_{q} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix}_{q} \begin{bmatrix} n+1 \\ k+2 \end{bmatrix}_{q}}{\begin{bmatrix} n+1 \\ 1 \end{bmatrix}_{q} \begin{bmatrix} n+1 \\ 2 \end{bmatrix}_{q}} := \Theta_{k,n-k-1}(q)$$

where π runs over all plane partitions in the $k \times (n - k - 1) \times 3$ box.

q=-1 Phenomenon

Theorem (Stembridge)

The number of self complementary plane partitions in an $a \times b \times c$ box is equal to $\sum_{\pi} q^{|\pi|}|_{[q=-1]}$, where π runs over all plane partitions in an $a \times b \times c$ box.

q=-1 Phenomenon

Theorem (Stembridge)

The number of self complementary plane partitions in an $a \times b \times c$ box is equal to $\sum_{\pi} q^{|\pi|}|_{[q=-1]}$, where π runs over all plane partitions in an $a \times b \times c$ box.

Corollary

The number of self complementary Baxter plane partitions in a $k \times n - k - 1 \times 3$ box is equal to $\Theta_{k,n-k-1}(-1)$.

q=-1 Phenomenon

Theorem (D.)

The number of Baxter objects with parameter k fixed under their natural involution is given by $\frac{\binom{n+1}{k}_{q}\binom{n+1}{k+1}_{q}\binom{n+1}{k+2}_{q}}{\binom{n+1}{1}_{q}\binom{n+1}{2}_{q}}_{q}|_{[q=-1]}$

$$\Theta_{k,n-k-1}(q) = 1 + q + 2q^2 + 2q^3 + 2q^4 + q^5 + q^6$$

$$\lim_{q\to 1} \Theta_{k,n-k-1}(q) = 10$$

$$\lim_{q\to -1} \Theta_{k,n-k-1}(q) = 2$$

Half Rotation on sub-Baxter Permutations

Nothing obvious.

Kevin Dilks Additional Structure on Baxter Permutations

Half Rotation on sub-Baxter Permutations

- Nothing obvious.
- Possibly q = -1 phenomenon, but what is q?

Conjugation by Longest Element

Inverse

Quarter rotation

Self Involutive Permutations

Quarter rotation

Self Involutive Permutations

Theorem (Robinson, Schensted)

There is a bijection between permutations of length n and pairs of standard Young tableaux of the same shape (and size n).

Quarter rotation

Self Involutive Permutations

Theorem (Robinson, Schensted)

There is a bijection between permutations of length n and pairs of standard Young tableaux of the same shape (and size n).

Fact

If $w \mapsto (P, Q)$, then $w^{-1} \mapsto (Q, P)$

Quarter rotation

Self Involutive Permutations

Theorem (Robinson, Schensted)

There is a bijection between permutations of length n and pairs of standard Young tableaux of the same shape (and size n).

Fact

If
$$w \mapsto (P, Q)$$
, then $w^{-1} \mapsto (Q, P)$

There's a geometric version of RS due to Viennot that makes this fact obvious.

Quarter rotation

Self Involutive Permutations

Theorem

The number of self-involutive permutations is

$$\sum_{\lambda\vdash n} f^{\lambda},$$

where f^{λ} is the number of standard Young tableaux of shape λ .

Quarter rotation

Self Involutive Permutations

Theorem

The number of self-involutive permutations is

$$\sum_{\lambda\vdash n} f^{\lambda},$$

where f^{λ} is the number of standard Young tableaux of shape λ .

Other Interesting Fact

Number of fixed points of w is number of odd columns in sh(P).

Quarter rotation

Self Involutive Baxter permutations

Self Involutive Baxter permutations

 Unlike conjugation by w₀, inverse action not carried to all Baxter objects.

Self Involutive Baxter permutations

- Unlike conjugation by w₀, inverse action not carried to all Baxter objects.
- Only have univariate formulas for fixed-point free self-involutive, and multivariate formulas.

Self Involutive Baxter permutations

Theorem (Bousquet-Melou)

The number of involutive fixed-point free Baxter permutations of length 2n is

$$\frac{3\cdot 2^{n-1}}{(n+1)(n+2)}\binom{2n}{n}$$

Self Involutive Baxter permutations

Theorem (Bousquet-Melou)

The number of involutive fixed-point free Baxter permutations of length 2n is

$$\frac{3\cdot 2^{n-1}}{(n+1)(n+2)}\binom{2n}{n}$$

• Combinatorial proof of this fact, and multivariate formula given by Fusy by looking at plane bipolar orientations.

