Relations between the shape of a permutation and the shape of the base poset derived from the corresponding Lehmer codes

2013 July 5 at Permutation Pattens 2013
Masaya Tomie
Morioka University
tomie@morioka-u.ac.jp

2. Denoncourt's Work

3. Relations Between ω and M_{ω}

4. Relations Between $\Delta(\omega)$ and M_{ω}

$$\omega = \omega(1)\omega(2)\cdots\omega(n) \in S_n$$

$$\omega = \omega(1)\omega(2)\cdots\omega(n) \in S_n$$

$$\mathbf{c}(\omega) = (c_1(\omega), c_2(\omega), \cdots, c_n(\omega))$$
Lehmer Code

$$\omega = \omega(1)\omega(2)\cdots\omega(n) \in S_n$$

$$\mathbf{c}(\omega) = (c_1(\omega), c_2(\omega), \cdots, c_n(\omega))$$
Lehmer Code

$$c_1(\omega)$$
:

the number of $i \geq 1$ such that $\omega(1) > \omega(i)$

$$c_2(\omega)$$
:

the number of $i \geq 2$ such that $\omega(2) > \omega(i)$

:

$$c_n(\omega)$$
:

the number of $i \geq n$ such that $\omega(n) > \omega(i)$

 $\omega = 423615$

$$\omega = 423615$$

•
$$c_1 = 3$$
 423615

$$\omega = 423615$$

•
$$c_1 = 3$$
 423615

•
$$c_2 = 1$$
 4236**1**5

$$\omega = 423615$$

•
$$c_1 = 3$$
 423615

•
$$c_2 = 1$$
 4236**1**5

•
$$c_3 = 1$$
 4236**1**5

$$\omega = 423615$$

•
$$c_1 = 3$$
 423615

•
$$c_2 = 1$$
 4236**1**5

•
$$c_3 = 1$$
 4236**1**5

•
$$c_4 = 2$$
 4236**15**

•
$$c_5 = 0$$
 423615

•
$$c_6 = 0$$
 423615

$$\mathbf{c}(\omega) = (3, 1, 1, 2, 0, 0)$$

$$\omega = 423615$$

•
$$c_1 = 3$$
 423615

•
$$c_2 = 1$$
 4236**1**5

•
$$c_3 = 1$$
 4236**1**5

•
$$c_4 = 2$$
 4236**15**

•
$$c_5 = 0$$
 423615

•
$$c_6 = 0$$
 423615

$$\mathbf{c}(\omega) = (3, 1, 1, 2, 0, 0)$$

Endow a product order on Lehmer Codes

$$\omega = \omega(1)\omega(2)\cdots\omega(n) \in S_n$$

$$Inv(\omega) = \{(i,j)|i < j, \ \omega(i) > \omega(j)\}$$

$$\omega = \omega(1)\omega(2)\cdots\omega(n) \in S_n$$

$$Inv(\omega) = \{(i, j) | i < j, \ \omega(i) > \omega(j) \}$$

Definition (Weak Bruhat Order)

For
$$\omega, \tau \in S_n$$
 $\omega \leq \tau \iff \operatorname{Inv}(\omega) \subset \operatorname{Inv}(\tau)$

$$\omega = \omega(1)\omega(2)\cdots\omega(n) \in S_n$$

$$Inv(\omega) = \{(i, j) | i < j, \ \omega(i) > \omega(j) \}$$

Definition (Weak Bruhat Order)

For $\omega, \tau \in S_n$ $\omega \leq \tau \iff \operatorname{Inv}(\omega) \subset \operatorname{Inv}(\tau)$

H. Denoncourt,

A refinement of weak order intervals into distributive lattices, arXiv:1102.2689.

H. Denoncourt,

A refinement of weak order intervals into distributive lattices, arXiv:1102.2689.

$$\omega \in S_n$$

 $\mathbf{c}(\omega)$: The corresponding Lehmer code

H. Denoncourt,

A refinement of weak order intervals into distributive lattices, arXiv:1102.2689.

$$\omega \in S_n$$

 $\mathbf{c}(\omega)$: The corresponding Lehmer code

 $\Lambda_{\omega} := [e, \omega]$ Interval in Weak Bruhat Order

H. Denoncourt,

A refinement of weak order intervals into distributive lattices, arXiv:1102.2689.

$$\omega \in S_n$$

 $\mathbf{c}(\omega)$: The corresponding Lehmer code

 $\Lambda_{\omega} := [e, \omega]$ Interval in Weak Bruhat Order

Theorem (Denoncourt 2011)

- 1. c is an order preserving map
- 2. $\mathbf{c}(\Lambda_{\omega})$ is a distributive lattice in \mathbb{N}^n

For $\omega \in S_n$, i with $c_i(\omega) \neq 0$ and $1 \leq x \leq c_i(\omega)$, define $m_{i,x}(\omega) \in \mathbb{N}^n$ s.t.

