The Deletion-Insertion Model Applied to the Genome Rearrangement Problem (Work in Progress)

Abra Brisbin, Manda Riehl, Noah Williams

University of Wisconsin - Eau Claire

Permutation Patterns - July 5, 2013

Genome Rearrangement

- Preserved segments between mouse and human genomes.
- More than ninety percent of the mouse genome consists of shuffled pieces of the human genome [4]

[2]

Phylogenetic Trees

Motivation

Neurofibromatosis (NF)

- A common autosomal dominant disorder
- Sporadic and hereditary mutations [6]
- Deletions and insertions prevalent [1]

Motivation

Neurofibromatosis (NF)

- A common autosomal dominant disorder
- Sporadic and hereditary mutations [6]
- Deletions and insertions prevalent [1]

B - Cell Formation

Key stages in B cell development and differentiation

Motivation: B-Cell Formation

DI Genome:

DI Genome:

Deletion:

DI Genome:

Deletion:

Insertion:

DI Genome:

Deletion:

Insertion:

Deletion-Insertion:

Definition (Deletion-Insertion Distance)

 $d_{DI}(\rho, \sigma)$: The minimum number of deletion-insertions required to transform genome (permutation) ρ into genome (permutation) σ .

Definition (Deletion-Insertion Distance)

 $d_{DI}(\rho, \sigma)$: The minimum number of deletion-insertions required to transform genome (permutation) ρ into genome (permutation) σ .

Example:

Definition (Deletion-Insertion Distance)

 $d_{DI}(\rho, \sigma)$: The minimum number of deletion-insertions required to transform genome (permutation) ρ into genome (permutation) σ .

Example:

 $\begin{array}{rcl}
12345678 & \to & 87654321 \\
& & 43218765 \\
& & 18432765 \\
& & 12784365
\end{array}$

 $\begin{array}{rcl}
12345678 & \rightarrow & 87654321 \\
& & 43218765 \\
& & 18432765 \\
& & 12784365
\end{array}$

Remark

Remark

$$\bullet \ d_{DI}(\rho,\sigma) = d_{DI}(\tau \circ \rho, \tau \circ \sigma),$$

Remark

•
$$d_{DI}(\rho,\sigma) = d_{DI}(\tau \circ \rho, \tau \circ \sigma),$$

•
$$d_{DI}(\rho,\sigma) = d_{DI}(\iota,\rho^{-1}\circ\sigma),$$

Remark

•
$$d_{DI}(\rho,\sigma) = d_{DI}(\tau \circ \rho, \tau \circ \sigma),$$

$$\bullet \ d_{DI}(\rho,\sigma) = d_{DI}(\iota,\rho^{-1}\circ\sigma),$$

$$\bullet \ d_{DI}(\iota,\rho) = d_{DI}(\rho^{-1},\iota).$$

Remark

Let ρ and σ be two genomes defined on N genes, let τ be another permutation, and let $\iota=01\dots$ N be the identity genome. Then,

•
$$d_{DI}(\rho,\sigma) = d_{DI}(\tau \circ \rho, \tau \circ \sigma)$$
,

•
$$d_{DI}(\rho,\sigma) = d_{DI}(\iota,\rho^{-1}\circ\sigma),$$

•
$$d_{DI}(\iota,\rho) = d_{DI}(\rho^{-1},\iota).$$

Thus, $d_{DI}(\rho) := d_{DI}(\iota, \rho)$ is a permutation statistic.

How does DI distance compare with other permutation statistics?

We denote the number of descents in a permutation σ by $des(\sigma)$.

We denote the number of descents in a permutation σ by $des(\sigma)$.

 $lic(\sigma)$ and $ldc(\sigma)$ refer to the length of a longest increasing chain and a longest decreasing chain in σ , respectively.

We denote the number of descents in a permutation σ by $des(\sigma)$.

 $lic(\sigma)$ and $ldc(\sigma)$ refer to the length of a longest increasing chain and a longest decreasing chain in σ , respectively.

Definition (casc)

 $casc(\sigma)$ is the number of occurences of a consecutive 12 pattern in 0 σ n+1.

We denote the number of descents in a permutation σ by $des(\sigma)$.

 $lic(\sigma)$ and $ldc(\sigma)$ refer to the length of a longest increasing chain and a longest decreasing chain in σ , respectively.

Definition (casc)

 $casc(\sigma)$ is the number of occurences of a consecutive 12 pattern in 0 σ n+1.

Example:

$$\sigma = 134265$$

We denote the number of descents in a permutation σ by $des(\sigma)$.

 $lic(\sigma)$ and $ldc(\sigma)$ refer to the length of a longest increasing chain and a longest decreasing chain in σ , respectively.

Definition (casc)

 $casc(\sigma)$ is the number of occurences of a consecutive 12 pattern in 0 σ n+1.

