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<

c1(w) :
the number of 4 (> 1) such that w(1) > w(7)

co(w) -
the number of 4 (> 2) such that w(2) > w(7)

cp(w) -
the number of ¢ (> n) such that w(n) > w(?)
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Example
w = 423615

ec; =3 423615
eco=1 423615
ec3=1 423615
ecy =2 423615
ecs =0 423615
ecs=0 423615

clw) = (3,1,1,2,0,0)

Endow a product order on Lehmer Codes
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nv(w) = {(4,5)]i < 4, w(i) > w(4)}

Definition (Weak Bruhat Order)
Forw, 7 €S, w<71<= Inv(w) C Inv(7)
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3. Denoncourt’s Work

H. Denoncourt,
A refinement of weak order intervals into dis-
tributive lattices, arXiv:1102.2689.

w € Sy

c(w) : The corresponding Lehmer code

Ay = le,w] Interval in Weak Bruhat Order

Theorem (Denoncourt 2011)
1. ¢ is an order preserving map

2. ¢(Ay) is a distributive lattice in N"
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Definition (Denoncourt 2011)
For w € Sy, i with ¢;(w) # 0 and
1 < < ¢j(w), define m; ,(w) € N" s.t.

1. j-th (j < i) coordinate of m; ,(w) is (
2.i-th coordinate of m; ,(w) Is x

3. For j > i with w(?) > w(j),
j-th coordinate of m; ;(w) is 0

4. For j > i with w(?) < w(j),
j-th coordinate of m; ,(w) is

max{0,r — ¢; j(z)}
where C; j 1S the number of 1 < k < j s.t.

w(i) > w(k).
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We denote the join-irreducibles by M.

Theorem
The join-irreducibles of c(\,,) are

M,
={mj s € N"|¢;j(w) # 0,1 <z < ¢5(w)}

Example
w = 5371642

c(w) =(4,2,4,0,2,1,0)

mia=(4 ,,,,,)

mi4=(4,0, ,0, ,0,0) 5371642
mi 4 = (4,0,3,0, ,0,0) 5371642

my 4= (4,0,3,0,2,0,0) 5371642



my 4 = (4,0,3,0,2,0,0)

myo = (2,0,1,0,0,0,0)
mao = (0,2,2,0,1,1,0)

ms3.4 = (0,0,4,0,0,0,0)

m3.2 = (0,0,2,0,0,0,0)
mso = (0,0,0,0,2,0,0)

mg1 = (0,0,0,0,0,1,0)

my 3= (3,0,2,0,1,0,0)

my 1= (1,0,0,0,0,0,0)
ma1 = (0,1,1,0,0,0,0)

m33 = (0,0,3,0,0,0,0)

m31 = (0,0,1,0,0,0,0)

ms1 = (0,0,0,0,1,0,0)






3. Relations Between w and M,



3. Relations Between w and M,

Lemma
w 1s a 231-avoiding permutation
—> M, is disjoint union of chains.



3. Relations Between w and M,

Lemma
w 1s a 231-avoiding permutation
—> M, is disjoint union of chains.

M 931 is disjoint union of length 2 and 1
chains.



3. Relations Between w and M,

Lemma
w 1s a 231-avoiding permutation
—> M, is disjoint union of chains.

M 931 is disjoint union of length 2 and 1
chains.

Definition
P, () Posets
P is called to be () free poset iff
there are no subposets R C P s.t. R >~ ().



3. Relations Between w and M,

Lemma
w 1s a 231-avoiding permutation
—> M, is disjoint union of chains.

M 931 is disjoint union of length 2 and 1
chains.

Definition
P, () Posets
P is called to be () free poset iff
there are no subposets R C P s.t. R >~ ().

1. (2 4 2)—(3 + 1)-free poset is enumerated by
Catalan number.

2. A (2 + 2)-free poset is a interval order.



3. Relations Between w and M,

Lemma
w is a 231-avoiding permutation
—> M, is disjoint union of chains.

M 931 is disjoint union of length 2 and 1
chains.

Definition
P, () Posets
P is called to be () free poset iff
there are no subposets R C P s.t. R >~ ().

1. (2 4 2)—(3 + 1)-free poset is enumerated by
Catalan number.

2. A (2 + 2)-free poset is a interval order.

A poset P is Bo-free ift P has no 4 elements
isomorphic to Boolean algebra of rank 2.
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Theorem (T. 2011)

w is a 3412-3421-avoiding permutation
<— M, is a By free poset.

M. Tomie,
A relation between the shape of a permuta-

tion and the shape of the base poset derived
from the Lehmer codes, arXiv:1111.3094.

3412-3421-avoiding permutation is called Schroder
permutation

Example
w = 315462
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Consider the number of components ot M,

Definition
For w € S;, Consider a graph G(w) s.t.

1. vertex set {i|35 > i, s.t.w(i) > w(J)}

2. Connect 1 and j (i < j) if 3k > j s.t.
st(w(i)w(j)w(k)) = 231.
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Example
w = 6472315

my 5= (5,0,4,0,0,0,0)
my 3= (3,0,2,0,0,0,0)

my 1= (1,0,0,0,0,0,0)

mo 3 = (0,3,3,0,0,0,1)

mo 1 = (0,1,1,0,0,0,0)

ms3.4 = (0,0,4,0,0,0,0)

ms39o = (0,0,2,0,0,0,0)
my | = (0,0,0,1,1,0,0)

ms1 = (0,0,0,0,1,0,0)

c(w) = (5,3,4,1,1,0,0)

my 4 = (4,0,3,0,0,0,0)

mya = (2,0,1,0,0,0,0)

mo o = (0,2,2,0,0,0,0)

m33 = (0,0,3,0,0,0,0)

ms3.1 = (0,0,1,0,0,0,0)
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Theorem
The number of components of M, equals

to that of G(w)



Problem
1. When M, becomes tree?
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4. Relations Between A(w) and M,
w € Sy

Alw) = {5, 9)li < j,wli) > w(j)}
Endow a partial order on A(w)

(6,7) S (k) = i<k <l<

A(w) becomes a poset

Lemma

1A(w) = fnv(w)
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Remark (Motivation of A(w))
Sy, is the Weyl group of type A,,_1

{ag, a9, -+, an_1} fundamental roots
A the set of roots

AT(A™) positive roots (negative roots)
A=ATwWA™

Endow a partial order on A s.t.
a<f=f-a=) >0k

Alw) = {a]a € AT, w(a) € A7}

It is known that

A(w) ~ A(w) as a poset
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We define a map

Py, My — Alw)
q)w(mi,az) = (4, Jz)

where (iajl)a (ian)a T (Zajilf)? T ) S IHV(CU)
with j1 < o <o < gp < - -

Proposition
®,, is an order preserving bijection

But &, is not poset isomorphism in general

Theorem (T)
®, is a poset isomorphism if and only if w
is a 321-avoiding permutation.

Remark
A 321-avoiding permutation is a fully com-
mutative element.



Problem
Are there natural generalizations of this fact

to Weyl groups 7



