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The “even part” of Baxter permutations



A Baxter permutation is a
(2− 41− 3, 3− 14− 2)-avoiding permutation.

That is: the diagram of π contains no quadruple of
points such that their relative position is

or

where the blue points are in adjacent columns of π.



A Baxter permutation is a
(2− 41− 3, 3− 14− 2)-avoiding permutation.

3 7 8 4 1 2 5 6
is a Baxter perm.



A Baxter permutation is a
(2− 41− 3, 3− 14− 2)-avoiding permutation.

3 7 8 1 4 2 5 6
is NOT a Baxter perm.



The original definition (Baxter and Joichi, 63):

Let f, g : [0, 1]→ [0, 1] two continuous functions
that commute under composition: h := g ◦ f = f ◦ g.
Let S be the set of fixed points of h.
Then the actions of f and of g on S are permutations of S
(inverses of each other).
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Let x ∈ S. (That is: h(x) = x.) Denote y = f(x).

h(y) = (fg(f(x)) = f(h(x)) = f(x) = y

⇒ y ∈ S
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g(y) = g(f(x)) = h(x) = x
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Let f, g : [0, 1]→ [0, 1] two continuous functions
that commute under composition: h := g ◦ f = f ◦ g.
Let S be the set of fixed points of h.
Then the actions of f and of g on S are permutations of S
(inverses of each other).

Assume, further, that S is a finite set of odd size:
S = {x1, x2, . . . , x2n+1}, where x1 < x2 < · · · < x2n+1;
and that in the odd points h(x)− x turns from + to −,
and in the even points h(x)− x turns from − to +.
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maps • to •, and ◦ to ◦.
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A complete Baxter permutation is
a permutation of [2n+ 1] that can be
obtained in this way.



Among the properties of complete Baxter permutation:

1. It is a permutation of [2n+ 1].
2. Odd numbers are mapped to odd numbers, even to even.
3. Even values are uniquely determined by odd values.



A monotone meandre interpretation (Boyce, 67)
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Complete Baxter permutation

BLACK:
Reduced Baxter perm.
(the odd part)

WHITE:
The even part



In contrast: the even (WHITE) part doesn’t
determine the odd (BLACK) part uniquely.



Reduced Baxter permutations (BLACK) are now usually
referred to as “Baxter permutations”. They can be
defined as (2− 41− 3, 3− 14− 2)-avoiding permutations.

This class is well studied, and many combinatorial
structures are known to be in bijection with (reduced)
Baxter permutations. (Felsner, Fusy, Noy, Orden.
Bijections for Baxter Families and Related Objects
(2011).)



The nth Baxter number (Bn) is the number of Baxter
permutations of site n. The generating function:

B(t) = x+ 2x2 + 6x3 + 22x4 + 92x5 + 422x6 + 2074x7 + . . .

The explicit formula for Baxter numbers
(Chung, Graham, Hoggatt, Kleiman 78; Mallows 79):
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Planar floorplans with n rectangles:



Triples of non-crossing {(1,0),(0,1)}-paths
from (0, 0) to a point on x+ y = n− 1



Plane bipolar orientations with n edges



Complete Baxter permutation

BLACK:
Reduced Baxter perm.
(the odd part)

WHITE:
The even part



Denote by E the set of permutations that can be
obtained as the even (WHITE) part of a complete
Baxter permutation; by En, such permutations of size n.



E = Av(2− 14− 3, 3− 41− 2).

Characterization by forbidden patterns:



E = Av(2− 14− 3, 3− 41− 2).

(Reduced Baxter permutations = Av(2− 41− 3, 3− 14− 2).)

Characterization by forbidden patterns:



Which Baxter pemutations have the same even part?
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Which Baxter pemutations have the same even part?



Which Baxter pemutations have the same even part?



An ascending (resp., descending) F-block is either An

(resp, Dn), or a permutation obtained from it by one or
several flips of disjoint pairs of adjacent points.

or

An and Dn are trivial F-blocks.

An Dn







improper pairs











1. Two BLACK (= reduced Baxter) permutations have the same
WHITE permutation if and only if they can obtained from each
other by replacing some F-blocks by eqivalent F-blocks.



2. The number of WHITE permutations of size n is equal
to the number of BLACK (= reduced Baxter)
permutations of size n+ 1 without improper pairs.



Enumeration.

A(t) = 1+x+2x2+6x3+22x4+88x5+374x6+1668x7+ . . .
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where B(t) is the g. f. of (reduced) Baxter permutations.
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A(t) =
1

t
B(t(1− t)),

where B(t) is the g. f. of (reduced) Baxter permutations.

an =

b(n+1)/2c∑
i=0

(−1)i
(
n+ 1− i

i

)
bn+1−i.
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without improper pairs of size n+ 1.
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to the number of BLACK (reduced Baxter) permutations
without improper pairs of size n+ 1.

2. By the inclusion-exclusion principle, this is equal to∑
i≥0

(−1)ibn+1, i,

where bn+1, i is the number of Baxter permutations of size
n+ 1 with i marked improper pairs.



1. The number of WHITE permutations of size n is equal
to the number of BLACK (reduced Baxter) permutations
without improper pairs of size n+ 1.

2. By the inclusion-exclusion principle, this is equal to∑
i≥0

(−1)ibn+1, i,

where bn+1, i is the number of Baxter permutations of size
n+ 1 with i marked improper pairs.

3. bn+1, i =
(
n+1−i

i

)
bn+1−i.



n = 3



n = 3

2 4 82 4 2

b4,0 = b4 = 22
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b4,2 =
(
2
2

)
b2 = 2



A combinatorial interpretation:
order relations between cuts in planar floorplans.
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Aztec Diamonds (Hal Canary)

Two ASMs: L: 3→ 0, 2→ −1, 4→ 1
S: 3→ 0, 2→ 1, 4→ −1.



Aztec Diamonds (Hal Canary)

Two ASMs: L: 3→ 0, 2→ −1, 4→ 1
S: 3→ 0, 2→ 1, 4→ −1.
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Aztec Diamonds (Hal Canary)

If the L-ASM is a permutation matrix, then it is the matrix of a
Baxter permutation
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Aztec Diamonds (Hal Canary)

If the L-ASM is a permutation matrix, then it is the matrix of a
Baxter permutation

... in this case, the S-AMS is the matrix of a
(2− 14− 3, 3− 41− 2) permutation. The combined matrix
is the matrix of a complete Baxter permutation.



An open question:



Triples of non-crossing monotone paths
from (0, 0) to a point on x+ y = n− 1



1234 2134

1324 1243 2143