Theorem (Fusy)

The number $a_{n,k,p,r}$ of self-involutive Baxter permutations with 2n non-fixed points, 2k descents not crossing the diagonal, p fixed points, and r descents crossing the diagonal is

$$\frac{\binom{p+r}{r}\binom{n+p-1}{k}^{2}\binom{n}{t}}{nq^{2}(q+1)(k+1)(t+1)} \begin{vmatrix} q(q+1) & q(q-1) & s(s-1) \\ k(q+1) & (k+1)q & s(t+1) \\ k(k-1) & k(k+1) & t(t+1) \end{vmatrix}$$

for q := n + p - k, s := n - k - r, t := k + r.

Quarter rotation

Self Involutive sub-Baxter Permutations

OEIS match!

Self Involutive sub-Baxter Permutations

- OEIS match!
- Grand Dyck paths of length 2*n* are words with exactly *n* 0's and *n* 1's.

Self Involutive sub-Baxter Permutations

- OEIS match!
- Grand Dyck paths of length 2*n* are words with exactly *n* 0's and *n* 1's.
- Self involutive sub-Baxter permutations appear to be in bijection with Grand Dyck paths that avoid the consecutive sequences 101 and 010 (zig-zag avoiding).

Self Involutive sub-Baxter Permutations

- OEIS match!
- Grand Dyck paths of length 2n are words with exactly n 0's and n 1's.
- Self involutive sub-Baxter permutations appear to be in bijection with Grand Dyck paths that avoid the consecutive sequences 101 and 010 (zig-zag avoiding).
- Fixed point free self-involutive sub-Baxter permutations of length 2n appear to be equinumerous with sub-Baxter permutations of length n 1.

3 Conjugation by Longest Element

4 Inverse

Quarter Rotation on Permutations

 Decomposes into 4-cycles of the form (i j n+1-i n+1-j), possibly with central fixed point.

- Decomposes into 4-cycles of the form (i j n+1-i n+1-j), possibly with central fixed point.
- Must have n = 4k + 1 or n = 4k (same number of each).

- Decomposes into 4-cycles of the form (i j n+1-i n+1-j), possibly with central fixed point.
- Must have n = 4k + 1 or n = 4k (same number of each).
- Counted by $\frac{(2k)!}{k!}$, quadruple factorial numbers.

- Decomposes into 4-cycles of the form (i j n+1-i n+1-j), possibly with central fixed point.
- Must have n = 4k + 1 or n = 4k (same number of each).
- Counted by $\frac{(2k)!}{k!}$, quadruple factorial numbers.
- Other objects counted by this, unsure if there is a bijection.

Quarter Rotation on Baxter Permutations

Again, action doesn't pass to all Baxter objects

- Again, action doesn't pass to all Baxter objects
- Can only happen if n = 4k + 1.

Quarter Rotation on Baxter Permutations

- Again, action doesn't pass to all Baxter objects
- Can only happen if n = 4k + 1.

"Theorem"

The number of Baxter permutations of length n = 4m + 1 fixed under order 4 rotation is $2^m C_m$, where C_m is the m^{th} Catalan number.

Quarter Rotation on Baxter Permutations

- Again, action doesn't pass to all Baxter objects
- Can only happen if n = 4k + 1.

"Theorem"

The number of Baxter permutations of length n = 4m + 1 fixed under order 4 rotation is $2^m C_m$, where C_m is the m^{th} Catalan number.

Proof.

Generating trees

Quarter Rotation on sub-Baxter Permutations

• Can be fixed if n = 4k or 4k + 1

Kevin Dilks Additional Structure on Baxter Permutations

- Can be fixed if n = 4k or 4k + 1
- Same number for each.

- Can be fixed if n = 4k or 4k + 1
- Same number for each.
- OEIS match!

Quarter Rotation on sub-Baxter Permutations

 Consider all trees with positive integer weights on the nodes so that the weight of a parent is the sum of the weight of their children.

- Consider all trees with positive integer weights on the nodes so that the weight of a parent is the sum of the weight of their children.
- The weight of a tree is the weight of its root.

- Consider all trees with positive integer weights on the nodes so that the weight of a parent is the sum of the weight of their children.
- The weight of a tree is the weight of its root.
- It appears that sub-Baxter permutations of length n = 4k or 4k + 1 fixed under order 4 rotation are equinumerous with trees of weight k.

Thanks for sticking around!