For $\omega \in S_n$, i with $c_i(\omega) \neq 0$ and $1 \leq x \leq c_i(\omega)$, define $m_{i,x}(\omega) \in \mathbb{N}^n$ s.t.

1. j-th (j < i) coordinate of $m_{i,x}(\omega)$ is 0

For $\omega \in S_n$, i with $c_i(\omega) \neq 0$ and $1 \leq x \leq c_i(\omega)$, define $m_{i,x}(\omega) \in \mathbb{N}^n$ s.t.

- 1. j-th (j < i) coordinate of $m_{i,x}(\omega)$ is 0
- 2. i-th coordinate of $m_{i,x}(\omega)$ is x

For $\omega \in S_n$, i with $c_i(\omega) \neq 0$ and $1 \leq x \leq c_i(\omega)$, define $m_{i,x}(\omega) \in \mathbb{N}^n$ s.t.

- 1. j-th (j < i) coordinate of $m_{i,x}(\omega)$ is 0
- 2. i-th coordinate of $m_{i,x}(\omega)$ is x
- 3. For j > i with $\omega(i) > \omega(j)$, j-th coordinate of $m_{i,x}(\omega)$ is 0

For $\omega \in S_n$, i with $c_i(\omega) \neq 0$ and $1 \leq x \leq c_i(\omega)$, define $m_{i,x}(\omega) \in \mathbb{N}^n$ s.t.

- 1. j-th (j < i) coordinate of $m_{i,x}(\omega)$ is 0
- 2. i-th coordinate of $m_{i,x}(\omega)$ is x
- 3. For j > i with $\omega(i) > \omega(j)$, j-th coordinate of $m_{i,x}(\omega)$ is 0
- 4. For j > i with $\omega(i) < \omega(j)$, j-th coordinate of $m_{i,x}(\omega)$ is

$$\max\{0, x - c_{i,j}(x)\}$$

where $c_{i,j}$ is the number of $i \leq k \leq j$ s.t.

$$\omega(i) > \omega(k)$$
.

Theorem (Denoncourt 2011)

The join-irreducibles of $\mathbf{c}(\Lambda_{\omega})$ are

$$M_{\omega} = \{ m_{i,x} \in \mathbb{N}^n | c_i(\omega) \neq 0, 1 \leq x \leq c_i(\omega) \}$$

Theorem (Denoncourt 2011)

The join-irreducibles of $\mathbf{c}(\Lambda_{\omega})$ are

$$M_{\omega} = \{ m_{i,x} \in \mathbb{N}^n | c_i(\omega) \neq 0, 1 \leq x \leq c_i(\omega) \}$$

$$\omega = 5371642$$

Theorem (Denoncourt 2011)

The join-irreducibles of $\mathbf{c}(\Lambda_{\omega})$ are

$$M_{\omega} = \{ m_{i,x} \in \mathbb{N}^n | c_i(\omega) \neq 0, 1 \leq x \leq c_i(\omega) \}$$

$$\omega = 5371642$$

$$\mathbf{c}(\omega) = (4, 2, 4, 0, 2, 1, 0)$$

Theorem (Denoncourt 2011)

The join-irreducibles of $\mathbf{c}(\Lambda_{\omega})$ are

$$M_{\omega} = \{ m_{i,x} \in \mathbb{N}^n | c_i(\omega) \neq 0, 1 \leq x \leq c_i(\omega) \}$$

$$\omega = 5371642$$

$$\mathbf{c}(\omega) = (4, 2, 4, 0, 2, 1, 0)$$

$$m_{1,4} = (4, , , , ,)$$

Theorem (Denoncourt 2011)

The join-irreducibles of $\mathbf{c}(\Lambda_{\omega})$ are

$$M_{\omega} = \{ m_{i,x} \in \mathbb{N}^n | c_i(\omega) \neq 0, 1 \leq x \leq c_i(\omega) \}$$

$$\omega = 5371642$$

$$\mathbf{c}(\omega) = (4, 2, 4, 0, 2, 1, 0)$$

$$m_{1,4} = (4, , , , ,)$$

$$m_{1,4} = (4, \mathbf{0}, , \mathbf{0}, , \mathbf{0}, \mathbf{0})$$
 5371642

Theorem (Denoncourt 2011)