Example:

$$\sigma = 134265$$

$$des(\sigma) = 2$$

$$lic(\sigma) = 4$$

$$ldc(\sigma) = 2$$

Notation

We denote the number of descents in a permutation σ by $des(\sigma)$.

 $lic(\sigma)$ and $ldc(\sigma)$ refer to the length of a longest increasing chain and a longest decreasing chain in σ , respectively.

Definition (casc)

 $casc(\sigma)$ is the number of occurences of a consecutive 12 pattern in 0 σ n+1.

Example:

$$des(\sigma) = 2$$
 $des(\sigma) = 2$
 $lic(\sigma) = 4$
 $ldc(\sigma) = 2$
 $casc(\sigma) = 2$

Number of Inversions vs. DI Distance (8 Genes)

Other Permutation Statistics and DI Distance

Descents + Descents in Inverse - Ascents of Consecutive Elements vs. DI Distance (8 Genes)

Algorithm

Idea:

- Minimize $des(\rho)$, $des(\rho^{-1})$, $Idc(\rho)$
- Maximize $casc(\rho)$

Algorithm

Distribution of Difference between Algorithm and True DI Distances (8 genes)

Algorithm Distance - True Distance

Bounds on DI Distance (for ρ of length n)

Lower Bounds:

$$d_{DI}(\rho) \ge \left\lfloor \frac{des(\rho)}{2} \right\rfloor + \chi(\rho \ne \iota)$$
$$d_{DI}(\rho) \ge \left\lfloor \frac{Idc(\rho)}{2} \right\rfloor + \chi(Idc(\rho) > 2)$$

Bounds on DI Distance (for ρ of length n)

Lower Bounds:

$$d_{DI}(\rho) \ge \left\lfloor \frac{des(\rho)}{2} \right\rfloor + \chi(\rho \ne \iota)$$
 $d_{DI}(\rho) \ge \left\lfloor \frac{Idc(\rho)}{2} \right\rfloor + \chi(Idc(\rho) > 2)$

Upper Bounds:

$$egin{aligned} d_{DI}(
ho) &\leq \mathsf{algorithm}(
ho) \ d_{DI}(
ho) &\leq n - \mathit{lic}(
ho) \ d_{DI}(
ho) &\leq n - \mathit{casc}(
ho) + 1 \end{aligned}$$

Bounds on DI Distance (for ρ of length n)

Lower Bounds:

$$d_{DI}(\rho) \ge \left\lfloor \frac{des(\rho)}{2} \right\rfloor + \chi(\rho \ne \iota)$$
$$d_{DI}(\rho) \ge \left\lfloor \frac{Idc(\rho)}{2} \right\rfloor + \chi(Idc(\rho) > 2)$$

Upper Bounds:

$$d_{DI}(
ho) \leq \mathsf{algorithm}(
ho)$$

 $d_{DI}(
ho) \leq n - \mathit{lic}(
ho)$
 $d_{DI}(
ho) \leq n - \mathit{casc}(
ho) + 1$

^{*} These bounds also apply to ρ^{-1} since $d_{DI}(\rho) = d_{DI}(\rho^{-1})$.

Bounds on DI Distance

Results for 8 Genes:

Lower Bound = Dist		Neither Bound $=$ Dist
8726	38962	809
21.6 %	96.6%	2.0%

Continuing Research

- Represent genomes with other structures (i.e. trees, lattice paths)
- Find a formula for DI Distance as a function of permutation statistics
- Consider gene repeats

Merci - Thank You!

- Lara Pudwell, Alex Burstein, and Alex Woo
- Permutation Patterns 2013 Organizers
- Dr. Manda Riehl University of Wisconsin-Eau Claire
- Dr. Abra Brisbin University of Wisconsin-Eau Claire
- UWEC Department of Mathematics
- UWEC Office of Research and Sponsored Programs

References

- E. Ars, E. Serra, J. Garcia, H. Kruyer, A. Gaona, C. Lazaro, X. [1] Estivill, Mutations Affecting mRNA Splicing are the Most Common Molecular Defects in Patients with Neurofibromatosis Type 1, Human Molecular Genetics 9, (2000) 237–247.
- [2] Human Genome Program, U.S. Department of Energy, Human Genome Program Report, 1997. http://www.ornl.gov/sci/ techresources/Human_Genome/publicat/97pr/index.html
- [3] K. Lindblad-Toh et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, (2005): 803–819.
- [4] National Human Genome Research Institute. NIH News Advisory, December 2002. http://www.genome.gov/page.cfm?pageID=10005831.
- [5] http://nfs.unipv.it/nfs/minf/dispense/immunology/lectures/files/ bcell_tcell_development.html
- [6] R. Rubin, D. Strayer, Rubin's Pathology: Clinico-pathologic Foundation of Medicine (5 ed.), Wolters Kluwer Health: Lippincot Williams & Wilkins, Baltimore, Maryland, (2008) 201-203.