The join-irreducibles of $\mathbf{c}(\Lambda_{\omega})$ are

$$M_{\omega} = \{ m_{i,x} \in \mathbb{N}^n | c_i(\omega) \neq 0, 1 \leq x \leq c_i(\omega) \}$$

$$\omega = 5371642$$

$$\mathbf{c}(\omega) = (4, 2, 4, 0, 2, 1, 0)$$

$$m_{1,4} = (4, , , , ,)$$

$$m_{1,4} = (4, \mathbf{0}, , \mathbf{0}, , \mathbf{0}, \mathbf{0})$$
 5371642

$$m_{1,4} = (4, 0, \mathbf{3}, 0, 0, 0)$$
 53**7**1642

Theorem

The join-irreducibles of $\mathbf{c}(\Lambda_{\omega})$ are

$$M_{\omega} = \{ m_{i,x} \in \mathbb{N}^n | c_i(\omega) \neq 0, 1 \leq x \leq c_i(\omega) \}$$

$$\omega = 5371642$$

$$\mathbf{c}(\omega) = (4, 2, 4, 0, 2, 1, 0)$$

$$m_{1,4} = (4, , , , ,)$$

$$m_{1,4} = (4, \mathbf{0}, , \mathbf{0}, , \mathbf{0}, \mathbf{0})$$
 5371642

$$m_{1,4} = (4, 0, \mathbf{3}, 0, 0, 0)$$
 53**7**1642

$$m_{1,4} = (4, 0, 3, 0, \mathbf{2}, 0, 0)$$
 5371**6**42

$$m_{1,4} = (4,0,3,0,2,0,0)$$
 $m_{1,3} = (3,0,2,0,1,0,0)$

$$m_{1,2} = (2, 0, 1, 0, 0, 0, 0)$$
 $m_{1,1} = (1, 0, 0, 0, 0, 0, 0)$

$$m_{2,2} = (0, 2, 2, 0, 1, 1, 0)$$
 $m_{2,1} = (0, 1, 1, 0, 0, 0, 0)$

$$m_{3,4} = (0,0,4,0,0,0,0)$$
 $m_{3,3} = (0,0,3,0,0,0,0)$

$$m_{3,2} = (0, 0, 2, 0, 0, 0, 0)$$
 $m_{3,1} = (0, 0, 1, 0, 0, 0, 0)$

$$m_{5,2} = (0, 0, 0, 0, 2, 0, 0)$$
 $m_{5,1} = (0, 0, 0, 0, 1, 0, 0)$

$$m_{6,1} = (0, 0, 0, 0, 0, 1, 0)$$

3. Relations Between ω and M_{ω}

3. Relations Between ω and M_{ω}

Lemma

 ω is a 231-avoiding permutation $\Longrightarrow M_{\omega}$ is disjoint union of chains.

3. Relations Between ω and M_{ω}

Lemma

 ω is a 231-avoiding permutation $\Longrightarrow M_{\omega}$ is disjoint union of chains.

 M_{4231} is disjoint union of length 2 and 1 chains.

Lemma

 ω is a 231-avoiding permutation $\Longrightarrow M_{\omega}$ is disjoint union of chains.

 M_{4231} is disjoint union of length 2 and 1 chains.

Definition

 $P, Q \ Posets$ $P \ is \ called \ to \ be \ Q \ free \ poset \ iff$ $there \ are \ no \ subposets \ R \subset P \ s.t. \ R \simeq Q.$

Lemma

 ω is a 231-avoiding permutation $\Longrightarrow M_{\omega}$ is disjoint union of chains.

 M_{4231} is disjoint union of length 2 and 1 chains.

Definition

 $P, Q \ Posets$ $P \ is \ called \ to \ be \ Q \ free \ poset \ iff$ $there \ are \ no \ subposets \ R \subset P \ s.t. \ R \simeq Q.$

- 1. (2+2)–(3+1)-free poset is enumerated by Catalan number.
- 2. A (2+2)-free poset is a interval order.

Lemma

 ω is a 231-avoiding permutation $\Longrightarrow M_{\omega}$ is disjoint union of chains.

 M_{4231} is disjoint union of length 2 and 1 chains.

Definition

 $P, Q \ Posets$ $P \ is \ called \ to \ be \ Q \ free \ poset \ iff$ $there \ are \ no \ subposets \ R \subset P \ s.t. \ R \simeq Q.$

- 1. (2+2)–(3+1)-free poset is enumerated by Catalan number.
- 2. A (2+2)-free poset is a interval order.

A poset P is B_2 -free iff P has no 4 elements isomorphic to Boolean algebra of rank 2.

Theorem (T. 2011)

 ω is a 3412-3421-avoiding permutation $\iff M_{\omega}$ is a B_2 free poset.

M. Tomie,

A relation between the shape of a permutation and the shape of the base poset derived from the Lehmer codes, arXiv:1111.3094.

Theorem (T. 2011)

 ω is a 3412-3421-avoiding permutation $\iff M_{\omega}$ is a B_2 free poset.

M. Tomie,

A relation between the shape of a permutation and the shape of the base poset derived from the Lehmer codes, arXiv:1111.3094.

3412-3421-avoiding permutation is called Schröder permutation

Theorem (T. 2011)

 ω is a 3412-3421-avoiding permutation $\iff M_{\omega}$ is a B_2 free poset.

M. Tomie,

A relation between the shape of a permutation and the shape of the base poset derived from the Lehmer codes, arXiv:1111.3094.

3412-3421-avoiding permutation is called Schröder permutation

Example

$$\omega = 315462$$

Definition

For $\omega \in S_n$ Consider a graph $G(\omega)$ s.t.

Definition

For $\omega \in S_n$ Consider a graph $G(\omega)$ s.t.

1. vertex set
$$\{i|\exists j>i, s.t.\omega(i)>\omega(j)\}$$

Definition

For $\omega \in S_n$ Consider a graph $G(\omega)$ s.t.

- 1. vertex set $\{i|\exists j > i, s.t.\omega(i) > \omega(j)\}$
- 2. Connect i and j (i < j) if $\exists k > j$ s.t. $st(\omega(i)\omega(j)\omega(k)) = 231$.

Example

$$\omega = 6472315$$
 $\mathbf{c}(\omega) = (5, 3, 4, 1, 1, 0, 0)$

Example

$$\omega = 6472315$$
 $\mathbf{c}(\omega) = (5, 3, 4, 1, 1, 0, 0)$

$$m_{1,5} = (5, 0, 4, 0, 0, 0, 0)$$
 $m_{1,4} = (4, 0, 3, 0, 0, 0, 0)$

$$m_{1,3} = (3,0,2,0,0,0,0)$$
 $m_{1,2} = (2,0,1,0,0,0,0)$

$$m_{1,1} = (1, 0, 0, 0, 0, 0, 0)$$

$$m_{2,3} = (0, 3, 3, 0, 0, 0, 1)$$
 $m_{2,2} = (0, 2, 2, 0, 0, 0, 0)$

$$m_{2,1} = (0, 1, 1, 0, 0, 0, 0)$$

$$m_{3,4} = (0,0,4,0,0,0,0)$$
 $m_{3,3} = (0,0,3,0,0,0,0)$

$$m_{3,2} = (0, 0, 2, 0, 0, 0, 0)$$
 $m_{3,1} = (0, 0, 1, 0, 0, 0, 0)$

$$m_{4,1} = (0, 0, 0, 1, 1, 0, 0)$$

$$m_{5,1} = (0, 0, 0, 0, 1, 0, 0)$$

Theorem

The number of components of M_{ω} equals to that of $G(\omega)$

Problem

1. When M_{ω} becomes tree?

$$\omega \in S_n$$

$$\Delta(\omega) := \{(i,j)|i < j, \omega(i) > \omega(j)\}\$$

$$\omega \in S_n$$

$$\Delta(\omega) := \{(i,j)|i < j, \omega(i) > \omega(j)\}$$

Endow a partial order on $\Delta(\omega)$

$$(i,j) \le (k,l) \iff i \le k < l \le j$$

 $\Delta(\omega)$ becomes a poset

$$\omega \in S_n$$

$$\Delta(\omega) := \{(i,j)|i < j, \omega(i) > \omega(j)\}\$$

Endow a partial order on $\Delta(\omega)$

$$(i,j) \le (k,l) \iff i \le k < l \le j$$

 $\Delta(\omega)$ becomes a poset

Lemma

$$\sharp \Delta(\omega) = \sharp \operatorname{Inv}(\omega)$$

 S_n is the Weyl group of type A_{n-1}

 $\{\alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$ fundamental roots

 S_n is the Weyl group of type A_{n-1}

$$\{\alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$$
fundamental roots

 Δ the set of roots

$$\Delta^+(\Delta^-)$$
 positive roots (negative roots)

$$\Delta = \Delta^+ \uplus \Delta^-$$

 S_n is the Weyl group of type A_{n-1}

$$\{\alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$$
fundamental roots

 Δ the set of roots

$$\Delta^+(\Delta^-)$$
 positive roots (negative roots)

$$\Delta = \Delta^+ \uplus \Delta^-$$

Endow a partial order on Δ s.t.

$$\alpha \leq \beta \iff \beta - \alpha = \sum_{k_i > 0} k_i \alpha_i$$

 S_n is the Weyl group of type A_{n-1}

$$\{\alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$$
 fundamental roots

 Δ the set of roots

$$\Delta^+(\Delta^-)$$
 positive roots (negative roots)

$$\Delta = \Delta^+ \uplus \Delta^-$$

Endow a partial order on Δ s.t.

$$\alpha \leq \beta \iff \beta - \alpha = \sum_{k_i > 0} k_i \alpha_i$$

$$\tilde{\Delta}(\omega) = \{ \alpha | \alpha \in \Delta^+, \omega(\alpha) \in \Delta^- \}$$

 S_n is the Weyl group of type A_{n-1}

$$\{\alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$$
 fundamental roots

 Δ the set of roots

$$\Delta^+(\Delta^-)$$
 positive roots (negative roots)

$$\Delta = \Delta^+ \uplus \Delta^-$$

Endow a partial order on Δ s.t.

$$\alpha \leq \beta \iff \beta - \alpha = \sum_{k_i > 0} k_i \alpha_i$$

$$\tilde{\Delta}(\omega) = \{ \alpha | \alpha \in \Delta^+, \omega(\alpha) \in \Delta^- \}$$

It is known that

$$\tilde{\Delta}(\omega) \simeq \Delta(\omega)$$
 as a poset

$$\Phi_{\omega}: M_{\omega} \to \Delta(\omega)$$

$$\Phi_{\omega}(m_{i,x}) := (i, j_x)$$

where
$$(i, j_1), (i, j_2), \cdots (i, j_x), \cdots) \in \text{Inv}(\omega)$$

with $j_1 < j_2 < \cdots < j_x < \cdots$

$$\Phi_{\omega}: M_{\omega} \to \Delta(\omega)$$

$$\Phi_{\omega}(m_{i,x}) := (i, j_x)$$

where
$$(i, j_1), (i, j_2), \cdots (i, j_x), \cdots) \in \text{Inv}(\omega)$$

with $j_1 < j_2 < \cdots < j_x < \cdots$

Proposition

 Φ_{ω} is an order preserving bijection

$$\Phi_{\omega}: M_{\omega} \to \Delta(\omega)$$

$$\Phi_{\omega}(m_{i,x}) := (i, j_x)$$

where
$$(i, j_1), (i, j_2), \cdots (i, j_x), \cdots) \in \text{Inv}(\omega)$$

with $j_1 < j_2 < \cdots < j_x < \cdots$

Proposition

 Φ_{ω} is an order preserving bijection

But Φ_{ω} is not poset isomorphism in general

$$\Phi_{\omega}: M_{\omega} \to \Delta(\omega)$$

$$\Phi_{\omega}(m_{i,x}) := (i, j_x)$$

where
$$(i, j_1), (i, j_2), \cdots (i, j_x), \cdots) \in \text{Inv}(\omega)$$

with $j_1 < j_2 < \cdots < j_x < \cdots$

Proposition

 Φ_{ω} is an order preserving bijection

But Φ_{ω} is not poset isomorphism in general

Theorem (T)

 Φ_{ω} is a poset isomorphism if and only if ω is a 321-avoiding permutation.

$$\Phi_{\omega}: M_{\omega} \to \Delta(\omega)$$

$$\Phi_{\omega}(m_{i,x}) := (i, j_x)$$

where
$$(i, j_1), (i, j_2), \cdots (i, j_x), \cdots) \in \text{Inv}(\omega)$$

with $j_1 < j_2 < \cdots < j_x < \cdots$

Proposition

 Φ_{ω} is an order preserving bijection

But Φ_{ω} is not poset isomorphism in general

Theorem (T)

 Φ_{ω} is a poset isomorphism if and only if ω is a 321-avoiding permutation.

Remark

A 321-avoiding permutation is a fully commutative element.

Problem

Are there natural generalizations of this fact to Weyl groups?